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MULTIVARIATE CHANGEPOINT PROBLEM
Sivanandan Balakumar

Abstract. Procedures for detecting a changepoint in a sequence of N random
p-vectors, when there is a location or a scale change are considered. An extension
of such procedures for the case of simultaneous occurrence of location and scale
changes is carried out. The asymptotic distributions of the proposed statistics
under the null hypothesis, in two different changepoint models are obtained.

1. Introduction. A simple multivariate changepoint problem can be for-
mulated as follows. Let Xj, ..., Xn be a sequence of N independent random
vectors of dimension p, where X; = (X1y;,..., X)) fori =1,... ,N. Let F(Xj, Bi)
be the continuous distribution function (cdf) of the random vector X; and where

Bi = (Bui, ..., Bp)t for i = 1,..., N are parameters. The above sequence of ran-
dom vectors is said to have a changepoint at time point n (1 < n < N), if the
random vectors X; for ¢ = 1,...,n have the cdf’s F(Xj,0) and the random vec-

tors Xj for i = n+1,...,N have the cdf’s F(X;, B) with 0 = (0,...,0)" and
B = (Bi,...,Bp,)". The time point n may be called the single changepoint. The
change may also occur smoothly over a period of time and the time point n at
which the change begins to occur may be called the continuous changepoint.

Studies about changepoint problems in a multivariate setting are very rarely
found in the literature. Sen and Srivastava [7] considered the problem of testing
the hypothesis that the means of a sequence of N independent multivariate normal
random variables are equal against the alternative that after an unknown time point
r (1 <r <N —1), the means have shifted.

In this paper we formulate two changepoint models, namely the single change-
point model (SC model) and the continuous changepoint model (CC model). Fur-
thermore, we propose the appropriate test statistics for testing location, scale, and
simultaneous location and scale changes in the above mentioned changepoint mod-
els. Section 2 contains the formulation of these models and the derivation of the
appropriate test statistics. In Section 3, the asymptotic distributions of the pro-
posed statistics are given and the concluding remarks are given in Section 4.

2. Multivariate Changepoint Models. In order to formulate the change-
point models, let F[(1 + a1;)z1; + b1sy ..., (1 4+ api)@pi + byi] for i = 1,... N
be the continuous cdf of the random vector X;, where a;; and b; for j =
1,...,pand ¢ = 1,...,N are the scale and location parameters, respectively.
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Let aj — (ali,... ,api)t, bi = (bli7"' ,bpi)t, 1 = (1, ,1)t, 0 = (O, ,O)t,
a = (ay,...,ap)", and b = (by,...,b,)". Now the SC model may be defined as
follows.

0, 1<1<n 0, 1<i<n
a; = . b; = ) (2.1)
b, n+1<i<N

with the hypotheses of interest Hy : a = 0and b = 0 and H, : ||al| > 0 and ||b]| > 0,

where || - || denotes the Euclidean norm. The CC model takes the following form.
B { 0, 1<i<n
a a(i—n)/(N—-n), n+1<i<N,
b_{o, 1<i<n 2.2)
"lbl-n)/(N=n), n+1<i<N '
with the hypotheses of interest Hy : a = O and b = 0 and H, : |a] >
0 and ||b]| > 0.

Now we shall formulate the test statistics for both the changepoint models.
Let Ry denote the p x N rank matrix corresponding to the observation vector
X = (X1,...,Xn) and let R;y = (Ry;,...,Rpi)" be the rank vector of the ith
observation vector X;. Thus,

R11 RlN
RN — . .. . . (2'3)
Ry ... Royn/

Let ank(Rj;), k = 1,2 denote the score functions corresponding to the rank Rj; for
j=1,...,pand i = 1,...,N. Then the p x N matrix ayj of score functions is
given by
anp(Ri1) ... ank(Rin)
ank = ' o ' ; (2.4)

ane(Rp1) - ank(Bpn)/ ,un
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where k = 1,2. The matrix Ry in (2.3) has (IN!)? realizations. The distribution
of the rank vector Ry = (Ry,... ,RnN) over the (IV!)? realizations depend on the
distribution of Xj, i =1,... , N even under the null hypothesis, since the p-variates
in X; are in general dependent. Therefore, we do not obtain a uniform distribution
for the rank vector Ry in the multivariate case. To overcome this problem we
consider the matrix Rxn, which has the same columns as Ry but arranged so that
the first row consists of the integers 1,..., N, in that order. The matrix Rx*n has
(N!)P~! realizations. The conditional distribution of R over the set of N! possible
realizations of the columns of the matrix Ry is uniform under the null hypothesis.
Furthermore, the matrix Ry is permutationally equivalent to the matrix Rxn. Let
S(R#+n) be the set of matrices that are permutationally equivalent to Rxpy. Then

PRN =rN | S(R#n), Hol = 1/N,

for all r;y € S(R#n). Thus, any statistic that depends explicitly on the elements
of Ry gives a conditionally distribution free test. These results have been used
by Duran and Mitchell [5] in formulating multisample multivariate nonparametric
tests for simultaneous location/scale alternatives. For a complete treatment of
conditionally distribution free tests, we refer the reader to Chatterjee and Sen |2,
3.

