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NOTES ON THE STRUCTURE OF PΣn

Erin Corman, Rebecca Dolphin, and Leonard VanWyk

Abstract. The pure symmetric automorphism group, PΣn, consists of those

automorphisms of the free group on n generators that take each standard generator

to a conjugate of itself. We give presentations for kernels of homomorphisms PΣn →

Z where each standard generator is sent to either 0 or 1, and provide explicit

generators (as words in the standard generators) when those kernels are finitely

generated. In addition, we provide recursive constructions of the defining graphs

of the graph groups associated with PΣn.

1. Introduction. The pure symmetric automorphism group, PΣn, consists of

those automorphisms of the free group on n generators, Fn, that take each standard

generator to a conjugate of itself. Such automorphisms have also been referred to

as basis-conjugating automorphisms of free groups.

Just as each braid group, Bn, can be interpreted as a group of motions of n

distinct points in the plane, so PΣn can be interpreted as a group of motions of n

unknotted, unlinked circles in R
3. The fundamental group of the link complement

of this trivial link is Fn, with each of the n standard generators corresponding to

a meridian of one of the circles. PΣn is then realized as the group of motions

generated by those motions for which the ith circle is passed through the jth circle,

with all others remaining fixed. See Goldsmith [7] or Brownstein and Lee [4] for

details.

McCool [13], using generators described by Humphries [9], derived a finite

presentation for PΣn. Gutiérrez and Krstić [8] have discovered normal forms for the

more general symmetric automorphism group of Fn (those that send each standard

generator to a conjugate of itself or another standard generator) that form a regular

language. Orlandi-Korner [16] has computed the first Σ-invariant for PΣn. Brady

et al. [3] have shown that the PΣn are duality groups.

Since two of the three types of relators in McCool’s presentation for PΣn are

commutators of his generators, there is an associated graph group or right-angled

Artin group associated with each PΣn; PΣn is the quotient of this graph group

by the normal subgroup generated by the other relators. Graph groups have been

studied extensively, and have proven to be an interesting yet accessible class of

groups. See [2, 5, 6, 10, 14, 15, and 17] for some results about graph groups.

The focus of this paper is threefold. First, we derive a presentation for kernels

of homomorphisms θ: PΣn → 〈t〉 (where 〈t〉 is the infinite cyclic group) in which each
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generator is mapped to t or 1. (Kernels from graph groups to < t > provided the

first example of groups that satisfy homological finiteness condition FP2 but which

were not finitely presented [2].) These kernels necessarily contain the commutator

subgroup of PΣn. Secondly, we study the structure of the underlying graph of the

graph group associated with PΣn. Lastly, we provide and explicit finite generating

set for those homomorphisms θ for which ker θ is finitely generated.

This work is the result of an NSF-funded Research Experiences for Under-

graduates project at James Madison University of the first two authors under the

direction of the third. We thank John Meier for suggesting this project and Joshua

Levy for his help in improving the presentation of this material.

2. Preliminaries. Let Fn be the free group with basis X = {x1, x2, . . . , xn}.

The pure symmetric automorphism group of Fn, denoted by PΣn, is the subgroup

of Aut(Fn) that sends each xi to a conjugate of itself.

In [13], McCool provides a finite presentation of PΣn. The generators are the

maps φi,j :Fn → Fn (i 6= j) given by

φi,j(xk) =

{

x−1
j xixj if k = i

xk otherwise

and the relations fall into three categories:











[φi,j , φk,j ] = 1 for all distinct i, j and k

[φi,j , φk,l] = 1 for all distinct i, j, k and l

[φi,j , φi,kφj,k] = 1 for all distinct i, j and k.

(1)

We call the first class of relators Type C; these are relations in which automor-

phisms with common conjugates commute. The second class is Type D; these are

relations in which automorphisms with disjoint subscripts commute. The third

class is Type E; these can be thought of as edge relations, where a single vertex

commutes with a pair of common conjugates (as defined by the equation above)

that correspond to an edge in the underlying graph group defined below.

