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UTILIZING THE EXPANSION OF Pn −Qn TO INTRODUCE

AND DEVELOP THE EXPONENTIAL FUNCTION

Bhamini M. P. Nayar

Recently, Bayne et al. [1, 2], have applied the identity

Pn −Qn = (P −Q)
n−1
∑

k=0

P kQn−1−k (1)

for real P,Q and positive integers n to present simple proofs of the existence of nth

roots and inequalities used in real analysis. In this article the identity (1) is used

to prove that f defined by

f(x) = lim
n→∞

(

1 +
x

n

)n

is a real-valued continuous function onto the positive reals with the collection of

reals as its domain, and to establish some properties of f , including f(x + y) =

f(x)f(y), f(0) = 1 and an elegant proof that f ′ = f where f ′ represents the

derivative function for f . The equation f(r) = (f(1))r is shown to hold for rational

r. This motivates the notation f(x) = (f(1))x = ex and calling f the exponential

function.

As in [4], the exponential function is often introduced as the inverse of the

logarithmic function which is defined as

∫ x

1

1

t
dt.

Later, when convergence of sequences is studied, ex is proved to be the limit of the

sequence (1 + x

n
)n. There again the logarithmic function is used. Dieudonné [3]

introduced the logarithmic function by proving that

For any a > 1, there is a unique increasing continuous function g of the positive

reals into the reals such that g(xy) = g(x) + g(y) and g(a) = 1.
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The approach adopted here leads to a new proof of the result of Dieudonné and

will serve as an exercise on sequences for Calculus students, encouraging them to

search for different viewpoints on well-established results.

In what follows, it will be shown that, for each x ≥ 0, the sequence (1 + x

n
)
n

is monotonic and bounded and, hence, converges. The existence of the limit is

extended to all real numbers x, by showing that

lim
n→∞

(

1−
x

n

)n

=
1

limn→∞(1 + x

n
)n

.

Theorem 1. For each real number x, limn→∞

(

1 + x

n

)n
exists.

Proof. First it will be established that
(

1 + x

n

)n
is nondecreasing and bounded

above for each nonnegative x. The proof is similar to the proof in [1] that
(

1 + 1
n

)n

is increasing and bounded above.

Proof that
(

1 + x

n

)n
is nondecreasing. Let x ≥ 0 and an =

(

1 + x

n

)n
. Then

an+1 − an =

(

1 +
x

n+ 1

)n+1

−
(

1 +
x

n

)n

=

(

1 +
x

n+ 1

)n+1

−
(

1 +
x

n

)n+1

+
(

1 +
x

n

)n+1

−
(

1 +
x

n

)n

.

It is seen from (1) that

(

1 +
x

n+ 1

)n+1

−
(

1 +
x

n

)n+1

=
−x

n(n+ 1)

n
∑

k=0

(

1 +
x

n+ 1

)k
(

1 +
x

n

)n−k

≥
−x

n(n+ 1)

n
∑

k=0

(

1 +
x

n

)n

=
−x

n(n+ 1)
(n+ 1)

(

1 +
x

n

)n

=
−x

n

(

1 +
x

n

)n

,
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and clearly,

(

1 +
x

n

)n+1

−
(

1 +
x

n

)n

=
(

1 +
x

n

)n (

1 +
x

n
− 1

)

=
(

1 +
x

n

)n x

n
.

Therefore,

an+1 − an ≥
−x

n

(

1 +
x

n

)n

+
x

n

(

1 +
x

n

)n

= 0.

The proof shows that for positive x, the sequence an is strictly increasing.

Proof that an is bounded. Consider the difference
(

1 + x

mn

)n
−1, where n and

m are positive integers with m > x. From (1)

(

1 +
x

mn

)n

− 1 =
x

mn

n−1
∑

k=0

(

1 +
x

mn

)k

≤
x

mn

n−1
∑

k=0

(

1 +
x

mn

)n

=
x

mn
n
(

1 +
x

mn

)n

=
x

m

(

1 +
x

mn

)n

.

