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MULTIVARIATE CHANGEPOINT PROBLEM

Sivanandan Balakumar

Abstract. Procedures for detecting a changepoint in a sequence of N random

p-vectors, when there is a location or a scale change are considered. An extension

of such procedures for the case of simultaneous occurrence of location and scale

changes is carried out. The asymptotic distributions of the proposed statistics

under the null hypothesis, in two different changepoint models are obtained.

1. Introduction. A simple multivariate changepoint problem can be for-

mulated as follows. Let X1, . . . , XN be a sequence of N independent random

vectors of dimension p, where Xi = (X1i, . . . , Xpi)
t for i = 1, . . . , N . Let F (Xi,Bi)

be the continuous distribution function (cdf) of the random vector Xi and where

Bi = (B1i, . . . ,Bpi)
t for i = 1, . . . , N are parameters. The above sequence of ran-

dom vectors is said to have a changepoint at time point n (1 ≤ n < N), if the

random vectors Xi for i = 1, . . . , n have the cdf’s F (Xi,0) and the random vec-

tors Xi for i = n + 1, . . . , N have the cdf’s F (Xi,B) with 0 = (0, . . . , 0)t and

B = (B1, . . . ,Bp)
t. The time point n may be called the single changepoint. The

change may also occur smoothly over a period of time and the time point n at

which the change begins to occur may be called the continuous changepoint.

Studies about changepoint problems in a multivariate setting are very rarely

found in the literature. Sen and Srivastava [7] considered the problem of testing

the hypothesis that the means of a sequence of N independent multivariate normal

random variables are equal against the alternative that after an unknown time point

r (1 ≤ r ≤ N − 1), the means have shifted.

In this paper we formulate two changepoint models, namely the single change-

point model (SC model) and the continuous changepoint model (CC model). Fur-

thermore, we propose the appropriate test statistics for testing location, scale, and

simultaneous location and scale changes in the above mentioned changepoint mod-

els. Section 2 contains the formulation of these models and the derivation of the

appropriate test statistics. In Section 3, the asymptotic distributions of the pro-

posed statistics are given and the concluding remarks are given in Section 4.

2. Multivariate Changepoint Models. In order to formulate the change-

point models, let F [(1 + a1i)x1i + b1i, . . . , (1 + api)xpi + bpi] for i = 1, . . . , N

be the continuous cdf of the random vector Xi, where aji and bji for j =

1, . . . , p and i = 1, . . . , N are the scale and location parameters, respectively.
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Let ai = (a1i, . . . , api)
t, bi = (b1i, . . . , bpi)

t, 1 = (1, . . . , 1)t, 0 = (0, . . . , 0)t,

a = (a1, . . . , ap)
t, and b = (b1, . . . , bp)

t. Now the SC model may be defined as

follows.

ai =

{

0, 1 ≤ i ≤ n

a, n+ 1 ≤ i ≤ N,
bi =

{

0, 1 ≤ i ≤ n

b, n+ 1 ≤ i ≤ N
(2.1)

with the hypotheses of interestH0 : a = 0 and b = 0 andHa : ‖a‖ > 0 and ‖b‖ > 0,

where ‖ · ‖ denotes the Euclidean norm. The CC model takes the following form.

ai =

{

0, 1 ≤ i ≤ n

a(i − n)/(N − n), n+ 1 ≤ i ≤ N,

bi =

{

0, 1 ≤ i ≤ n

b(i− n)/(N − n), n+ 1 ≤ i ≤ N
(2.2)

with the hypotheses of interest H0 : a = 0 and b = 0 and Ha : ‖a‖ >

0 and ‖b‖ > 0.

Now we shall formulate the test statistics for both the changepoint models.

Let RN denote the p × N rank matrix corresponding to the observation vector

X = (X1, . . . ,XN) and let Ri = (R1i, . . . , Rpi)
t be the rank vector of the ith

observation vector Xi. Thus,

RN =







R11 . . . R1N

. . . . .

