A REPRESENTATION AND SOME PROPERTIES FOR k-FIBONACCI SEQUENCES

Gwang-Yeon Lee, Jin-Soo Kim and Sang-Gu Lee*

Abstract. The k-Fibonacci sequence $\left\{g_{n}^{(k)}\right\}$ is defined as:

$$
g_{1}^{(k)}=\ldots=g_{k-2}^{(k)}=0, \quad g_{k-1}^{(k)}=g_{k}^{(k)}=1
$$

and for $n>k \geq 2$,

$$
g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)} .
$$

In this paper, we give a combinatorial representation of $g_{n}^{(k)}$ and give some properties for k-Fibonacci sequence.

1. Introduction. The well-known Fibonacci sequence $\left\{F_{n}\right\}$ is defined as:

$$
F_{1}=F_{2}=1 \quad \text { and, for } \quad n>2, \quad F_{n}=F_{n-1}+F_{n-2} .
$$

We call F_{n} the nth Fibonacci number. The Fibonacci sequence is

$$
\left(F_{0}:=0\right), 1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Now, we consider the generalization of the Fibonacci sequence, which is called the k-Fibonacci sequence for the positive integer $k \geq 2$. The k-Fibonacci sequence $\left\{g_{n}^{(k)}\right\}$ is defined as:

$$
g_{1}^{(k)}=\cdots=g_{k-2}^{(k)}=0, \quad g_{k-1}^{(k)}=g_{k}^{(k)}=1
$$

and for $n>k \geq 2$,

$$
g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)}
$$

We call $g_{n}^{(k)}$ the nth k-Fibonacci number. For example, if $k=2$, then $\left\{g_{n}^{(2)}\right\}$ is the Fibonacci sequence, $\left\{F_{n}\right\}$, and if $k=4$, then $g_{1}^{(4)}=g_{2}^{(4)}=0, g_{3}^{(4)}=g_{4}^{(4)}=1$, and then the 4 -Fibonacci sequence is

$$
0,0,1,1,2,4,8,15,29,56,108,208,401,773, \ldots
$$

Let I_{k-1} be the identity matrix of order $k-1$ and let E be an $1 \times(k-1)$ matrix whose entries are ones. For any $k \geq 2$, the fundamental recurrence relation

$$
g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)}
$$

can be defined by the vector recurrence relation

$$
\left[\begin{array}{c}
g_{n+1}^{(k)} \tag{1.1}\\
g_{n+2}^{(k)} \\
\vdots \\
g_{n+k}^{(k)}
\end{array}\right]=Q_{k}\left[\begin{array}{c}
g_{n}^{(k)} \\
g_{n+1}^{(k)} \\
\vdots \\
g_{n+k-1}^{(k)}
\end{array}\right]
$$

where

$$
Q_{k}=\left[\begin{array}{cc}
0 & I_{k-1} \tag{1.2}\\
1 & E
\end{array}\right]_{k \times k}
$$

The matrix Q_{k} is said to be the k-Fibonacci matrix. By applying (1.1), we have

$$
\left[\begin{array}{c}
g_{n+1}^{(k)} \\
g_{n+2}^{(k)} \\
\vdots \\
g_{n+k}^{(k)}
\end{array}\right]=Q_{k}^{n}\left[\begin{array}{c}
g_{1}^{(k)} \\
g_{2}^{(k)} \\
\vdots \\
g_{k}^{(k)}
\end{array}\right]
$$

Let $\left\{g_{n}^{(k)}\right\}$ be a k-Fibonacci sequence, and let

$$
G_{k}=\left(g_{1}, g_{2}, g_{3}, \ldots\right), \quad g_{i}=g_{i+k-2}^{(k)}, \quad i=1,2, \ldots,
$$

and if $i \leq 0$, then $g_{i}=0$.
For example, if $k=2$, then $G_{2}=(1,1,2,3,5,8,13, \ldots)$. And if $k=4$, then $G_{4}=(1,1,2,4,8,15,29,56,108, \ldots)$.

In [3], the author considered the completeness on $\left\{g_{n}^{(k)}\right\}$ and gave a representation for the recurrence relation $g_{n}^{(k)}$. In [4], the authors found a relationship between the k-Fibonacci number $g_{n}^{(k)}$ and the number of 1 -factors of a bipartite
graph, and in [5], the authors considered the eigenvalues of k-Fibonacci matrix Q_{k} and gave some interesting examples in combinatorics and probability with respect to the k-Fibonacci sequences.

