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ALPHA-DISTANCE – A GENERALIZATION OF CHINESE

CHECKER DISTANCE AND TAXICAB DISTANCE

Songlin Tian

The Euclidean distance measures the shortest distance between two points.
The taxicab distance [2] measures the distance between two points when only moves
along axis-directions are permitted. If, in addition, the diagonal moves are also
permitted, the distance between A and B is given by the Chinese checker distance
[1]. Let A(x1, y1) and B(x2, y2) be two points in R

2. Denote

∆AB = max{|x2 − x1|, |y2 − y1|} and δAB = min{|x2 − x1|, |y2 − y1|}.

The Euclidean distance between A and B is

d(A,B) =
√

∆2
AB + δ2AB .

The taxicab distance between A and B is

dT (A,B) = ∆AB + δAB.

The Chinese checker distance between A and B is

dC(A,B) = ∆AB + (
√
2− 1)δAB.

In this paper we introduce a family of distances which include both Chinese
checker distance and taxicab distance as special cases. For each α ∈ [0, π/4], we
define the α-distance between A and B by

dα(A,B) = ∆AB + (secα− tanα)δAB.

Then, d0(A,B) = dT (A,B) and dπ/4(A,B) = dC(A,B). Observe that if δAB > 0,
then

dC(A,B) < dα(A,B) < dT (A,B) for all α ∈ (0, π/4).

When δAB = 0, A and B lie on a horizontal or vertical line, and it follows that
dC(A,B) = dα(A,B) = dT (A,B) = d(A,B) for all α ∈ [0, π/4].

Clearly, dα(A,B) = 0 if and only if A = B, and dα(A,B) = dα(B,A) for all
A,B ∈ R

2. The main result of this paper will be that

dα(A,B) ≤ dα(A,C) + dα(C,B),
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for all A,B,C ∈ R
2, and α ∈ [0, π/4].

For two points A(x1, y1), B(x2, y2) ∈ R
2, we denote by RAB the rectangular

region bounded by the lines x = x1, y = y1, x = x2, and y = y2. The following
propositions follow directly from the definition of the α-distance.

Proposition 1. Let A, B, C, and D be four points in R
2. If RAB and RCD are

congruent, then

dα(A,B) = dα(C,D) for all α ∈ [0, π/4].

As a consequence of Proposition 1, the α-distance between two points is an
invariant under translations and reflections about the x-axis, the y-axis, or both.

Proposition 2. Let A and B be two points in R
2. Then

dα(A,B) ≥ dα(C,D) for all C,D ∈ RAB and α ∈ [0, π/4].

The following lemma is useful in establishing the main result.

Lemma 3. If α ∈ [0, π/4], then

∆AB + (secα− tanα)δAB ≥ δAB + (secα− tanα)∆AB

for all A,B ∈ R
2.

Proof. If ∆AB = δAB, the result holds. Assume that ∆AB > δAB. Since α ∈
[0, π/4], it follows that cosα > 0 and sinα+cosα ≥ 1. Therefore, tanα+1 ≥ secα,
i.e., 1 ≥ secα− tanα. Multiplying both sides by ∆AB − δAB, we have

∆AB − δAB ≥ (∆AB − δAB)(secα− tanα), i.e.,

∆AB + (secα− tanα)δAB ≥ δAB + (secα− tanα)∆AB .

Theorem 4. Let A and B be two points in R
2 and α ∈ [0, π/4]. Then,

dα(A,B) ≤ dα(A,C) + dα(C,B),

for all C ∈ R
2.

Proof. It is obvious that the result holds when δAB = 0. Assume δAB > 0.
By Proposition 1, without loss of generality, assume that A lies at the origin, and
B(x2, y2), with x2 > y2 > 0, lies in the first quadrant. Identify points D(x2−y2, 0),
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E(x2 − y2 tanα, 0), and F (x2, 0). Let R1 = ∆ABD, R2 = ∆DBE, R3 = ∆EBF ,
and

R4 = {(x, y) | x ≥ 0 and y < 0, or x > x2 and y ≥ 0}

(see Figure 1).

Figure 1.

By Proposition 1, it suffices to prove the result for C ∈ R1 ∪R2 ∪R3 ∪R4.

Case 1. Assume that C(x, y) ∈ R1.
In this case, it follows that x ≥ y and x2 − x ≥ y2 − y. Thus,

dα(A,C) = x+ (secα− tanα)y and dα(C,B) = x2 − x+ (secα− tanα)(y2 − y).

Therefore,

dα(A,C) + dα(C,B) = x2 + (secα− tanα)y2 = dα(A,B).

Case 2. Assume C(x, y) ∈ R2.
Draw a line segment parallel to the x-axis through C to intersect line segment

BE at G. Draw a line segment parallel to BE through C to intersect the x-axis at
point H (see Figure 2).
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Since the quadrilateral CGEH is a parallelogram, it follows that |CG| = |HE|
and |HC| = |EG|. Note that dα(A,C) = |AH |+ |HC| and

dα(A,B) = |AE|+ |EB|

= |AH |+ |HE|+ |EG|+ |GB|

= |AH |+ |HC|+ |CG|+ |GB|

= dα(A,C) + |CG|+ |GB|.

Figure 2.

By Lemma 3,
|CG|+ |GB| ≤ dα(C,B).

Therefore,
dα(A,B) ≤ dα(A,C) + dα(C,B).

Case 3. Assume that C(x, y) ∈ R3.
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Let G and H be the points obtained as in Case 2. As in Case 2, it follows that
|GC| = |EH | and |HC| = |EG|. Observe that,

dα(A,B) = |AE|+ |EB|

= |AE|+ |EG|+ |GB|,

dα(A,C) = |AH |+ |HC|

= |AE|+ |EH |+ |HC|

= |AE|+ |EG|+ |GC|,

and
|CB| ≤ dα(C,B).

Therefore,

dα(A,B) = |AE|+ |EG|+ |GB|

≤ |AE|+ |EG|+ |GC|+ |CB|
= dα(A,C) + dα(C,B).

Case 4. Assume that C(x, y) ∈ R4.
Let h = min{max{0, y}, y2} and k = min{x, x2}. Denote by D the point (h, k).

Then D lies on the line segment AF or BF (see Figure 1). By Proposition 2,

dα(A,D) ≤ dα(A,C) and dα(D,B) ≤ dα(C,B).

Based on the results from Case 2 and Case 3,

dα(A,B) ≤ dα(A,D) + dα(D,B) ≤ dα(A,C) + dα(C,B).

We know that geometric figures such as lines, circles, parabolas, ellipses, and
hyperbolas can be defined based on a distance. It is a good undergraduate/graduate
research topic to characterize these figures under the α-distance.
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