
40 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

THE MINIMAL RANK OF THE MATRIX

EXPRESSION A−BX−YC

Yongge Tian

Abstract. The minimal rank of the matrix expression A − BX − Y C with

respect to the choice of X and Y are determined using generalized inverses of

matrices. Some of their applications are also presented.

Suppose that

p(X,Y ) = A−BX − Y C (1)

is a linear matrix expression over the complex number field, where A, B, and C are

m×n, m×k, and l×n matrices, respectively; X and Y are k×n and m× l variant

matrices, respectively. In this article we consider the minimal rank of p(X,Y ) with

respect to the choice of X and Y , and present some of their applications. To do

so, we need some well-known formulas related to ranks and generalized inverse of

matrices.

Lemma 1 [2] [3]. Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n be given. Then

they satisfy the rank equalities

r[A,B] = r(A) + r(B −AA−B) = r(B) + r(A −BB−A), (2)

r

[

A

C

]

= r(A) + r(C − CA−A) = r(C) + r(A −AC−C), (3)

r

[

A B

C 0

]

= r(B) + r(C) + r[(Im −BB−)A(In − C−C)], (4)

where (·)− denotes an inner inverse of a matrix.

We are ready to establish the main result of this article.

Theorem 2. The minimal rank of p(X,Y ) in (1) with respect to the choice of

X and Y is

min
X,Y

r(A −BX − Y C) = r

[

A B

C 0

]

− r(B) − r(C). (5)
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The matrices X and Y satisfying (5) are given by

X = B−A+ UC + (Ik −B−B)U1, (6)

Y = (Im −BB−)AC−
−BU + U2(Il − CC−), (7)

where U , U1 and U2 are arbitrary.

Proof. Let

M =

[

A B

C 0

]

.

Then its rank obviously satisfies the inequality

r(M) ≤ r(A) + r(B) + r(C). (8)

Now replacing A in (8) by p(X,Y ) in (1), we obtain the following rank inequality

r

[

A−BX − Y C B

C 0

]

≤ r(A−BX − Y C) + r(B) + r(C). (9)

It is easy to see by block elementary operations of matrices that

r

[

A−BX − Y C B

C 0

]

= r

[

A B

C 0

]

.

Thus, (9) becomes

r(A−BX − Y C) ≥ r(M) − r(B) − r(C). (10)

Observe that the right-hand side of (10) involves no X and Y . Thus, r(M)−r(B)−

r(C) is a lower bound for the rank of p(X,Y ) with respect to X and Y . On the

other hand, putting (6) and (7) in p(X,Y ) yields

p(X,Y ) = A−BB−A−BUC − (Im −BB−)AC−C +BUC

= (Im −BB−)A(In − C−C).
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In that case, the rank of p(X,Y ) by (4) is

r[p(X,Y )] = r[(Im −BB−)A)(In − C−C)] = r(M) − r(B) − r(C). (11)

Combining (10) with (11), we know r(M) − r(B) − r(C) is the minimal rank of

p(X,Y ) with respect to X and Y , and the matrices of X and Y satisfying (5) are

given by (6) and (7).

A direct consequence of Theorem 2 is given below, which was established in

[1] and [8].

Corollary 3. Let p(X,Y ) be given by (1). Then the following statements are

equivalent.

(a) minX,Y r(A −BX − Y C) = 0.

(b) The matrix equation BX + Y C = A is solvable.

(c)

r

[

A B

C 0

]

= r(B) + r(C).

(d) (Im −BB−)A(In − C−C) = 0.

In that case, the general solution of BX + Y C = A is

X = B−A+ UC + (Ik −B−B)U1, (12)

Y = (Im −BB−)AC−
−BU + U2(Il − CC−). (13)

Observe that (12) and (13) have the same form as (1). Thus, we can also find

the minimal ranks of solutions of BX + Y C = A when it is solvable.

Corollary 4. Suppose that the matrix equation BX + Y C = A is solvable.

Then the minimal ranks of solutions X and Y to BX + Y C = A are

min
BX+Y C=A

r(X) = r

[

A

C

]

− r(C), (14)

and

min
BX+Y C=A

r(Y ) = r[A,B] − r(B). (15)
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Proof. Since BX + Y C = A is solvable, it follows by Corollary 3(d) that

A−BB−A−AC−C +BB−AC−C = 0.

In that case, applying (5) and then (3) to (12) produces

min
BX+Y C=A

r(X) = min
U,U1

r[B−A+ UC + (Ik −B−B)U1]

= r

[

B−A Ik −B−B

C 0

]

− r(Ik −B−B)− r(C)

= r





B−A Ik
C 0
0 B



− r(B) − r(Ik −B−B)− r(C)

= r





0 Ik
C 0

BB−A 0



− k − r(C)

= r

[

C

BB−A

]

− r(C)

= r

[

C

A−AC−C +BB−AC−C

]

− r(C) = r

[

C

A

]

− r(C),

establishing (14). Similarly, we can derive (15) from (13) and (5).