Thus, for positive integers n,

(

1 +
x

mn

)n

−
x

m

(

1 +
x

mn

)n

=
(

1 +
x

mn

)n (

1−
x

m

)

≤ 1.

Hence,
(

1 + x

mn

)mn (

1− x

m

)m
≤ 1. Since

(

1 + x

n

)n
is nondecreasing and mn ≥ n,

we have

(

1 +
x

n

)n (

1−
x

m

)m

≤ 1 and so
(

1 +
x

n

)n

≤

(

m

m− x

)m

.

Therefore, an is bounded. Theorem 1 is completed by employing (1) to show the

following.
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limn→∞

(

1 + x

n

)n (

1− x

n

)n
= 1.

0 ≤ 1−

(

1−
x2

n2

)n

=
x2

n2

n−1
∑

k=0

(

1−
x2

n2

)k

≤
x2

n2

n−1
∑

k=0

1 =
x2

n
→ 0.

From Theorem 1 it follows that f defined by f(x) = limn→∞

(

1 + x

n

)n
is a real-

valued function with the collection of reals as its domain. In the sequel, f will

be this function. In Theorem 2 the identity in (1) is applied to produce some

properties of f , including an elegant proof that f ′ = f where f ′ represents the

derivative function for f .

Theorem 2. The function f is a strictly increasing, continuous, differentiable

function onto the positive reals satisfying

(i) f(x+ y) = f(x)f(y),

(ii) f(rx) = (f(x))r for each rational r, and

(iii) f ′ = f .

Proof that f is continuous. For real numbers x and a satisfying |x− a| < 1,

|f(x)− f(a)| ≤ lim
n→∞

|x− a|

n

n−1
∑

k=0

(

1 +
|x|

n

)k (

1 +
|a|

n

)n−1−k

≤ |x− a|f(1 + |a|).

Therefore, limx→a f(x) = f(a).

Proof that f ′ = f . For any x, a, x 6= a,

(

1 + x

n

)n
−
(

1 + a

n

)n

x− a
=

1

n

n−1
∑

k=0

(

1 +
x

n

)k (

1 +
a

n

)n−1−k

.

So for any nonnegative x, a, x 6= a

(

1 +
min{x, a}

n

)n−1

<

(

1 + x

n

)n
−
(

1 + a

n

)n

x− a
<

(

1 +
max{x, a}

n

)n−1

.
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Letting n → ∞,

f(min{x, a}) ≤
f(x)− f(a)

x− a
≤ f(max{x, a}). (∗)

For any nonpositive x, a, x 6= a

f(x)− f(a)

x− a
=

f(−x)− f(−a)

f(−x)f(−a)(−x− (−a))

and from inequality (*)

f(min{−x,−a})

f(−x)f(−a)
≤

f(−x)− f(−a)

f(−x)f(−a)(−x− (−a))
≤

f(max{−x,−a})

f(−x)f(−a)

f(min{−x,−a})

f(−x)f(−a)
≤

f(x)− f(a)

x− a
≤

f(max{−x,−a})

f(−x)f(−a)
. (∗∗)

It follows from inequalities (*), (**), continuity of the functions f,max,min, and

the “squeezing principle” that

lim
x→a

f(x)− f(a)

x− a
= f(a).

Proof of (i). For real numbers x and y

|f(x+ y)− f(x)f(y)| ≤ lim
n→∞

|xy|

n2

n−1
∑

k=0

(

1 +
|x+ y|

n

)k (

1 +
|x+ y|

n
+

|xy|

n2

)n−1−k

≤ lim
n→∞

|xy|

n
f(|x+ y|+ |xy|) = 0.
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Proof of (ii). From (i) and induction, it follows that f(mx) = (f(x))m for all

nonnegative integers m and real x. The identity f(x)f(−x) = 1 may then be used

to prove f(mx) = (f(x))m for all integers m and real x. It is now clear that

f(1) = f

(

n

(

1

n

))

=

(

f

(

1

n

))n

and (f(1))
1

n = f

(

1

n

)

for each positive integer n and hence, f(r) = (f(1))r for each rational r.