. . . . .
Rp1 . . . RpN







p×N

. (2.3)

Let aNk(Rji), k = 1, 2 denote the score functions corresponding to the rank Rji for

j = 1, . . . , p and i = 1, . . . , N . Then the p × N matrix aNk of score functions is

given by

aNk =







aNk(R11) . . . aNk(R1N )
. . . . .
. . . . .

aNk(Rp1) . . . aNk(RpN )







p×N

, (2.4)
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where k = 1, 2. The matrix RN in (2.3) has (N !)p realizations. The distribution

of the rank vector RN = (R1, . . . ,RN) over the (N !)p realizations depend on the

distribution of Xi, i = 1, . . . , N even under the null hypothesis, since the p-variates

in Xi are in general dependent. Therefore, we do not obtain a uniform distribution

for the rank vector RN in the multivariate case. To overcome this problem we

consider the matrix R∗N, which has the same columns as RN but arranged so that

the first row consists of the integers 1, . . . , N , in that order. The matrix R∗N has

(N !)p−1 realizations. The conditional distribution of RN over the set of N ! possible

realizations of the columns of the matrix R∗N is uniform under the null hypothesis.

Furthermore, the matrix RN is permutationally equivalent to the matrix R∗N. Let

S(R∗N) be the set of matrices that are permutationally equivalent to R∗N . Then

P [RN = rN | S(R∗N), H0] = 1/N !,

for all rN ∈ S(R∗N). Thus, any statistic that depends explicitly on the elements

of RN gives a conditionally distribution free test. These results have been used

by Duran and Mitchell [5] in formulating multisample multivariate nonparametric

tests for simultaneous location/scale alternatives. For a complete treatment of

conditionally distribution free tests, we refer the reader to Chatterjee and Sen [2,

3].

To derive a statistic for the SC model, define the vectors S1 = (S11, . . . , S1p)
t,

S2 = (S21, . . . , S2p)
t, and SN = (S1

t,S2
t), where

Skj =

N
∑

i=1

ciakj(Rji), (2.5)

for k = 1, 2 and j = 1, . . . , p with ci = i−1. Note that the statistics S1j and S2j are

used for location and scale testing, respectively in a univariate single changepoint

problem by Balakumar [1]. In the multivariate situation, the statistic S1 may be

used for location testing in the SC model given in (2.1) and likewise, S2 may be

used for scale testing in the same model. The null hypothesis H0 is rejected for

large values of the statistics in either case.

For simultaneous location-scale testing in the SC model, we propose the statis-

tic LN given by

LN = (SN − µN)tAN−1(SN − µN),

where µN = (µt
1, µ

t
2), µ1 = (µ11, . . . , µ1p)

t, µ2 = (µ21, . . . , µ2p)
t, µkj =

E[Skj | S(R∗N), H0] = [N(N − 1)/2]
∫ 1

0
φkj(u) du, for k = 1, 2; j = 1, . . . , p in



VOLUME 14, NUMBER 3, FALL 2002 189

which the score functions akj(·) for k = 1, 2 are given by the square integrable

functions φk. The dispersion matrix AN of dimension 2p× 2p is given by

AN =

(

U W
W V

)

,

with U = (urs)p×p, V = (vrs)p×p, W = (wrs)p×p for r, s = 1, . . . , p are p × p

matrices with entries given by

urs = Cov[S1r, S1s | S(R∗N), H0] = t

∫ 1

0

[φ1r(u)− φ1r][φ1s(u)− φ1s] du,

wrs = Cov[S1r, S2s | S(R∗N), H0] = t

∫ 1

0

[φ1r(u)− φ1r][φ2s(u)− φ2s] du,

and

vrs = Cov[S2r, S2s | S(R∗N), H0] = t

∫ 1

0

[φ2r(u)− φ2r][φ2s(u)− φ2s] du,

where t = N(N + 1)/12. Now, by the choice of our score functions to give odd

and even translation invariant statistics, we get wrs = 0 for all r and s. Thus, the

dispersion matrix AN reduces to

AN =

(

U 0
0 W

)

.

