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A NOTE ON THE ISOPERIMETRIC INEQUALITY

Richard E. Bayne and Myung H. Kwack

In most calculus books students are introduced to an isoperimetric theorem in

the following form. Among all rectangles with a given perimeter the square has the

largest area [5]. However, this isoperimetric theorem for rectangles can be proved

easily in an algebraic class using quadratic functions. The following theorem might

be more appropriate for a calculus class. Among all quadrilaterals with a given

perimeter and a given side, the trapezoid with the other sides of equal length, and

of equal angles between them has the largest area. This isoperimetric theorem for

quadrilaterals has a nice application, an isoperimetric theorem for n-polygons, i.e.

polygons with n vertices. Among all n-polygons with a given side and a given

perimeter, the n-polygon with the maximum area is inscribed in a circle and has all

other sides of equal length and of equal angles between them where the existence

of such an n-polygon is obtained from the general result that a continuous function

on a bounded and closed subset of an Euclidean plane, RN , attains a maximum

value.

In this note proofs of the above theorems are presented and the theorems

are then utilized along with inscribed polygons to obtain a proof for the following

isoperimetric theorem for simple closed curves. Let S be a closed curve formed

by a circular arc of length s together with its chord of length ℓ. Then any simple

closed curve Σ formed by a curve of length s together with a line segment of length

ℓ satisfies the inequality A(Σ) ≤ A(S) where A(σ) denotes the area enclosed by

the simple closed curve σ and the equality holds if and only if Σ coincides with

S. As a corollary we obtain the isoperimetric theorem for simple closed curves [2].

Any simple closed curve Σ with length s satisfies the inequality 4πA(Σ) ≤ s2, with

equality if and only if Σ is a circle.

In his paper [4] “The Isoperimetric Inequality,” Professor Osserman obtains

the following inequality for any n-polygon Σ with perimeter s.

s2

A(Σ)
≥

4

n
tan

π

n
> 4π.
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He states that one can use inscribed polygons, apply the above inequality and

pass to the limit to deduce s2 ≥ 4πA(σ) for a simple closed curve σ with length

s. “The shortcoming of this proof,” he continues, “is that it does not allow a

characterization of the case in which equality holds.” In this paper we show that

this shortcoming may be overcome by initially proving the isoperimetric inequality

for simple closed curves with a fixed line segment. While we do not know whether

the proof of the isoperimetric inequality is new, the methods used should be of

interest to teachers and students in a first calculus course. All curves mentioned in

this note are rectifiable plane curves.

We begin with an isoperimetric theorem for triangles which may be proved from

the study of ellipses in an analytic geometry class. If P1, P2, P3 are three different

points in R
2, then 6 P1P2P3 denotes a number in [−π, π] which measures the angle

from the ray
−−→
P2P1 to the ray

−−→
P2P3 (a positive number if measured counterclockwise)

and A(△P1P2P3) denotes the area of the triangle △P1P2P3 if P1, P2, P3 are non-

colinear and 0 otherwise. The notation |P1P2| denotes the length of P1P2, the line

segment from P1 to P2.

Proposition 1. Among all triangles with a given side and a given perimeter the

isosceles triangle has the largest area.

Proof. Instead of an algebraic proof, we present a proof where the concept of

derivative is used. Any triangle △ABC (see Diagram 1) with a given side BC of

length a and a given perimeter a + s is determined by the angle 6 CBA = θ and

has an area

f(θ) =
1

2
ac sin θ

where |AB| = c, |AC| = b and c + b = s. From the identity (s − c)2 = c2 + a2 −

2ac cos θ, we get

c =
s2 − a2

2(s− a cos θ)
.
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Diagram 1.

Substituting and differentiating we get

f ′(θ) =
1

4
a(s2 − a2)

s cos θ − a

(s− a cos θ)2
.

Thus, f has the maximum value when s cos θ = a, i.e. when 6 CBA = 6 ACB.

Proposition 2. Among the quadrilaterals ABCD with a given side AD and a

given perimeter, the quadrilateral with the maximum area is the trapezoid satisfying

the following (see Diagram 2):

(i) |AB| = |BC| = |CD|.

(ii) 6 DAB = 2 6 CAB = 6 CDA = 2 6 DBC and 6 ABC = 6 BCD.

(iii) The quadrilateral ABCD is symmetric with respect to the perpendicular bi-

sector of AD.

(iv) There is a point O such that |OA| = |OB| = |OC| = |OD|.
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Diagram 2.