Theorem 5. Suppose that the two linear matrix equations

A1X1B1 = C1 and A2X2B2 = C2 (16)

are solvable, respectively, where X1 and X2 are k × l matrices. Then

(a) The minimal rank of the difference X1 −X2 of two solutions of (16) is

min
A1X1B1=C1

A2X2B2=C2

r(X1 −X2) = r





C1 0 A1

0 −C2 A2

B1 B2 0



− r

[

A1

A2

]

− r[B1, B2]. (17)
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(b) [5] [6] In particular, the pair of matrix equations in (16) have a common solution

if and only if

r





C1 0 A1

0 −C2 A2

B1 B2 0



− r

[

A1

A2

]

+ r[B1, B2]. (18)

Proof. It is well-known (see [7]) that a matrix equation of the form AXB = C

is solvable if and only if AA−C = C and CB−B = C hold. In that case, the general

solution AXB = C can be written as

X = A−CB− + (Ik −A−A)U + V (Il −BB−),

where U and V are arbitrary. If the two equations in (16) are solvable, respectively,

their general solutions can be written as

X1 = A−

1 C1B
−

1 + (Ik −A−

1 A1)U1 + V1(Il −B1B
−

1 ),

and

X2 = A−

2 C2B
−

2 + (Ik −A−

2 A2)U2 + V2(Il −B2B
−

2 ),

where U1, V1, U2 and V2 are arbitrary. In that case,

X1 −X2 =

A−

1 C1B
−

1 −A−

2 C2B
−

2 + [Ik −A−

1 A1, Ik −A−

2 A2]

[

U1

−U2

]

+ [V1,−V2]

[

Il −B1B
−

1

Il −B2B
−

2

]

.

Thus, by (5) we find that

min
A1X1B1=C1

A2X2B2=C2

r(X1 −X2) = r





A−

1 C1B
−

1 −A−

2 C2B
−

2 Ik −A−

1 A1 Ik −A−

2 A2

Il −B1B
−

1 0 0
Il −B2B

−

2 0 0





− r

[

Il −B1B
−

1

Il −B2B
−

2

]

− r[Ik −A−

1 A1, Ik −A−

2 A2]. (19)
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Simplifying by (2) and (3) the ranks of the above three block matrices, we get

r





A−

1 C1B
−

1 −A−

2 C2B
−

2 Ik −A−

1 A1 Ik −A−

2 A2

Il −B1B
−

1 0 0
Il −B2B

−

2 0 0





= r











A−

1 C1B
−

1 −A−

2 C2B
−

2 Ik Ik 0 0
Il 0 0 B1 0
Il 0 0 0 B2

0 A1 0 0 0
0 0 A2 0 0











− r(A1)− r(A2)− r(B1)− r(B2)

= r











0 Ik 0 0 0
Il 0 0 B1 0
Il 0 0 0 B2

−C1B
−

1 0 −A1 0 0
C2B

−

2 0 A2 0 0











− r(A1)− r(A2)− r(B1)− r(B2)

= r











0 Ik 0 0 0
Il 0 0 0 0
0 0 0 −B1 B2

0 0 −A1 C1 0
0 0 A2 0 −C2











− r(A1)− r(A2)− r(B1)− r(B2)

= r





C1 0 A1

0 −C2 A2

B1 B2 0



+ k + l − r(A1)− r(A2)− r(B1)− r(B2),

r

[

Il −B1B
−

1

Il −B2B
−

2

]

= r

[

Il B1 0
Il 0 B2

]

−r(B1)−r(B2) = r[B1, B2]+ l−r(B1)−r(B2),
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and

r[Ik −A−

1 A1, Ik −A−

2 A2] = r





Ik Ik
A1 0
0 A2



− r(A1)− r(A2)

= r

[

A1

A2

]

+ k − r(A1)− r(A2).

Putting the above three in (19) yields (17). The result in part (b) is an immediate

consequence of (17).

Corollary 6. Let A and B be two matrices of the same size. Then

(a) The minimal rank of the difference of A− −B− of two inner inverses of A and

B is

min
A−,B−

r(A−
−B−) = r(A −B) + r(A) + r(B)− r[A,B]− r

[

A

B

]

. (20)

(b) In particular, A and B have a common inner inverse if and only if

r(A−B) = r

[

A

B

]

+ r[A,B] − r(A) − r(B). (21)

Proof. Notice that A− and B− are solutions of the matrix equations AXA = A

and BY B = B, respectively. Thus (20) follows from (17).

Corollary 7. Let A and B be any two idempotent matrices of the same size.

Then their difference A−B satisfies the two rank equalities

r(A−B) = r

[

A

B

]

+ r[A,B] − r(A) − r(B), (21)

and

r(A −B) = r(A −AB) + r(AB −B). (22)
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Proof. Notice that any two idempotent matrices of the same size have the

identity matrix as their common inner inverse. Thus (21) follows immediately from

Corollary 6(b). When A and B are idempotent, we also find by (2) and (3) that

r

[

A

B

]

= r(B) + r(A −AB) and r[A,B] = r(A) + r(B −AB).

Putting them in (21) yields (22).

Corollary 8. Let A be a given matrix, and let X and Y be any two outer

inverses of A, that is, XAX = X and Y AY = Y . Then their difference of X − Y

satisfies the rank equality

r(X − Y ) = r

[

X

Y

]

+ r[X,Y ]− r(X)− r(Y ). (23)

Proof. Obviously, any two outer inverses of the matrix A have A as their

common inner inverse. Thus (23) follows immediately from Corollary 6(b).

On the basis of Corollaries 7 and 8, one can derive a variety of results related

to idempotent matrices and outer inverses of matrices. We shall present them in

other papers.
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