Since the relators of Types C and D are commutators of generators, the group

formed from the presentation above minus the relators of Type E is a graph group

or right-angled Artin group.
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Following [12], we will denote the Tietze transformations adjunction of relators,

deletion of relators, adjunction of generators, and deletion of generators by (T1),

(T2), (T3), and (T4), respectively. It is shown in [12] that given any two presen-

tations of a group G, one can be obtained from the other by repeated applications

of these four transformations.

Given a presentation of a group G and suitable information about a subgroup

H ≤ G, the Reidemeister-Schreier method enables one to obtain a presentation

for H . In [11] it is shown that if 〈X ;R〉 is a presentation for G, π:F (X) → G is

the canonical epimorphism, T is a Schreier transversal for π−1(H) in F (X), and

Φ:F (X) → T is the function which maps each element to its coset representative,

then Y = {txΦ(tx)−1 | t ∈ T, x ∈ X, tx /∈ T } corresponds to a set of generators

for H . Furthermore, if τ :π−1(H) → F (Y ) is the function in [11] which rewrites

each w ∈ π−1(H) in terms of the generators Y and S = {τ(trt−1) | t ∈ T, r ∈ R},

then 〈Y ;S〉 is a presentation for H .

The reader is directed to [11] or [12] for details of Tietze transformations and

the Reidemeister-Schreier rewriting procedure.

3. A Presentation for the Subgroups. Let PΣn have the presentation

given in Section 2, with generating set X = {φi,j | 1 ≤ i, j ≤ n, i 6= j} and relators

given in Equation 1 of Types C, D, and E. Let θ: PΣn → 〈t〉 be a homomorphism

that maps each generator φi,j to either t or 1. We seek a presentation for ker θ.

Following [1] and [10], we will refer to those generators mapped to t as “live”

and those mapped to 1 as “dead.”

Since there will always be at least one live generator, and the presentation of

PΣn is symmetric, we will always assumeφ1,2 is live.

For a Schreier transversal for π−1(ker θ) in F (X), take T = {φm
1,2 | m ∈ Z}

and recall that Φ:F (X) → T sends each element to its coset representative. A set

of generators for ker θ is then {txΦ(tx)−1 | t ∈ T, x ∈ X, tx 6∈ T }. Just as in [1] and

[10], a straightforward calculation yields the following families of generators:

{

λ(i, j,m) = φm
1,2 φi,j φ

−(m+1)
1,2 for each live φi,j and for each m ∈ Z

δ(i, j,m) = φm
1,2 φi,j φ

−m
1,2 for each dead φi,j and for each m ∈ Z.

Notice we use λ(i, j,m) for each family of generators corresponding to a live au-

tomorphism and δ(i, j,m) for those corresponding to a dead automorphism. Also

notice that λ(1, 2,m) = 1 for all m ∈ Z.
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We now obtain the relations for ker θ by rewriting the set {trt−1 | t ∈ T, r ∈ R}

in terms of these generators,where R consists of the relators in Equation 1. For the

following, we will denote the live generators of PΣn by li,j and the dead generators

of PΣn by di,j , i.e.,

φi,j =

{

li,j if θ(φi,j) = t

di,j if θ(φi,j) = 1.

Once again, straightforward calculations yield the following relations for ker θ;

each holds for all m ∈ Z:

(1) Relations derived from Type C relations of PΣn.

(a) From each relation of the form [li,j , lk,j ] = 1:

λ(i, j,m)λ(k, j,m+ 1)λ(i, j,m+ 1)−1λ(k, j,m)−1 = 1

(b) From each relation of the form [li,j , dk,j ] = 1:

λ(i, j,m)δ(k, j,m+ 1)λ(i, j,m)−1δ(k, j,m)−1 = 1

(c) From each relation of the form [di,j , dk,j ] = 1:

δ(i, j,m)δ(k, j,m)δ(i, j,m)−1δ(k, j,m)−1 = 1

(2) Relations derived from Type D relations of PΣn.

