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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

141. [2003, 200] Proposed by Kenneth B. Davenport, Frackville, Pennsylvania.

(a) Show that

n−1
∑

k=1

1

1− tan2
(

kπ

2n

) =
n− 1

2
,

for n = 3, 5, 7, 9, . . . .

(b) Show that

n−1
∑

k=1

1

1 + tan2
(

kπ

2n

) =
n− 1

2
,

for n = 2, 3, 4, 5, . . . .

Solution by Joe Howard, Portales, New Mexico. Note that cos θ = − cos(π−θ)
and sec θ = − sec(π− θ). By pairing in this way (Ex: cos π

3 + cos 2π
3 = 0) it follows

that

n−1
∑

k=1

cos
kπ

n
= 0 and

n−1
∑

k=1

sec
kπ

n
= 0 for n = 3, 5, 7, 9, . . . .

Also, cos π

2 = 0 so

n−1
∑

k=1

cos
kπ

n
= 0 for n = 2, 4, 6, 8, . . . .
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(a) For n = 3, 5, 7, 9, . . .

n−1
∑

k=1

1

1− tan2 kπ

2n

=

n−1
∑

k=1

cos2 kπ

2n

cos2 kπ

2n − sin2 kπ

2n

=
1

2

n−1
∑

k=1

1 + cos kπ

n

cos kπ

n

=
1

2

n−1
∑

k=1

(

1 + sec
kπ

n

)

=
n− 1

2
+

1

2

n−1
∑

k=1

sec
kπ

n
=

n− 1

2
.

(b) For n = 2, 3, 4, 5, . . .

n−1
∑

k=1

1

1 + tan2 kπ

2n

=

n−1
∑

k=1

cos2
kπ

2n
=

1

2

n−1
∑

k=1

(

1 + cos
kπ

n

)

=
n− 1

2
+

1

2

n−1
∑

k=1

cos
kπ

n
=

n− 1

2
.

Also solved by Joe Flowers, Texas Lutheran University, Sequin, Texas; Don

Redmond, Southern Illinois University, Carbondale, Illinois; Russell Euler and

Jawad Sadek, Northwest Missouri State University, Maryville, Missouri; Ovidiu

Furdui, Western Michigan University, Kalamazoo, Michigan; and the proposer.

Comment by the proposer. For a related problem, see Problem H-566 [2000,
377; 2001, 474–476] in The Fibonacci Quarterly.

142. [2003, 201] Proposed by Mohammad K. Azarian, University of Evansville,

Evansville, Indiana.

Solve the differential equation

y′ +
y

xx
(xx ln y)n + y(lnx ln y) = 0,

where n is any real number.
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Solution by Joe Flowers, Texas Lutheran University, Sequin, Texas. The sub-
stitution v = xx ln y leads in straightforward fashion to the Bernoulli equation

v′ − v = −vn.

If n = 1, then v′ = 0, so v = c, hence

y = e
c

x
x .

For n 6= 1, the substitution v = w
1

1−n yields the linear equation

w′ + (n− 1)w = n− 1.

Applying the integrating factor e(n−1)x, we obtain the solution

w = 1 + ce(1−n)x

which then gives

v =

(

1 + ce(1−n)x

)
1

1−n

and finally

y = exp

(

(1 + ce(1−n)x)
1

1−n

xx

)

.

Also solved by Kenneth B. Davenport, Frackville, Pennsylvania, Ovidiu Furdui,

Western Michigan University, Kalamazoo, Michigan, J. D. Chow, Edinburg, Texas;

and the proposer.
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144. [2003, 201] Proposed by Ovidiu Furdui, Western Michigan University,

Kalamazoo, Michigan.

Prove that in any triangle the following inequality holds:

∑ b+ c

a
tan

B

2
tan

C

2
≥ 2,

where the notations are usual.

Solution I by Mangho Ahuja, Southeast Missouri State University, Cape Gi-

rardeau, Missouri. Using the identity

tan
A

2
=

√

(s− b)(s− c)

s(s− a)
,

where s = (a+ b+ c)/2, we have

tan
B

2
tan

C

2
=

√

(s− a)(s− c)

s(s− b)

√

(s− b)(s− a)

s(s− c)
=

s− a

s
.

The given expression

∑ b+ c

a
tan

B

2
tan

C

2
=

∑ b+ c

a
·
s− a

s
=

∑ b+ c

a

(

1−
a

s

)

=
∑ b+ c

a
−
∑ b+ c

s
=

b

a
+

c

a
+

c

b
+

a

b
+

a

c
+

b

c
−

2a+ 2b+ 2c

s

=

(

a

b
+

b

a

)

+

(

b

c
+

c

b

)

+

(

c

a
+

a

c

)

−
4s

s

=

(

a

b
+

b

a

)

+

(

b

c
+

c

b

)

+

(

c

a
+

a

c

)

− 4.
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But using the AM-GM inequality, the quantity

a

b
+

b

a
≥ 2.

Hence, the given expression is greater than or equal to

2 + 2 + 2− 4 = 2.

Solution II by Joe Howard, Portales, New Mexico. We use the formula that

∑

cyclic

tan
B

2
tan

C

2
= 1,

the inequality

u+
1

u
≥ 2,

and Chebyshev’s Inequality

n
∑

i=1

xiyi ≥
1

n

( n
∑

i=1

xi

)( n
∑

i=1

yi

)

,

where x1 ≥ x2 ≥ . . . ≥ xn > 0 and y1 ≥ y2 ≥ . . . ≥ yn > 0. Without loss of
generality assume a ≥ b ≥ c. Then

a+ b

c
≥

a+ c

b
≥

b+ c

a

and

tan
A

2
tan

B

2
≥ tan

A

2
tan

C

2
≥ tan

B

2
tan

C

2
.
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Then

∑

cyclic

b+ c

a
tan

B

2
tan

C

2

≥
1

3

(

b

a
+

c

a
+

a

b
+

c

b
+

a

c
+

b

c

)(

∑

cyclic

tan
B

2
tan

C

2

)

≥
1

3
(6)(1) = 2.

Also solved by the proposer.