The function f is onto the set of positive reals. Let z > 0 and choose an inte-

ger m such that m > z+ 1
z
. Since f(1) > 2, it follows that f(m) = (f(1))m > 2m >

m > z + 1
z
> z and that

f(−m) =
1

f(m)
<

1

z + 1
z

< z.

By the Intermediate Value Theorem there is an x such that f(x) = z.

The function f is strictly increasing. This is a consequence of the facts that

f = f ′ and that f has positive values. It is instructive to see a proof using (1). If

x and y are nonnegative and x < y then

f(y)− f(x) = lim
n→∞

[(

1 +
y

n

)n

−
(

1 +
x

n

)n]

= lim
n→∞

y − x

n

n−1
∑

k=1

(

1 +
y

n

)k (

1 +
x

n

)n−1−k

≥ (y − x)f(x) > 0.

If x and y are nonpositive and x < y then −x and −y are nonnegative and −y < −x.

Hence, f(−y) < f(−x) and f(x)f(y)f(−y) < f(−x)f(x)f(y), so f(x) < f(y).

Finally, if x < y and 0 ∈ [x, y], then f(y)−f(x) = (f(y)−f(0))+(f(0)−f(x)) > 0.

Theorem 3. If g is a continuous real-valued function on the reals satisfying

(i) g(x+ y) = g(x)g(y) and

(ii) g(1) = f(1),

then g = f .



38 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Proof. It will be sufficient to show that g(r) = f(r) for rational r. From

(i) and (ii), f(1) = g(1) = g(1 + 0) = g(0)g(1) = g(0)f(1), so g(0) = 1. Hence,

g(x)g(−x) = g(0) = 1. These properties of g and arguments like those in the proof

of Theorem 2 (ii) will establish that g(r) = (g(1))r = (f(1))r = f(r) for rational r.

Remark 1. The function f−1 is a continuous strictly increasing function from

the positive reals onto the reals satisfying f−1(xy) = f−1(x) + f−1(y), f−1(1) = 0,

and (f−1)′(x) = 1/x. The function f−1 is of course customarily called the logarithm

function.

Remark 2. For a > 0 and real x, ax may now be defined as f(xf−1(a)).

The final results in this article illustrate an interesting method of proof. An-

other property of f is offered in Theorem 4.

Theorem 4. For any z > 0, some integer m satisfies f(m) ≤ z < f(m+ 1).

Proof. From above, there is an integer n such that f(n) ≤ z. Let A be

the collection of such f(n) and let p = supA. Since f(1) > 1 it follows that

p/f(1) < p. Choose an integer m satisfying f(m) ≤ p, p/f(1) < f(m), and

consequently p < f(m+1). Since m+1 is an integer and f(m+1) 6∈ A, m satisfies

f(m) ≤ z < f(m+ 1).

Remark 3. It is interesting that an argument similar to that used in the proof

of Theorem 4 produces the following simple proof that between any two distinct

reals x and y there is a rational, although it is not as geometrical in nature as the

usual proof. (The essence of the technique usually employed is to show that there is

an interval I = [a, b] with integer endpoints such that x, y ∈ I and then to partition

such an interval I into n subintervals of equal length, where |x − y| > (b − a)/n).

Suppose x < y, Q is the set of rationals, and let S = {r ∈ Q : r < y}. Then S 6= ∅

(the set of integers has no lower bound) and y is an upper bound for S. If s = supS

then for each positive integer m there is an rm ∈ S satisfying s < rm +1/m. Then

rm + 1/m /∈ S, rm + 1/m ∈ Q and consequently, for such m,

{

rm ≤ s < rm + 1/m

rm < y ≤ rm + 1/m.
(∗ ∗ ∗)

From (∗ ∗ ∗), 0 ≤ y − s < 1/m for each positive integer m and hence, s = y. Since

x < y there is an r ∈ S such that x < r.
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