(a) From each relation of the form [li,j , lk,l] = 1:

λ(i, j,m)λ(k, l,m+ 1)λ(i, j,m+ 1)−1λ(k, l,m)−1 = 1

(b) From each relation of the form [li,j , dk,l] = 1:

λ(i, j,m)δ(k, l,m+ 1)λ(i, j,m)−1δ(k, l,m)−1 = 1

(c) From each relation of the form [di,j , dk,l] = 1:

δ(i, j,m)δ(k, l,m)δ(i, j,m)−1δ(k, l,m)−1 = 1

(3) Relations derived from Type E relations of PΣn.

(a) From each relation of the form [li,j , li,k lj,k] = 1:

λ(i, j,m)λ(i, k,m+1)λ(j, k,m+2)λ(i, j,m+2)−1λ(j, k,m+1)−1λ(i, k,m)−1 = 1
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(b) From each relation of the form [li,j , li,k dj,k] = 1:

λ(i, j,m)λ(i, k,m+1)δ(j, k,m+2)λ(i, j,m+1)−1δ(j, k,m+1)−1λ(i, k,m)−1 = 1

(c) From each relation of the form [li,j , di,k lj,k] = 1:

λ(i, j,m)δ(i, k,m)λ(j, k,m + 1)λ(i, j,m+ 1)−1λ(j, k,m)−1δ(i, k,m)−1 = 1

(d) From each relation of the form [li,j , di,k dj,k] = 1:

λ(i, j,m)δ(i, k,m+ 1)δ(j, k,m+ 1)λ(i, j,m)−1δ(j, k,m)−1δ(i, k,m)−1 = 1

(e) From each relation of the form [di,j , li,k lj,k] = 1:

δ(i, j,m)λ(i, k,m)λ(j, k,m+ 1)δ(i, j,m+ 2)−1λ(j, k,m+ 1)−1λ(i, k,m)−1 = 1

(f) From each relation of the form [di,j , li,k dj,k] = 1:

δ(i, j,m)λ(i, k,m)δ(j, k,m+ 1)δ(i, j,m+ 1)−1δ(j, k,m+ 1)−1λ(i, k,m)−1 = 1

(g) From each relation of the form [di,j , di,k lj,k] = 1:

δ(i, j,m)δ(i, k,m)λ(j, k,m)δ(i, j,m + 1)−1λ(j, k,m)−1δ(i, k,m)−1 = 1

(h) From each relation of the form [di,j , di,k dj,k] = 1:

δ(i, j,m)δ(i, k,m)δ(j, k,m)δ(i, j,m)−1δ(j, k,m)−1δ(i, k,m)−1 = 1

Note that every generator φi,j of PΣn (except for φ1,2) corresponds to a count-

able family of generators for ker θ, and every relation of PΣn corresponds to a

countable family of relations for ker θ.

4. The Structure of the Underlying Graphs of PΣn. Recall [13] that

PΣn admits a finite presentation with generators

{φi,j | 1 ≤ i, j ≤ n, i 6= j}

and relations given in Equation 1 of Types C, D, and E.

Since the relators of Types C and D are commutators of generators, each group

given by removing a subset of the relations containing all Type E relations is a graph

group. Each such group has a defining graph whose vertices are the generators φi,j

and whose edges connect (distinct) generators that commute.
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Definition 1. Let C(PΣn) [resp. D(PΣn)] denote the defining graph of the

graph group whose generators consist of the φi,j and whose relations consist of all

Type C [resp. Type D] relations. Similarly, let CD(PΣn) denote the defining graph

of the graph group whose generators consist of the φi,j and whose relations consist

of all Type C and all Type D relations.

Recall a graph Γ is k-regular provided the degree of every vertex in Γ is k. Also

recall that the link of φi,j , lk(φi,j), is the full subcomplex generated by all vertices

adjacent to φi,j , while the star of φi,j , st(φi,j), is the cone of φi,j over lk(φi,j).

Throughout this section, since we are only concerned with the underlying graphs,

we will take lk(φi,j) and st(φi,j) to be the 1-skeleta of the topological link and star.

