
VOLUME 15, NUMBER 2, SPRING 2003 103

A NOTE ON RÉMY’S ALGORITHM FOR GENERATING

RANDOM BINARY TREES

Erkki Mäkinen and Jarmo Siltaneva

Abstract. This note discusses the implementation of Rémy’s algorithm for

generating unbiased random binary trees. We point out an error in a published

implementation of the algorithm. The error is found by using the χ2-test. Moreover,

a correct implementation of the algorithm is presented.

1. Introduction. Binary trees are essential in various branches of computer

science [5]. From time to time, there is a need to generate random binary trees. For

example, when writing a program to manipulate binary trees, it is advantageous to

have an efficient method to generate random binary trees with some fixed number

n of nodes in order to test the program.

Random generation of binary trees is a special case of random generation of

combinatorial structures. A seminal work in this area is the book of Nijenhuis and

Wilf [8, 12]. The work of Nijenhuis and Wilf was later generalized by Flajolet et

al. [4]. A general method for various kinds of trees was introduced by Alonso et al.

[1, 2]. A recent survey on random generation of binary trees appears in [6].

This note discusses an algorithm for generating binary trees introduced by

Rémy [10]. We show how the correctness of the implementations of such algorithms

can be verified by using the χ2-test. Moreover, we notice that an implementation by

Alonso and Schott [2] does not pass the test, i.e. this implementation is incorrect.

We also present a correct implementation. This note is based on the Master’s Thesis

of the second author [11].

2. Rémy’s Algorithm. We suppose familiarity with the basic definitions

and notations concerning binary trees as given in [5].

Most algorithms for generating random binary trees are based on coding sys-

tems of the trees in question. These algorithms then operate on the sequences

of valid code words instead of the actual trees [6]. Rémy’s algorithm [10] is an

exception to this general approach.

To generate a binary tree with n internal nodes and n + 1 leaves, Rémy’s

algorithm proceeds as follows:

• suppose that so far we have a binary tree with k internal nodes and k+1 leaves

• randomly select one of the 2k + 1 nodes; denote the selected node by v

• replace v by a new node



104 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

• choose v to be the left or right child of the new node with probability 1/2 for

each of the alternatives; the other child of the new node is a new leaf (the

subtrees of v are kept unchanged)

• the process of inserting nodes is repeated until the tree has n internal nodes

and n+ 1 leaves.

Notice that Rémy’s algorithm is an example of the inductive approach for

designing algorithms advocated by Manber [7].

The correctness of Rémy’s algorithm can be proved by considering binary trees

with leaves labeled by numbers 1, . . . , n + 1. Namely, it is easy to show that the

algorithm generates all binary trees with 2n + 1 labeled leaves with probability

n!/(2n)! [2, 10].

3. Verifying the Correctness of Implementations. In order to verify

whether or not a given implementation of an algorithm generating random binary

trees really produces trees with equal probabilities, we can use the χ2-test for

goodness of fit.

Suppose n is the number of internal nodes in the trees to be generated. There

are

Cn =

(

2n

n

)

1

n+ 1

different trees with n internal nodes. (Cn is known as the nth Catalan number.)

Each of these trees should appear equally likely as the output of the algorithm.

Suppose further that we perform a series of k test runs, and each tree s,

s = 1, . . . , Cn, is obtained Ys times as the output of the algorithm. We compare the

squares of differences between the observed numbers Ys and the expected numbers

kps, where ps is the probability to obtain a fixed binary tree, i.e. ps = 1/Cn.

In order to be able to use the standard tables of the χ2 distribution, we divide

each square (Ys − kps)
2 by kps. Notice that in our case all kps’s are equal. Hence,

we obtain the formula

V =
1

k

∑

1≤s≤Cn

(

Y 2
s

ps

)

− k =
Cn

k

∑

1≤s≤Cn

Y 2
s − k.

In our test runs we have “C(n)− 1 degrees of freedom” present, i.e. the values

Y1, Y2, . . . , YC(n)−1 uniquely define YC(n). Hence, we use the χ2 distribution with



VOLUME 15, NUMBER 2, SPRING 2003 105

ν = C(n) − 1 degrees of freedom. We can now compare the given values of V to

the tabulated values.

For example, if we generate binary trees with n = 4 internal nodes, the table

value 22.36 for ν = 13 and p = 0.95 means that V > 22.36 only 5 percent of the

time provided that the number of test runs k is large enough.

When χ2 has a very large number of degrees of freedom (as happens in our

tests even with reasonably small trees), the values are outside the range of standard

χ2 tables. Then we approximate the χ2-values by using the normal distribution as

explained in [3].

Consider now our test runs with the implementation of Rémy’s algorithm pre-

sented by Alonso and Schott in [2]. In Table I we give the V-values for binary

trees generated by up to 100,000 test runs with n = 4 (C4 = 14) and n = 10

(C10 = 16, 796). In the test runs reported we used the random number generator

suggested in [9].

number of test runs V (n = 4) V (n = 10)
1000 326.61 19955.96
2000 606.10 22086.00
5000 1892.72 29822.31

10,000 3740.75 45100.31
20,000 7100.23 74483.09
50,000 18642.27 154914.59
100,000 35168.11 298598.44

Table I. The V -values related to the results of the Alonso & Schott

implementation of Rémy’s algorithm.

For example, when n = 4 and the number of test runs is 100,000, the “correct”

frequency of each possible binary tree is 7142.86. The implementation of Alonso

and Schott produced the following sequence of 14 frequencies: 4221 - 4224 - 8296 -

4050 - 4258 - 16,482 -8328 -16,577 - 8437 - 4066 - 4282 - 8272 -4270 - 4237. Hence,

the two greatest values are more than twice that of the expected frequencey 7143.