To derive a statistic for the SC model, define the vectors S; = (S11,...,S1p)%,
Sz = (521, . ,Sgp)t, and SN = (Slt, Szt), where

N
Skj = Y ciar; (Rs), (2.5)
i=1

fork=1,2and j =1,...,pwith ¢; = ¢—1. Note that the statistics Sq; and Sy; are
used for location and scale testing, respectively in a univariate single changepoint
problem by Balakumar [1]. In the multivariate situation, the statistic S; may be
used for location testing in the SC model given in (2.1) and likewise, S2 may be
used for scale testing in the same model. The null hypothesis Hy is rejected for
large values of the statistics in either case.

For simultaneous location-scale testing in the SC model, we propose the statis-
tic Ly given by

Ly = (S~ — uN)"An—1(Sn — uN),

where UN = (:u)]ia:ug)a ur = (,ullv'-l' a,ulp)ta H2 = (,UQI;"' 7,“2[)))57 MKk =
E[Sk; | S(RN), Ho] = [N(N —1)/2] fo ¢rj(u) du, for k =1,2; j=1,...,pin
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which the score functions ax;(-) for k = 1,2 are given by the square integrable
functions ¢y. The dispersion matrix Ay of dimension 2p x 2p is given by

u w

with U = (Urs)pxp, V = (Urs)pxp, W = (Wrs)pxp for r,s = 1,... ,p are p X p
matrices with entries given by

1
Uprs = COV[Slr,Sls | S(R*N),Ho] =1
0

[ o) =3, )10 = 3,,) du,

1

Wrs = COV[S1T7 SQS | S(R*N); HO] = t/O [(blT(u) - 817"][@525(’”’) - 525] du’

and

1
vps = Cov[Say, Sas | S(R¥n), Ho) =t /O [Por (1) — o, ][h2s (1) — Do) du,

where ¢ = N(N + 1)/12. Now, by the choice of our score functions to give odd
and even translation invariant statistics, we get w,s = 0 for all » and s. Thus, the
dispersion matrix Ay reduces to

U o
(T 0)

Hence, the statistic Ly can be written as

Ly = (S1—m)'U ™ (S1 — pa) + (S2 — p12)" V"1 (S2 — pia). (2.7)
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A similar statistic to that of Ly for the CC model may be obtained by defining
the vectors T1 = (Tllu e ,Tlp)t, T2 = (Tgl, e ,Tgp)t and TN = (Tlt, th),

where
N
Tij =Y diak;(Rj:), (2.8)
i=1

for k=1,2and j =1,...,p with d; = i(¢ — 1)/2. The statistics 71, and T5; are
used for location and scale testing respectively, in a univariate continuous change-
point problem by Balakumar [1]. For location testing in a multivariate continuous
changepoint problem the statistic Ty may be used and for scale testing the statistic
T2 may be used. The simultaneous location-scale testing in the CC model given in
(2.2) may be carried out by the statistic Ly, given by

LN* = (TN — VN)thfl(TN — VN)7

where v = (vil,va'), vi = (vi1,...,v1p)5 va = (var,...,v2)!, v =
E[Ty; | S(Ry.),Ho) = [N(N? = 1)/6] [, é1j du for k = 1,2; j = 1,...,p and
the dispersion matrix By of dimension 2p X 2p is given by

BN:(Z g) (2.9)

with Y = (Yrs)pxps G = (Grs)pxp, Z = (Zrs)pxp for r,s = 1,... ,p are p X p matrices
with entries given by

1
Yrs = COV[Tlr; T1s | S(RN*)7 HO] = mA [(blT(u) - alr][(bls(u) - 515] dua

1
Grs = COV[Tlra T2s | S(RN*)a HO] = m/o [¢1r(u) - alr][(b%(u) - 525] du,

and

1
2rs = Cov[Tay, Tos | S(Rn+), Ho) = m/o [Por (1) — Py [d2s (1) — o) du,
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where m = N(N +1)(4N? —1)/180. As before, by the application of odd and even
translation invariant score functions to the test statistics, the covariance component
grs becomes zero and thus, the dispersion matrix By reduces to

Y 0
By = ( ' Z) |
Hence, Ly, becomes
LN,.< = (Tl — Vl)tyil(Tl — Vl) + (Tz — Vz)tzil(Tz — Vz) (210)
and Hy is rejected for large values of L.

3. Asymptotic Distributions of the Statistics. In this section we shall
obtain the asymptotic distribution of the statistics S1,S2,T1, T2, Ln, and L«
under the appropriate null hypothesis. To begin with, the statistic S; =
(S11,...,S1p)", where Sy; for j = 1,...,p is as given by (2.5) is suitable for only
location testing in the SC model given by (2.1). The hypotheses of interest are
"Hy : b = 0 and "H, : ||b|| > 0. The following theorem gives the asymptotic
distribution of the statistic Sy.