Proposition 1. In C(PΣn), st(φi,j) is a copy of the complete graph Kn−1.

Proof. Every pair of vertices of the form φk,j and φl,j with 1 ≤ l, k ≤ n (l, j, k

distinct) are connected by an edge of Type C.

Proposition 2. C(PΣn) is (n − 2)-regular, D(PΣn) is (n − 2)(n − 3)-regular,

and CD(PΣn) is (n− 2)2-regular.

Proof. There is an edge of Type C between φi,j and φk,j if and only if k 6= i, j.

Thus, C(PΣn) is (n− 2)-regular. There is an edge of Type D between φi,j and φk,l

if and only if i, j, k,and l are distinct. Thus, D(PΣn) is (n−2)(n−3)-regular. Since

(n− 2) + (n− 2)(n− 3)=(n− 2)2, it follows that CD(PΣn) is (n− 2)2-regular.

Notice that the proof of Proposition 2 shows that for every i and j, lk(φi,j) =

lk(φj,i) in the graph D(PΣn). Also notice it follows that all links of vertices in

CD(PΣn) [resp. C(PΣn), D(PΣn)] are isomorphic.

Corollary 1. The link of any vertex of D(PΣn+2) is isomorphic to D(PΣn).

Proof. The vertex φn+1,n+2 is connected to the vertex φl,m(l 6= m) by a Type D

edge if and only if 1 ≤ l ≤ n, 1 ≤ m ≤ n, and l 6= m. Thus, lkφn+1,n+2 = D(PΣn).

The result follows from Proposition 2.

Proposition 3. The link of any vertex of CD(PΣn+1) is isomorphic to a full

subgraph of CD(PΣn).

Proof. By definition, lk(φn+1,j) is a full subgraph of CD(PΣn+1). Since φn+1,j

is not adjacent to any vertices of the form φn+1,k or φk,n+1, all vertices take the form

φl,m where neither l nor m is equal to n+ 1. Thus, lk(φn+1,j) is a full subgraph of

CD(PΣn). It follows from Proposition 2 that the link of any vertex of CD(PΣn+1)

is isomorphic to a full subgraph of CD(PΣn).
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Proposition 4. CD(PΣn+1) is obtained from CD(PΣn) by adding 2n vertices

of the form φi,n+1 and φn+1,i, together with 3n(n − 1)/2 edges of Type C and

2n(n− 1)(n− 2) edges of Type D.

Proof. Clearly the only vertices that need to be added to CD(PΣn) are the

2n vertices of the form φi,n+1 and φn+1,i.

By Proposition 1, for each i (1 ≤ i ≤ n) there are n − 1 edges of Type C

between φn+1,i and the copy of Kn−1 spanned by the vertices φj,i of CD(PΣn).

Since the vertices of the form φi,n+1 also form a copy of Kn, there are n(n− 1)/2

edges of Type C connecting these vertices to each other. Thus,

n(n− 1) +
n(n− 1)

2
=

3n(n− 1)

2

additional edges of Type C are needed when constructing CD(PΣn+1) from

CD(PΣn). Also, for each i, there are (n − 1)(n− 2) edges connecting each φn+1,i

and φi,n+1 to vertices in CD(PΣn) of the form φj,k with j, k, i, and n+ 1 distinct.

Thus, 2n(n− 1)(n − 2) additional edges of Type D are needed when constructing

CD(PΣn+1) from CD(PΣn).

Definition 2. Let φi,j , φk,l ∈ PΣn. The distance between φi,j and φk,l, denoted

d(φi,j , φk,l), is the distance between those two vertices in CD(PΣn).

Proposition 5. For each n ≥ 4, the diameter of CD(PΣn) is 2.

Proof. Let n ≥ 4, and let φi,j ∈ CD(PΣn). We first show that each vertex φk,l

in CD(PΣn) lies a distance at most 2 from φi,j . By φa,b
C
←→ φc,d and φa,b

D
←→ φc,d,

we mean that the vertex φa,b is connected to the vertex φc,d by an edge of type C

and D, respectively. There are six possible forms for φk,l:

(1) φk,j (k 6= i, j). Then φi,j
C
←→ φk,j .

