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AN APPLICATION OF SB-RINGS

Amir M. Rahimi

Abstract. All rings are commutative rings with identity and J(R) denotes
the Jacobson radical of a ring R. A ring R is called a SB-ring provided that for any
sequence a1, a2, . . . , as, as+1 of elements in R with s ≥ 2 and (a1, a2, . . . , as−1) 6⊆
J(R), there exists b ∈ R such that (a1, a2, . . . as, as+1) = (a1, a2, . . . , as + bas+1).
By applying some of the properties of SB-rings, it is shown that R[X ] is not a
Prüfer domain for any Noetherian domain R which is not a field.

Preliminaries and the Main Result. All rings are commutative rings
with identity and J(R) denotes the Jacobson radical of a ring R. For any s ≥

1, a sequence a1, a2, . . . , as, as+1 of elements in a ring R is called a unimodular
sequence provided that (a1, a2, . . . , as, as+1) = R. R is said to be a B-ring, if
for any unimodular sequence a1, a2, . . . , as, as+1 of elements in R with s ≥ 2 and
(a1, a2, . . . , as−1) 6⊆ J(R), there exists b ∈ R such that (a1, a2, . . . , as + bas+1) =
R. R is said to be a strongly B-ring (SB-ring) provided that for any sequence
a1, a2, . . . , as, as+1 of elements in R with s ≥ 2 and (a1, a2, . . . , as−1) 6⊆ J(R),
there exists b ∈ R such that (a1, a2, . . . , as, as+1) = (a1, a2, . . . , as + bas+1). For a
detailed study of B-rings and SB-rings, see [2]. Furthermore, for a more general
case of B-type rings see the dissertation of the author [3].

A Prüfer domain is an integral domain in which every nonzero finitely generated
ideal is invertible. A Dedekind domain is an integral domain in which every nonzero
ideal is invertible.

Lemma 1. If R is a Dedekind domain, then R is a SB-ring.

Proof. See Theorem 3.2 in [2].

Lemma 2. R[X ] is a SB-ring if and only if R is a field.

Proof. See Theorem 3.4 in [2].

Theorem. If R is a Noetherian domain which is not a field, then R[X ] cannot
be a Prüfer domain.

Proof. Suppose R[X ] is a Prüfer domain. Since every ideal in a Noetherian
domain is a finitely generated ideal, then R[X ] must be a Dedekind domain. Now
by applying Lemma 1 and Lemma 2 above, we can conclude that R is a field and
this is a contradiction to the choice of R.

Remark. From the above theorem, it is easy to see that Z[X ] is not a Prüfer
domain, where Z is the ring of rational integers. See also [1] for an argument that
shows Z[X ] is not a Prüfer domain.
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