Proof. Since the quadrilateral with the largest area is convex, (i) follows from

Proposition 1. Any convex quadrilateral ABCD such that |AD| = ℓ and |AB| =

|BC| = |CD| = a with a and ℓ fixed is determined by the angle 6 DAB = θ (see

Diagram 2) and has an area

f(θ) =
1

2
(ℓa sin θ + 2a2 sinα cosα) =

a

2
(ℓ sin θ + a sin 2α)

where α = 6 DBC. So f ′(θ) = 0 when

dα

dθ
= −

ℓ cos θ

2a cos2α
.

Differentiating the identity (2a cosα)2 = a2 + ℓ2 − 2aℓ cos θ, we also get

dα

dθ
= −

ℓ sin θ

2a sin 2α
.

It follows that f has the maximum value when

ℓ cos θ

2a cos 2α
=

ℓ sin θ

2a sin 2α
, i.e. tan θ = tan 2α.
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Consequently the quadrilateral ABCD has the maximum area when θ = 2α.

Now suppose θ = 2α. Since a sin 2α = 2a cosα sin γ where γ = 6 BDA, we get

sinα = sin γ and α = γ.

It follows that

AD‖BC and 6 ABC = 6 BCD = π − 2α.

The statements (ii) and (iii) now follow from equivalence of triangles. Finally the

intersection point O of the bisectors of the angles 6 ABC and 6 BCD satisfies the

conditions of (iv).

Now we will consider the case of n-polygons. First we show the existence

of a polygon with the maximum area among the set of n-polygons with a given

perimeter and a given side.

Proposition 3. Among all n-polygons with a given perimeter s and a given side

of length ℓ there is a polygon with the maximum area.

Proof. Let Γ be the closed and bounded set of points (a11, . . . , a1n, . . . , an1,

. . . , ann) in R
n2

satisfying the following conditions.

1. A1 = (0, . . . , 0), An = (ℓ, 0, . . . , 0),

2.
∑n−1

i=1 |AiAi+1|+ |AnA1| = s, where Ai = (ai1, . . . , ain) for i = 1, . . . , n,

3. 0 ≤ 6 AiA1Ai−1 for i = 3, . . . , n, and
∑n

i=3
6 AiA1Ai−1 ≤ π.

The function f : Γ → R given by

f(a11, . . . , a1n, . . . , an1, . . . , ann) =

n−1
∑

i=2

A(△AiA1Ai+1)

is continuous, and so f attains the maximum value in Γ. Since a non-convex polygon

cannot have the maximum area, the proof is complete.

Proposition 2, Proposition 3, mathematical induction and equivalence of tri-

angles lead to the following theorem.

Theorem 4. Among the n-polygons with a given side and a given perimeter

the n-polygon Rn which has the maximum area satisfies the following conditions.

(i) All sides with the possible exception of the given are of equal length.
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(ii) All angles not touching the given side are of equal measure and so are the

angles touching the given side.

(iii) The polygon Rn is symmetric with respect to the perpendicular bisector of the

given side.

(iv) The polygon Rn is inscribed in a circle.

In particular, among all n-polygons with a given perimeter the regular n-

polygon has the maximum area.

Proof. Let Rn = A1A2 · · ·An−1AnA1 be the n-polygon with the given seg-

ment A1An and with the maximum area (see Diagram 3). From Proposition 2, we

conclude

|A1A2| = |A2A3| = · · · = |An−1An| and

6 A1A2A3 = 6 A2A3A4 = · · · = 6 An−2An−1An = π − 2α

where α = 6 A3A1A2. From Proposition 2 and equivalence of triangles we get

α = 6 Ai+1A1Ai = 6 Aj+1AnAj for i = 2, . . . , n− 1, j = 1, . . . , n− 2.

Diagram 3.

Therefore,
6 AnA1A2 = 6 An−1AnA1 = (n− 2)α
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from which follow (ii) and (iii).

Let O be the intersection point of the bisectors of the angles 6 A1A2A3 and
6 A2A3A4. Then again from equivalence of triangles (iv) follows, i.e. all the vertices

of the polygon Rn lie on the circle with center O and the radius equal to |OA1|.

As an application of the theorem above, we present an isoperimetric theorem

for simple closed curves containing a given segment and having a given length.

Theorem 5. Let Σ be a simple closed curve formed by a curve of length s

together with a line segment of length ℓ (s > ℓ). Let 0 < θ < π be defined by

ℓ

s
=

sin(π − θ)

π − θ
.

Then

A(Σ) ≤ A(S) =
s

4(π − θ)
(s+ ℓ cos θ)

with equality if and only if Σ coincides with the simple closed curve S formed by a

circular arc of length s and its chord of length ℓ.