Even without a proper null hypothesis (and hence, by being “worthless statisti-

cians”) we can conclude that the above V values for the implementation by Alonso

and Schott are “too high”. Moreover, they steadily increase when the number of

test runs increase. Hence, there must be something wrong with the source code.

As a matter of fact, by carefully checking the code we find that the implementation

calls the random number generator only once during the insertion of a new node.

The order of the children of the new node is not random, and as a consequence all

binary trees do not appear equally likely as the output of the implementation.



106 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

4. A Correct Implementation of Rémy’s Algorithm. In this section we

present a correct implementation of Rémy’s algorithm and test its correctness by

using the χ2-test.

The following piece of code implements Rémy’s algorithm. We use an array

tree for storing the tree to be generated. Each array element contains pointers to

its children and an additional pointer to its parent. The index of the root of the

tree is maintained in a variable root.

Algorithm.

begin

{ the initialization of the tree }

root := 0;

tree[0].left child:=nil;

tree[0].right child:=nil;

tree[0].parent:=nil;

{ the “induction step” }

for i:=1 to 2n−1 step 2 begin

hit:= random(0,i−1); { the choice of v }

direction:= random(0,1); { the choice of the order of

the children of the new node }

parent:=tree[hit].parent;

if parent = nil

then root:=i

else if tree[parent].left child = hit

then tree[parent].left child:=i

else tree[parent].right child:=i;

tree[i].parent:=parent;



VOLUME 15, NUMBER 2, SPRING 2003 107

if direction = 0

then begin

tree[i].left child:=i+1;

tree[i].right child:=hit;

end

else begin

tree[i].left child:=hit;

tree[i].right child:=i+1;

end

{ insertion of the new leaf into the position i+1 }

tree[hit].parent:=i;

tree[i+1].left child:=nil;

tree[i+1].right child:=nil;

tree[i+1].parent:=i;

end { for }

end; { The Algorithm }

The function random(a,b) returns a random value of appropriate type from

the interval [a, b]. In our tests random is the random number generator of [9].

For the sake of safety, we perform the χ2-test for the above implementation

(see Table II).

number of test runs V (n = 4) V (n = 10)
1000 21.19 16736.70
2000 14.42 16879.11
5000 12.41 16903.49

10,000 18.81 16758.13
20,000 6.77 16457.53
50,000 8.47 16858.91

100,000 14.28 16984.61

Table II. The V -values related to the correct

implementation of Rémy’s algorithm.

When n = 4 and the number of test runs is 100,000, the sequence of frequencies

is now 7393 - 7310 - 7076 - 7203 -7139 - 6971 - 7067 - 7055 - 7101 - 7215 - 7086 -

7132 - 7163 - 7089.



108 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

These results show that random binary trees are indeed generated.

5. Concluding Remarks. The χ2-test revealed that the implementation of

Rémy’s algorithm presented in [2] is erroneous. A correct implementation of the

algorithm is given. Similar tests are naturally possible for other algorithms that

randomly generate combinatorial systems.

Acknowledgements. The work of Erkki Mäkinen was supported by the

Academy of Finland (Project 35025).

References

1. L. Alonso, J. L. Remy, and R. Schott, “A Linear-Time Algorithm for the Gen-
eration of Trees,” Algorithmica 17 (1997), 162–182.

2. L. Alonso and R. Schott, Random Generation of Trees, Kluwer, Boston, MA,
1995.

3. G. M. Clarke and D. Cooke, A Basic Course in Statistics, Arnold, London,
UK, 1998.

4. P. Flajolet, P. Zimmerman and B. Van Cutsem, “A Calculus for the Random
Generation of Labeled Combinatorial Structures,” Theoret. Comput. Sci. 132
(1994), 1–35.

5. D.E. Knuth, The Art of Computer Programming. Vol. 1, Fundamental Algo-
rithms, Third Edition, Addison-Wesley, Reading, MA, 1997.

6. E. Mäkinen, “Generating Random Binary Trees – A Survey,” Inf. Sciences 115
(1999), 123–136.

7. U. Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley,
Reading, MA, 1989.

8. A. Nijenhuis and H.S. Wilf, Combinatorial Algorithms, Second Edition, Aca-
demic Press, New York, NY, 1978.

9. S. K. Park and K. W. Miller, “Random Number Generators: Good Ones Are
Hard To Find,” Comm. ACM 31 (1988), 1192–1201.

10. J. L. Rémy, “Un Procédé Itératif de Dénombrement D’Arbes Binairies et son
Application à Leur Génération Aléatoire,” RAIRO Inform. Théor, 19 (1985),
179–195.



VOLUME 15, NUMBER 2, SPRING 2003 109

11. J. Siltaneva, Random Generation of Binary Trees, (In Finnish), Master’s The-
sis, Dept. of Computer and Information Sciences, University of Tampere, Au-
gust 2000.

12. H. S. Wilf, Combinatorial Algorithms: An Update. SIAM, Philadelphia, PA,
1989.

Erkki Mäkinen
Department of Computer and Information Sciences
P.O. Box 607
FIN-33014
University of Tampere
Finland
email: em@cs.uta.fi

Jarmo Siltaneva
Information Technology Center
City of Tampere
Lenkkeilijänkatu 8
Finn-Medi 2
FIN-33520
Tampere, Finland
email: Jarmo.Siltaneva@tt.tampere.fi