Theorem 3.1. When *Hj holds, if the regression constants c¢;’s and the score
functions ay;’s for ¢ = 1,...,N; j = 1,...,p satisfy respectively, the following
Noether’s conditions

—\2 — )2
. maxi<i;<nN(C; —C . maxi<;<n(ai; — a1y
lim <i< | ) =0 and lim <i<N | J J )

N—o00 Eif\il(q — )2 N—o00 Zij\il(alj — ;)2

=0, (3.1)

for each j, then the statistic S; has an asymptotic p-variate normal distribution
with mean vector p1 = (u11,. .. , #1p)" and dispersion matrix U as given by (2.6).

Proof. As

im maxlSiSN(ci—E)z — lim [(N_l)/2]2
LRSS

N —oc0
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for each j, the statistic S7; has an asymptotic normal distribution with mean

uu—WW—U@A¢MMM

and variance

%=ww+wm%mmw%mm (3.2)

according to Theorem V.1.5a of Hajek and Sidak [6]. Thus, the mean of the vector
S1 = (S11,...,51p) is given by p1 = (g11,... ,p1p), where pq; for j=1,... ,pis
given in (3.2). Furthermore, since

1
Cov [Sir, S1s] = [N(N + 1)/12]/0 (D1 () = 01, (615 (w) — 61,] du

the dispersion matrix of Sy is as given by (2.6). To show the multinormality of Sq,
it suffices to prove the normality for any linear combination of Sy;’s for j =1,... ,p
according to a theorem by Cramer [4]. For any h; for j = 1,...,p consider the
linear combination

p P N N p
Zhjslj = Zhj{Zcmu(Rn} = Zci{zhﬂlj(Rﬁ)}

=1

and let

P

bi = Zhjalj(Rji).

j=1
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Since

2
maxycicn (b —B)2  DAKISiN {Z§_1 hjla1;(Ryi) — ﬁlj]}

oL (b b2

PO {Z?—l hjlay;(Rji) —au;] }2

pmaxi<i<y hizlain (Ri;) — an? | pmaxicicn hy2 [a1p(Rpi) — @1p)?
Sty haafany (Ry) — @) S by [a1p(Ryi) — @)

by condition (3.1) of the theorem, each term on the right hand side of the last
inequality above will approach zero as N approaches co. Hence, the theorem is
proved.

For scale testing in the SC model the hypotheses of interest are “Hy : a =
0 and “H, : |la]] > 0 and the required test statistic is Sg. The asymptotic
distribution of S under the null hypothesis is given in the following theorem.

Theorem 3.2. When “Hjy holds and if the regression constants ¢;’s for i =
1,..., N and the score functions ay;’s for j = 1,...,p satisfy the Noether’s con-
ditions, then the statistic So has an asymptotic p-variate normal distribution with
mean vector pg = (21, ... , pop)" and dispersion matrix V' as given by (2.6).

Proof. The proof is similar to that of Theorem 3.1.

In a similar manner we are able to determine the asymptotic distributions of the
test statistics Tk, k = 1, 2 that is used for detecting location and scale respectively,
in the CC model. For location testing in the CC model the required hypotheses are
“"Hy : b=0and® H, : ||b|]| > 0and for scale testing the required hypotheses are
“Hy : a=0and* Hy : ||a]] > 0. The following theorems give the asymptotic
distribution of the statistics Ty, k& = 1,2. Since the proofs are similar to that of
Theorem 3.1 we omit the proofs here and state the theorems.

Theorem 3.3. When * H, holds, if the regression constants d;’s for i =
1,...,N as given in (2.8) and the score functions ai;’s for j = 1,...,p satisfy
the Noether’s condition then the statistic Ty has an asymptotic p-variate normal
distribution with mean vector vi = (vi1,... ,’Ulp)t and dispersion matrix Y as
given by (2.9).

Theorem 3.4. When ¢ Hy holds, if the regression constants d;’s for i =
,..., N as given in (2.8) and the score functions ag;’s for j = 1,...,p satisfy
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the Noether’s condition then the statistic To has an asymptotic p-variate normal
distribution with mean vector vg = (vay, ... ,ng)t and dispersion matrix Z as given
by (2.9).

By virtue of the preceding theorems the asymptotic distributions of the statis-
tics Ln and L+ can be deduced. The results are given in the following theorems.
The proofs of the theorems are very straightforward and we omit them here.

Theorem 3.5. Under the conditions of Theorem 3.1, the statistic Ly, given
by (2.7) has a distribution asymptotically converging in probability to a chi-square
distribution with 2p degrees of freedom.

Theorem 3.6. Under the conditions of Theorem 3.2, the statistic L+, given by
(2.10) has a distribution asymptotically converging in probability to a chi-square
distribution with 2p degrees of freedom.

4. Concluding Remarks. In this paper we have presented some techniques
for testing simultaneous location-scale changes in a multivariate changepoint prob-
lem. The underlying probability distribution of the random vectors X4, ... , Xn can
be any multivariate distribution. The efficiency of these methods and the asymp-
totic distribution of the test statistics under a suitable alternative hypothesis will
be investigated in the future.
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