In this paper, we give a combinatorial representation of $g_{n}^{(k)}$ and introduce some properties for k-Fibonacci sequences.
2. Combinatorial representation of $\mathbf{g}_{\mathbf{n}}$. In this section, we give a representation for the nth k-Fibonacci number by using the generating function $G_{k}(x)$.

We can easily find the characteristic polynomial, $x^{k}-x^{k-1}-\cdots-x-1$, of the k-Fibonacci matrix Q_{k}. It follows that all of the eigenvalues of Q_{k} satisfy

$$
x^{k}=x^{k-1}+x^{k-2}+\cdots+x+1
$$

And we can find the following fact in [5]:

$$
\begin{align*}
x^{n}= & g_{n-k+2} x^{k-1}+\left(g_{n-k+1}+g_{n-k}+\cdots+g_{n-2 k+3}\right) x^{k-2} \\
& +\left(g_{n-k+1}+g_{n-k}+\cdots+g_{n-2 k+4}\right) x^{k-3} \tag{2.1}\\
& +\cdots+\left(g_{n-k+1}+g_{n-k}\right) x+g_{n-k+1} .
\end{align*}
$$

Let

$$
G_{k}(x)=g_{1}+g_{2} x+g_{3} x^{2}+\cdots+g_{n+1} x^{n}+\cdots
$$

Then

$$
G_{k}(x)-x G_{k}(x)-x^{2} G_{k}(x)-\cdots-x^{k} G_{k}(x)=\left(1-x-x^{2}-\cdots-x^{k}\right) G_{k}(x)
$$

Using equation (2.1), we have

$$
\left(1-x-x^{2}-\cdots-x^{k}\right) G_{k}(x)=g_{1}=1
$$

Thus,

$$
G_{k}(x)=\left(1-x-x^{2}-\cdots-x^{k}\right)^{-1}
$$

for $0 \leq x+x^{2}+\cdots+x^{k}<1$.
Let $f_{k}(x)=x+x^{2}+\cdots+x^{k}$. Then $0 \leq f_{k}(x)<1$ and we have the following lemma.

Lemma 2.1. For positive integers p and n, the coefficient of x^{n} in $\left(f_{k}(x)\right)^{p}$ is

$$
\sum_{l=0}^{p}(-1)^{l}\binom{p}{l}\binom{n-k l-1}{n-k l-p}, \quad \frac{n}{k} \leq p \leq n
$$

Proof.

$$
\begin{aligned}
\left(f_{k}(x)\right)^{p} & =\left(x+x^{2}+\cdots+x^{k}\right)^{p} \\
& =x^{p}\left(1+x+x^{2}+\cdots+x^{k-1}\right)^{p} \\
& =x^{p}\left(\frac{1-x^{k}}{1-x}\right)^{p} \\
& =x^{p}\left(\left(1-x^{k}\right)\left(\frac{1}{1-x}\right)\right)^{p} \\
& =x^{p}\left(\left(\sum_{l=0}^{p}\binom{p}{l}(-1)^{l} x^{k l}\right)\left(\sum_{i=0}^{\infty}\binom{p+i-1}{i} x^{i}\right)\right)
\end{aligned}
$$

In the above equation, we only consider the coefficient of x^{n}. Since the first term on the right is $x^{p}, k l+i=n-p$, that is, $i=n-k l-p$. If $l=q$ for any $q=0,1, \ldots, p$, then the second term on the right is

$$
\left((-1)^{q}\binom{p}{q}\binom{n-k q-1}{n-k q-p}\right) x^{n-p}
$$

So, the coefficient of x^{n} is

$$
\sum_{l=0}^{p}(-1)^{l}\binom{p}{l}\binom{n-k l-1}{n-k l-p}, \quad \frac{n}{k} \leq p \leq n
$$

The proof is completed.
Now we have a combinatorial representation for g_{n}.
Theorem 2.2. For positive integers p and n,

$$
\begin{equation*}
g_{n+1}=\sum_{\frac{n}{k} \leq p \leq n} \sum_{l=0}^{p}(-1)^{l}\binom{p}{l}\binom{n-k l-1}{n-k l-p} \tag{2.2}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
G_{k}(x) & =g_{1}+g_{2} x+g_{3} x^{2}+\cdots+g_{n+1} x^{n}+\cdots \\
& =\frac{1}{1-x-x^{2}-\cdots-x^{k}}
\end{aligned}
$$

the coefficient of x^{n} is the $n+1$ st Fibonacci number, g_{n+1}, in G_{k}. And,

$$
\begin{align*}
G_{k}(x) & =\frac{1}{1-x-x^{2}-\cdots-x^{k}} \\
& =\frac{1}{1-f_{k}(x)} \\
& =1+f_{k}(x)+\left(f_{k}(x)\right)^{2}+\cdots+\left(f_{k}(x)\right)^{n}+\cdots \tag{2.3}\\
& =1+f_{k}(x)+x^{2} \sum_{l=0}^{2}\binom{2}{l}(-1)^{l} x^{k l} \sum_{i=0}^{\infty}\binom{i+1}{i} x^{i}+ \\
& \cdots+x^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} x^{k l} \sum_{i=0}^{\infty}\binom{n+i-1}{i} x^{i}+\cdots .
\end{align*}
$$