Hence, the statistic LN can be written as

LN = (S1 − µ1)
tU−1(S1 − µ1) + (S2 − µ2)

tV −1(S2 − µ2). (2.7)
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A similar statistic to that of LN for the CC model may be obtained by defining

the vectors T1 = (T11, . . . , T1p)
t, T2 = (T21, . . . , T2p)

t and TN = (T1
t,T2

t),

where

Tkj =

N
∑

i=1

diakj(Rji), (2.8)

for k = 1, 2 and j = 1, . . . , p with di = i(i − 1)/2. The statistics T1j and T2j are

used for location and scale testing respectively, in a univariate continuous change-

point problem by Balakumar [1]. For location testing in a multivariate continuous

changepoint problem the statistic T1 may be used and for scale testing the statistic

T2 may be used. The simultaneous location-scale testing in the CC model given in

(2.2) may be carried out by the statistic LN∗ given by

LN∗ = (TN − vN)tB−1
N (TN − vN),

where vN = (v1
t,v2

t), v1 = (v11, . . . , v1p)
t, v2 = (v21, . . . , v2p)

t, vkj =

E[Tkj | S(RN∗), H0] = [N(N2 − 1)/6]
∫ 1

0
φkj du for k = 1, 2; j = 1, . . . , p and

the dispersion matrix BN of dimension 2p× 2p is given by

BN =

(

Y G
G Z

)

, (2.9)

with Y = (yrs)p×p, G = (grs)p×p, Z = (zrs)p×p for r, s = 1, . . . , p are p×p matrices

with entries given by

yrs = Cov[T1r, T1s | S(RN∗), H0] = m

∫ 1

0

[φ1r(u)− φ1r][φ1s(u)− φ1s] du,

grs = Cov[T1r, T2s | S(RN∗), H0] = m

∫ 1

0

[φ1r(u)− φ1r][φ2s(u)− φ2s] du,

and

zrs = Cov[T2r, T2s | S(RN∗), H0] = m

∫ 1

0

[φ2r(u)− φ2r][φ2s(u)− φ2s] du,
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where m = N(N +1)(4N2− 1)/180. As before, by the application of odd and even

translation invariant score functions to the test statistics, the covariance component

grs becomes zero and thus, the dispersion matrix BN reduces to

BN =

(

Y 0
0 Z

)

.

Hence, LN∗ becomes

LN∗ = (T1 − v1)
tY −1(T1 − v1) + (T2 − v2)

tZ−1(T2 − v2) (2.10)

and H0 is rejected for large values of LN∗.

3. Asymptotic Distributions of the Statistics. In this section we shall

obtain the asymptotic distribution of the statistics S1,S2,T1,T2,LN, and LN∗

under the appropriate null hypothesis. To begin with, the statistic S1 =

(S11, . . . , S1p)
t, where S1j for j = 1, . . . , p is as given by (2.5) is suitable for only

location testing in the SC model given by (2.1). The hypotheses of interest are
bH0 : b = 0 and bHa : ‖b‖ > 0. The following theorem gives the asymptotic

distribution of the statistic S1.

Theorem 3.1. When bH0 holds, if the regression constants ci’s and the score

functions a1j ’s for i = 1, . . . , N ; j = 1, . . . , p satisfy respectively, the following

Noether’s conditions

lim
N→∞

max1≤i≤N (ci − c)2
∑N

i=1(ci − c)2
= 0 and lim

N→∞

max1≤i≤N (a1j − a1j)
2

∑N

i=1(a1j − a1j)2
= 0, (3.1)

for each j, then the statistic S1 has an asymptotic p-variate normal distribution

with mean vector µ1 = (µ11, . . . , µ1p)
t and dispersion matrix U as given by (2.6).

Proof. As

lim
N→∞

{

max1≤i≤N (ci − c)2
∑N

i=1(ci − c)2

}

= lim
N→∞

[(N − 1)/2]2

[N(N2 − 1)/12]2
= 0



192 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

for each j, the statistic S1j has an asymptotic normal distribution with mean

µ1j = [N(N − 1)/2]

∫ 1

0

φij(u) du

and variance

σ2
1j = [N(N + 1)/12]

∫ 1

0

[φ1j(u)− φ1j ]
2 du (3.2)

according to Theorem V.I.5a of Hajek and Sidak [6]. Thus, the mean of the vector

S1 = (S11, . . . , S1p) is given by µ1 = (µ11, . . . , µ1p), where µ1j for j = 1, . . . , p is

given in (3.2). Furthermore, since

Cov [S1r, S1s] = [N(N + 1)/12]