(2) φk,l (i, j, k, l distinct). Then φi,j
D
←→ φk,l.

(3) φj,k (k 6= i, j). Then φj,k
C
←→ φl,k

D
←→ φi,j , where l 6= i, j, k.

(4) φi,k (k 6= i, j). Then φi,k
C
←→ φl,k

D
←→ φi,j , where l 6= i, j, k.

(5) φk,i (k 6= i, j). Then φk,i
D
←→ φl,j

C
←→ φi,j , where l 6= i, j, k.
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(6) φj,i. Then φj,i
D
←→ φl,k

C
←→ φi,j , where i, j, k, l are distinct.

Since φi,j and φj,i are not adjacent, the diameter of CD(PΣn) is 2.

5. A Finite Generating Set for ker θ. In [16], Orlandi-Korner computed

Σ1(PΣn), the first BNS-invariant of PΣn. As an immediate corollary of her main

theorem, we have

Corollary 2. (Orlandi-Korner) Let θ: PΣn → 〈t〉 be as in Section 3. Then ker θ

is not finitely generated if and only if for some i and j, φi,j and φj,i are the only

live generators under θ.

In this section, we calculate a set of finite generators for ker θ when the negation

of the above condition holds. Since at least one generator must be live for ker θ 6=

PΣn, we will assume φ1,2 is live throughout this section, as in Section 3. (Recall

that φ1,2 was chosen as our “transversal generator” in that section. The actual

choice of a tranversal generator would depend on which generators are live and

dead. Fortunately, the symmetry of McCool’s presentation of PΣn allows us to

renumber accordingly.)

Definition 3. Let φi,j , φk,l ∈ PΣn, with φi,j live. By a live path from φi,j to

φk,l, we mean a path in CD(PΣn) in which all intermediate generators are live.

The following is immediate from Lemma 1 of [10].

Corollary 3. (Levy et al.) If there exists a live path from φ1,2 to φi,j , then the

family of generators of ker θ corresponding to φi,j can be reduced to one generator,

namely {φi,j} or {φi,j φ
−1
1,2}, depending on whether φi,j is dead or live, respectively.

Theorem. Let θ: PΣn → 〈t〉 be as in Section 3 with n ≥ 4, and assume it is not

true that the only live generators are φ1,2 and φ2,1. Then for each φi,j , the family of

generators of ker θ corresponding to φi,j can be reduced to at most two generators.

Specifically, if φi,j is live, it contributes {φi,j φ
−1
1,2} or {φi,j φ

−1
1,2, φ1,2 φi,j φ

−2
1,2}, while

if φi,j is dead, it contributes {φi,j} or {φi,j , φ1,2 φi,j φ
−1
1,2}.

Proof. Let φi,j ∈ PΣn. If there exists a live path from φ1,2 to φi,j , then

Corollary 3 applies. It follows that φi,j contributes {φi,j φ
−1
1,2} to the generating

set for ker θ if it is live and {φi,j} if it is dead. On the other hand, if there is no

live path from φ1,2 toφi,j , then φi,j does not commute with φ1,2. By Proposition

5, d(φ1,2, φi,j) = 2; consequently φi,j must be one of four forms: φ1,k, φk,1, φ2,k or

φ2,1, where k is neither 1 nor 2.

Case I. φi,j takes the form φ1,k, where k 6= 2.
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Subcase IA. φ1,k is live.

If φk,2 is live, the relation [φ1,k, φ1,2 φk,2] = 1 yields the family of relations

λ(1, k,m)λ(1, 2,m+ 1)λ(k, 2,m+ 2) = λ(1, 2,m)λ(k, 2,m+ 1)λ(1, k,m+ 2) (2)

for all m ∈ Z from Section 3, Case 3a. Since λ(1, 2,m+1) = λ(1, 2,m) = 1 and the

relation [φ1,2, φk,2] = 1 yields the family λ(k, 2,m+ 2) = λ(k, 2,m+ 1) = λ(k, 2, 0)

(Case 1a), Equation 2 can be rewritten as

λ(1, k,m+ 2) = λ(k, 2, 0)−1λ(1, k,m)λ(k, 2, 0).