Since we consider the coefficient of x^{n}, we only need the first $n+1$ terms on the right. The $(p+1)$ st term in (2.3) is

$$
x^{p} \sum_{l=0}^{p}\binom{p}{l}(-1)^{l} x^{k l} \sum_{i=0}^{\infty}\binom{p+i-1}{i} x^{i}
$$

So, $k l+i=n-p$, and $\frac{n}{k} \leq p \leq n$. Hence, by Lemma 2.1, we have (2.2).
If $k=2$, then

$$
G_{2}=(1,1,2,3,5,8,13,21, \ldots)
$$

is the Fibonacci sequence $\left\{F_{n}\right\}$. Since the generating function for $\left\{F_{n}\right\}$ is $G_{2}(x)=$ $\frac{1}{1-x-x^{2}}$, and hence,

$$
\begin{aligned}
G_{2}(x) & =\frac{1}{1-x(1+x)} \\
& =1+x(1+x)+x^{2}(1+x)^{2}+\cdots+x^{n}(1+x)^{n}+\cdots
\end{aligned}
$$

If the first $n+1$ terms on the right are examined in reverse order, it is seen that the coefficient of x^{n} in $G_{2}(x)$ is

$$
\begin{equation*}
1+\binom{n-1}{1}+\binom{n-2}{2}+\cdots \tag{2.4}
\end{equation*}
$$

as asserted. So, we have the following corollary.
Corollary 2.3. Let F_{n+1} be the $(n+1)$ st Fibonacci number. Then

$$
\begin{aligned}
F_{n+1} & =\sum_{i=0}\binom{n-i}{i} \\
& =\sum_{\frac{n}{2} \leq p \leq n} \sum_{l=0}^{p}(-1)^{l}\binom{p}{l}\binom{n-2 l-1}{n-2 l-p} .
\end{aligned}
$$

Proof. By (2.2) and (2.4), the proof is completed.
3. Properties of k-Fibonacci Sequences. In this section, we give some properties for k-Fibonacci sequences. First, we have the following theorem by using vector recurrence relation (1.1).

Theorem 3.1 [3]. For positive integers n and m,

$$
\begin{aligned}
g_{n+m}= & g_{n} g_{m-(k-1)}+\left(g_{n}+g_{n-1}\right) g_{m-(k-2)}+ \\
& \left(g_{n}+g_{n-1}+g_{n-2}\right) g_{m-(k-3)}+\cdots \\
& +\left(g_{n}+g_{n-1}+g_{n-2}+\cdots+g_{n-(k-2)}\right) g_{m-1}+g_{n+1} g_{m}
\end{aligned}
$$

Proof. For $G_{k}, k \geq 2$, since $g_{1}=g_{2}=1$, we can replace the matrix Q_{k} in (2.2) with

$$
Q_{k}=\left[\begin{array}{ccccc}
0 & g_{1} & 0 & \cdots & 0 \\
0 & 0 & g_{1} & \cdots & 0 \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & & & g_{1} \\
g_{1} & g_{1} & \cdots & g_{1} & g_{2}
\end{array}\right]
$$

Then

$$
Q_{k}^{n}=\left[\begin{array}{cccccc}
g_{n-(k-1)} & g_{1,2}^{\dagger} & g_{1,3}^{\dagger} & \cdots & g_{1, k-1}^{\dagger} & g_{n-(k-2)} \\
g_{n-(k-2)} & g_{2,2}^{\dagger} & g_{2,3}^{\dagger} & \cdots & g_{2, k-1}^{\dagger} & g_{n-(k-3)} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
g_{n-1} & g_{k-1,2}^{\dagger} & g_{k-1,3}^{\dagger} & \cdots & g_{k-1, k-1}^{\dagger} & g_{n} \\
g_{n} & g_{k, 2}^{\dagger} & g_{k, 3}^{\dagger} & \cdots & g_{k, k-1}^{\dagger} & g_{n+1}
\end{array}\right]
$$

where

$$
\begin{aligned}
g_{i, 2}^{\dagger} & =g_{n-(k-i)}+g_{n-(k-(i-1))} \\
g_{i, 3}^{\dagger} & =g_{n-(k-i)}+g_{n-(k-(i-1))}+g_{n-(k-(i-2))}, \\
& \vdots \\
g_{i, k-1}^{\dagger} & =g_{n-(k-i)}+g_{n-(k-(i-1))}+g_{n-(k-(i-2))}+\cdots+g_{n-(k-(i-(k-2)))} .
\end{aligned}
$$