Remark. The function

g(x) =
sinx

x

is strictly decreasing on the interval (0, π) and thus θ in Theorem 5 is uniquely

determined. See [1] for a simple proof which avoids the use of a formula of an area

of a sector of a circle for

lim
x→0

sinx

x
= 1

which is used in the proof below.

Proof. Let PQ be the given segment. For each positive integer n ≥ 4, let Pn

be an n-polygon with perimeter sn + ℓ with vertices in Σ which include P , Q and

which divide Σ into n pieces of equal length. By Theorem 4, A(Pn) ≤ A(Rn) where

Rn = A1A2 · · ·AnA1 is the n-polygons with perimeter sn + ℓ such that

(i) Rn is inscribed in a circle with center O and radius rn and

(ii) |A1An| = |PQ| and |A1A2| = |A2A3| = · · · = |An−1An−2|.
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Diagram 4.

Let γn = (1/2)6 A2OA1 and θn = π − (n− 1)γn (see Diagram 4). Then since

rn =
ℓ

2 sin θn
=

sn
2(n− 1) sin γn

we have
ℓ

sn
=

sin θn

(n− 1) sin
(

π−θn
n−1

) .

Taking limits as n → ∞ we get

ℓ

s
= lim

n→∞

sin(π − θn)

π − θn

and thus,

lim
n→∞

θn = θ.

The area A(Rn) is given by

A(Rn) = (n− 1)r2n cos γn sin γn + r2n cos θn sin θn

=
rn
2
(sn cos γn + ℓ cos θn)

=
rn
2
(sn cos

π − θn
n− 1

+ ℓ cos θn).
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Taking limits we arrive at the inequality.

Diagram 5.

To prove the last assertion suppose Σ is convex and A(Σ) = A(S). Let S =

S0 ∪ PQ where S0 is the circular part of S with the end points P , Q. Let S1 be

the circular arc with the end points P , Q such that Ŝ = S1 ∪ S0 is a circle with

circumference ŝ. Let Σ̂ = (Σ− PQ) ∪ S1 be the simple closed curve enclosing PQ

(see Diagram 5). Since A(Σ) = A(S) we have A(Σ̂) = A(Ŝ). It suffices to show

that Σ̂ and Ŝ coincide. Let A, B be points on Σ̂ which divide Σ̂ into two arcs of

equal length. We may assume that AB divides the region enclosed by the curve Σ̂

into two regions of equal area. We claim |AB| = ŝ/π. To prove this let Σ1 be the

simple closed curve which is the union of the circular arc of length ŝ/2 with the

end points A, B and its reflection about AB. If |AB| < ŝ/π, the curve Σ1 is not

convex (see Diagram 6) and thus, by the first part of Theorem 5,

A(Σ̂) ≤ A(Σ1) < A(Ŝ) =
ŝ2

4π
,

a contradiction. If |AB| = ŝ/π then the intersection points D, E of the bisector of

AB with Σ1 divide Σ1 into two arcs of equal length (see Diagram 7) and |DE| < ŝ/π

and as before we get a contradiction.
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Diagram 6.

Diagram 7.
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Diagram 8.

Finally suppose |AB| = ŝ/π and Σ̂ is not a circle. Let M be the midpoint of

AB. There is a point N on Σ̂ such that |MN | < ŝ/2π. Let Σ2 be the union of the

arcANB of Σ̂ and its reflection aboutM (see Diagram 8). ThenN and its reflection

point N ′ about M divide Σ2 into two arcs of equal length and |NN ′| < ŝ/π. As

before then A(Σ̂) ≤ A(Σ2) < A(Ŝ), a contradiction and so Σ̂ must be a circle and

thus, Σ = S.

The following isoperimetric theorem for simple closed curves which has been

given many proofs [2,4] follows from Theorem 5 with ℓ = 0, i.e. when the given

segment is a single point.

Corollary 6. If Σ is a simple closed curve with length s, then 4πA(Σ) ≤ s2

with equality if and only if Σ is the circle with circumference s.

Among all simple closed curves which are formed by curves of length s together

with line segments joining its end points, the one that bounds the maximum area

must be formed by, from Theorem 5, a circular arc. It is known that among the

circular arcs of a fixed length the smaller the curvature (i.e. the larger the diameter),

the longer the chord [3]. The following corollary states that the diameter of the one

which bounds the maximum area coincides with the length of its chord and can be

proved by considering the closed curve formed with its mirror image.
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Corollary 7. Let Σ be a simple closed curve formed by a circular arc of length

s together with its chord. Then 2πA(Σ) ≤ s2 with equality if and only if Σ is the

curve formed by the semicircle of length s with its chord.
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