Straightforward induction shows

λ(1, k,m) =

{

λ(k, 2, 0)−m/2λ(1, k, 0)λ(k, 2, 0)m/2 m even

λ(k, 2, 0)−(m−1)/2λ(1, k, 1)λ(k, 2, 0)(m−1)/2 m odd.

Hence, λ(1, k,m) can be expressed in terms of λ(k, 2, 0) and λ(1, k, 0), or λ(k, 2, 0)

and λ(1, k, 1). Thus, φ1,k contributes {φ1,k φ
−1
1,2, φ1,2 φ1,k φ

−2
1,2} to the generating set

of ker θ. Similarly, if φk,2 is dead, φ1,k contributes {φ1,k φ
−1
1,2}.

Subcase IB. φ1,k is dead.

If φk,2 is live, the relation [φ1,k, φ1,2 φk,2] = 1 yields the family of relations

in Case 3e. As in I.A., straightforward induction shows that δ(1, k,m) can be

expressed in terms of λ(k, 2, 0) and δ(1, k, 0), or λ(k, 2, 0) and δ(1, k, 1). As in I.A.

it follows that φ1,k contributes {φ1,k, φ1,2 φ1,k φ
−1
1,2} to the generating set of ker θ.

Similarly, if φk,2 is dead, it follows that φ1,k contributes {φ1,k}.

Case II. φi,j takes the form φk,1, where k 6= 2. The techniques in this case are

essentially identical to those of Case I.

Subcase IIA. φk,1 is live.

If φk,2 is live, the relation [φk,1, φk,2 φ1,2] = 1 yields the family of relations in

Case 3a, which can be used to show φk,1 contributes {φk,1 φ
−1
1,2, φ1,2 φk,1 φ

−2
1,2} to the

generating set of ker θ. Similarly, if φk,2 is dead,φk,1 contributes {φk,1 φ
−1
1,2}.

Subcase IIB. φk,1 is dead.

If φk,2 is live, the relation [φk,1, φk,2 φ1,2] = 1 yields the family of relations in

Case 3a, which can be used to show φk,2 contributes {φk,1, φ1,2 φk,1 φ
−1
1,2}. Similarly,

if φk,2 is dead, φk,1 contributes {φk,1}.



VOLUME 17, NUMBER 1, WINTER 2005 21

Case III. φi,j takes the form φ2,k, where k 6= 1.

Subcase IIIA. φ2,k is live.

If φ1,k is live, the relation [φ1,2, φ1,k φ2,k] = 1 yields the family of relations in

Case 3a. Straightforward induction shows that λ(2, k,m) can be expressed in terms

of λ(1, k, 0), or λ(1, k, 0) and λ(1, k, 1) (depending on whether φk,2 is live or dead),

and λ(2, k, 1). In either case, it follows that φ2,k contributes {φ1,2 φ2,k φ
−2
1,2}.

If φ1,k is dead, the relation [φ1,2, φ1,k φ2,k] = 1 yields the family of relations in

Case 3c. Again, straightforward induction shows that λ(2, k,m) can be expressed

in terms of λ(2, k, 0). It follows that φ2,k contributes {φ2,k φ
−1
1,2}.

Subcase IIIB. φ2,k is dead.

If φ1,k is live, the relation [φ1,k, φ1,2 φk,2] = 1 yields the family of relations in

Case 3b. Straightforward induction shows that δ(2, k,m) can be expressed in terms

of λ(1, k, 0), or λ(1, k, 0) and λ(1, k, 1) (depending on whether φk,2 is live or dead),

and δ(2, k, 1). In either case, it follows that φ2,k contributes {φ1,2 φ2,k φ
−1
1,2}.