∫ 1

0

[φ1r(u)− φ1r][φ1s(u)− φ1s] du

the dispersion matrix of S1 is as given by (2.6). To show the multinormality of S1,

it suffices to prove the normality for any linear combination of S1j ’s for j = 1, . . . , p

according to a theorem by Cramer [4]. For any hj for j = 1, . . . , p consider the

linear combination

p
∑

j=1

hjS1j =

p
∑

j=1

hj

{

N
∑

i=1

cia1j(Rji)

}

=

N
∑

i=1

ci

{

p
∑

j=1

hja1j(Rji)

}

and let

bi =

p
∑

j=1

hja1j(Rji).
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Since

max1≤i≤N (bi − b)2
∑N

i=1(bi − b)2
=

max1≤i≤N

{

∑p

j=1 hj [a1j(Rji)− a1j ]

}2

∑N

i=1

{

∑p

j=1 hj [a1j(Rji)− a1j ]

}2

≤
pmax1≤i≤N h12[a11(R1i)− a11]

2

∑N

i=1 h12[a11(R1i)− a11]2
+ · · ·+

pmax1≤i≤N hp2 [a1p(Rpi)− a1p]
2

∑N

i=1 hp2 [a1p(Rpi)− a1p]2

by condition (3.1) of the theorem, each term on the right hand side of the last

inequality above will approach zero as N approaches ∞. Hence, the theorem is

proved.

For scale testing in the SC model the hypotheses of interest are aH0 : a =

0 and aHa : ‖a‖ > 0 and the required test statistic is S2. The asymptotic

distribution of S2 under the null hypothesis is given in the following theorem.

Theorem 3.2. When aH0 holds and if the regression constants ci’s for i =

1, . . . , N and the score functions a2j ’s for j = 1, . . . , p satisfy the Noether’s con-

ditions, then the statistic S2 has an asymptotic p-variate normal distribution with

mean vector µ2 = (µ21, . . . , µ2p)
t and dispersion matrix V as given by (2.6).

Proof. The proof is similar to that of Theorem 3.1.

In a similar manner we are able to determine the asymptotic distributions of the

test statistics Tk, k = 1, 2 that is used for detecting location and scale respectively,

in the CC model. For location testing in the CC model the required hypotheses are
b∗H0 : b = 0 and b∗Ha : ‖b‖ > 0 and for scale testing the required hypotheses are
a∗

H0 : a = 0 and a∗

H0 : ‖a‖ > 0. The following theorems give the asymptotic

distribution of the statistics Tk, k = 1, 2. Since the proofs are similar to that of

Theorem 3.1 we omit the proofs here and state the theorems.

Theorem 3.3. When b∗H0 holds, if the regression constants di’s for i =

1, . . . , N as given in (2.8) and the score functions a1j ’s for j = 1, . . . , p satisfy

the Noether’s condition then the statistic T1 has an asymptotic p-variate normal

distribution with mean vector v1 = (v11, . . . , v1p)
t and dispersion matrix Y as

given by (2.9).

Theorem 3.4. When a∗

H0 holds, if the regression constants di’s for i =

1, . . . , N as given in (2.8) and the score functions a2j ’s for j = 1, . . . , p satisfy
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the Noether’s condition then the statistic T2 has an asymptotic p-variate normal

distribution with mean vector v2 = (v21, . . . , v2p)
t and dispersion matrix Z as given

by (2.9).

By virtue of the preceding theorems the asymptotic distributions of the statis-

tics LN and LN∗ can be deduced. The results are given in the following theorems.

The proofs of the theorems are very straightforward and we omit them here.

Theorem 3.5. Under the conditions of Theorem 3.1, the statistic LN, given

by (2.7) has a distribution asymptotically converging in probability to a chi-square

distribution with 2p degrees of freedom.

Theorem 3.6. Under the conditions of Theorem 3.2, the statistic LN∗ , given by

(2.10) has a distribution asymptotically converging in probability to a chi-square

distribution with 2p degrees of freedom.

4. Concluding Remarks. In this paper we have presented some techniques

for testing simultaneous location-scale changes in a multivariate changepoint prob-

lem. The underlying probability distribution of the random vectorsX1, . . . ,XN can

be any multivariate distribution. The efficiency of these methods and the asymp-

totic distribution of the test statistics under a suitable alternative hypothesis will

be investigated in the future.
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