If φ1,k is dead, the relation [φ1,k, φ1,2 φk,2] = 1 yields the family of relations in

Case 3d. Straightforward induction shows that δ(2, k,m) can be expressed in terms

of δ(1, k, 0), or δ(1, k, 0) and δ(1, k, 1) (depending on whether φk,2 is live or dead),

and δ(2, k, 0). In either case, it follows that φ2,k contributes {φ2,k}.

Case IV. φi,j takes the form φ2,1.

Subcase IVA. φ2,1 is live.

Subcase IVA1. φk,1 is live.

The relation [φk,1, φ2,1] = 1 yields the family of relations in Case 1a. By

induction, λ(2, 1,m) can be expressed in terms of λ(k, 2, 0), λ(k, 1, 0) andλ(2, 1, 0).

It follows that φ2,1 contributes {φ2,1 φ
−1
1,2}.

Subcase IVA2. φ2,k is live.

If φ1,k is live, the relation [φ2,1, φ2,k φ1,k] = 1 yields the family of relations in

Case 3a. By induction, λ(2, 1,m) can be expressed in terms of λ(2, 1, 0), λ(2, 1, 1),

λ(2, k, 0), λ(1, k, 0) and λ(k, 2, 0) (Note the results are the same using δ(k, 2, 0)).

It follows that φ2,1 contributes {φ2,1 φ
−1
1,2, φ1,2 φ2,1 φ

−2
1,2}. Similarly, if φ1,k is dead,

φ2,1 contributes {φ2,1 φ
−1
1,2}.

Subcase IVA3. φk,2 is live.
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If φk,1 is live, refer to Case IVA1. If φk,1 is dead, the relation [φk,2, φk,1 φ2,1] =

1, yields the family of relations in Case 3e. By induction, λ(2, 1,m) can be ex-

pressed in terms of λ(k, 2, 0), δ(k, 1, 0) and λ(2, 1, 0). It follows that φ2,1 contributes

{φ2,1 φ
−1
1,2}.

Subcase IVA4. φ1,k is live.

If φ2,k is live, refer to Case IVA2. If φ2,k is dead, the relation [φ2,1, φ2,k φ1,k] =

1, yields the family of relations in Case 3c. By induction, λ(2, 1,m) can be expressed

in terms of λ(2, 1, 0), δ(2, k, 0), λ(1, k, 0), λ(1, k, 1) and λ(k, 2, 0). It follows that

φ2,1 contributes {φ2,1 φ
−1
1,2}.

Subcase IVB. φ2,1 is dead.

Subcase IVB1. φk,2 is live.

The relation [φk,2, φk,1 φ2,1] = 1 yields the family of relations in Case 3d. By

induction, δ(2, 1,m) can be expressed in terms of λ(k, 2, 0), δ(k, 1, 0) and δ(2, 1, 0).

It follows that φ2,1 contributes {φ2,1}.

Subcase IVB2. φk,2 is dead, but φ1,k and φ2,k are live.

The relation [φ2,1, φ2,k φ1,k] = 1 yields the family of relations in Case 3e. By

induction, δ(2, 1,m) can be expressed in terms of λ(2, k, 0), λ(1, k, 0), δ(k, 2, 0),

δ(2, 1, 0), and δ(2, 1, 1). It follows that φ2,1 contributes {φ2,1, φ1,2 φ2,1 φ
−1
1,2}.

Subcase IVB3. φk,2 is dead, φ1,k is live and φ2,k is dead [resp., φ1,k is dead

and φ2,k is live].

The relation [φ2,1, φ2,k φ1,k] = 1 yields the family of relations in Case 3g [resp.

Case 3f]. By induction, δ(2, 1,m) can be expressed in terms of δ(2, k, 0) [resp.

λ(2, k, 0)], λ(1, k, 0) [resp. δ(1, k, 0)], δ(k, 2, 0), and δ(2, 1, 0). In either case, it

follows that φ2,1 contributes {φ2,1}.

Since all possible cases have been considered, it follows that for each φi,j , the

family of generators of ker θ corresponding to φi,j can be reduced to at most two

generators.

Example. Let θ: PΣ4 → 〈t〉 be given by φ1,2, φ3,2, φ4,1, φ2,4 7→ t and all re-

maining generators mapped to 1. (Figure 1 contains CD(PΣ4).) Note that φi,j is

represented as i, j, vertices of the form (i, j) are identified with i, j, live vertices are

represented by squares, and dead vertices are represented by circles.
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1,4

2,1

3,4

(2,1)

4,3

1,3

Figure 1

2,4 2,3

(2,3) (2,4)

1,2

3,2 4,2

4,1 3,1

By Corollary 2, ker θ is finitely generated. First, consider all generators φi,j for

which there is a live path from φ1,2 to φi,j . φ3,2 is live and therefore by Corollary

3 contributes {φ3,2 φ
−1
1,2}. Similarly, φ4,1 contributes {φ4,1 φ

−1
1,2}. φ4,2 is dead and

contributes {φ4,2}. Similarly, φ4,3, φ3,4, φ2,1, φ3,1, φ2,3 and φ1,4 correspond to the

generators {φ4,3}, {φ3,4}, {φ2,1}, {φ3,1}, {φ2,3} and {φ1,4}, respectively. Finally,

consider all generators with no live path from φ1,2 to the generator, i.e. φ1,3 and

φ2,4. By the previous theorem, φ1,3 corresponds to {φ1,3, φ1,2 φ1,3 φ
−1
1,2}. Similarly,

φ2,4 contributes {φ2,4 φ
−1
1,2}. So, a generating set for ker θ is:

{φ3,2 φ
−1
1,2, φ4,2, φ4,3, φ3,4, φ4,1 φ

−1
1,2, φ2,1, φ3,1, φ2,3, φ1,4, φ1,3, φ1,2 φ1,3 φ

−1
1,2, φ2,4 φ

−1
1,2}.
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8. M. Gutiérrez and S. Krstić, “Normal Forms for Basis-Conjugating Automor-
phisms of a Free Group,” IJAC, 8 (1998), 631–669.

9. S. P. Humphries “On Weakly Distinguished Bases and Free Generating Sets of
Free Groups,” Quart. J. Math. Oxford, 36 (1985), 215–219.

10. J. Levy, C. Parker, L. VanWyk, “Finite Presentation of Subgroups of Graph
Groups,” Missouri Journal of Mathematical Sciences, 10 (1998), 70–82.

11. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Vol. 89, Springer-Verlag, Berlin and New
York, 1977.

12. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Pre-

sentations of Groups in Terms of Generators and Relations, second revised
edition, Dover, New York, 1976.

13. J. McCool, “On Basis-Conjugating Automorphisms of Free Groups,” Canadian
Journal of Mathematics, 38 (1986), 1525–1529.

14. J. Meier and L. VanWyk, “‘Bieri-Neumann-Strebel Invariants for Graph
Groups,” Proceedings of the London Mathematical Society, 71 (1995), 263–280.

15. J. Meier, H. Meinert, and L. VanWyk, “Higher Generation Subgroup Sets and
the Σ-invariants of Graph Groups,” Comment. Math. Helv., 73 (1998), 22–44.

16. L. Orlandi-Korner, “The Bieri-Neumann-Strebel Invariant for Basis-
conjugating Autmorphisms of Free Groups,” Proceedings of the American

Mathematical Society, 128 (2000), 1257–1262.

17. L. VanWyk, “Graph Groups are Biautomatic,” Journal Pure and Applied Al-

gebra, 94 (1994), 341–352.



VOLUME 17, NUMBER 1, WINTER 2005 25

Erin Corman
Department of Mathematics
Keene State College
Keene, NH 03435
email: eecorman@hotmail.com

Rebecca Dolphin
Department of Mathematics
Mary Washington College
Fredericksburg, VA 22401
email: radolphin@juno.com

Leonard VanWyk
Department of Mathematics & Statistics
James Madison University
Harrisonburg, VA 22802
email: vanwyk@math.jmu.edu