Since $Q_{k}^{n} Q_{k}^{m}=Q_{k}^{n+m}, g_{n+m}=\left(Q_{k}^{n+m}\right)_{k, 1}$.
Therefore,

$$
\begin{aligned}
g_{n+m}= & g_{n} g_{m-(k-1)}+g_{k, 2}^{\dagger} g_{m-(k-2)}+g_{k, 3}^{\dagger} g_{m-(k-3)}+\cdots \\
& +g_{k, k-1}^{\dagger} g_{m-1}+g_{n+1} g_{m} \\
= & g_{n} g_{m-(k-1)}+\left(g_{n}+g_{n-1}\right) g_{m-(k-2)}+\left(g_{n}+g_{n-1}+g_{n-2}\right) g_{m-(k-3)}+\cdots \\
& +\left(g_{n}+g_{n-1}+g_{n-2}+\cdots+g_{n-(k-2)}\right) g_{m-1}+g_{n+1} g_{m} .
\end{aligned}
$$

We also have another representation of the nth k-Fibonacci number for positive integers n and m.

Corollary 3.2. For positive integers n and m,

$$
\begin{aligned}
g_{n+m}= & g_{n-1} g_{m-(k-2)}+\left(g_{n-1}+g_{n-2}\right) g_{m-(k-3)}+ \\
& \left(g_{n-1}+g_{n-2}+g_{n-3}\right) g_{m-(k-4)}+\cdots \\
+ & \left(g_{n-1}+g_{n-2}+g_{n-3}+\cdots+g_{n-(k-1)}\right) g_{m}+g_{n} g_{m+1}
\end{aligned}
$$

For example, for $n>k$,

$$
\begin{aligned}
g_{2 n}= & g_{2 n-1}+g_{2 n-2}+\cdots+g_{2 n-k} \\
= & g_{n+n} \\
= & g_{n-1} g_{n-(k-2)}+\left(g_{n-1}+g_{n-2}\right) g_{n-(k-3)}+\cdots \\
& +\left(g_{n-1}+g_{n-2}+\cdots+g_{n-(k-1)}\right) g_{n}+g_{n} g_{n+1}
\end{aligned}
$$

So, we can get $g_{2 n}$ by using $g_{n+1}, g_{n}, \ldots, g_{n-k+2}$.
The above fact raises a question [1, 2]. What is the relationship between g_{n} and $g_{n t}$ for a positive integer t. In particular, is there a t such that g_{n} is a factor of $g_{n t}$? In the Fibonacci numbers, $F_{n} \mid F_{t n}$ for all $t=1,2,3, \ldots$. However, this is not true, in general, for k-Fibonacci numbers, $k \geq 3$.

Lemma 3.3. For any positive integer n, the k-Fibonacci numbers $g_{n k+n-k}$ and $g_{n k+n-k+1}$ are odd numbers.

Proof. If $n=1$, then $g_{1}=g_{2}=1$, i.e., g_{1} and g_{2} are odd numbers. By induction on n, we may assume true for n, and consider $n+1$.

First,

$$
\begin{aligned}
g_{(n+1) k+(n+1)-k}= & g_{n k+n+1} \\
= & g_{n k+n}+g_{n k+n-1}+\cdots+g_{n k+n-k+2}+g_{n k+n-k+1} \\
= & g_{n k+n-1}+g_{n k+n-2}+\cdots+g_{n k+n-k+1}+g_{n k+n-k} \\
& +\left(g_{n k+n-1}+g_{n k+n-2}+\cdots+g_{n k+n-k+2}+g_{n k+n-k+1}\right) \\
= & 2\left(g_{n k+n-1}+g_{n k+n-2}+\cdots+g_{n k+n-k+1}\right)+g_{n k+n-k}
\end{aligned}
$$

Then $g_{(n+1) k+(n+1)-k}$ is an odd number since $g_{n k+n-k}$ is an odd number by hypothesis. Similarly, $g_{(n+1) k+(n+1)-k+1}$ is also an odd number.

Therefore, for any positive integer n, the k-Fibonacci numbers $g_{n k+n-k}$ and $g_{n k+n-k+1}$ are odd numbers.

Since $g_{n}^{(k)}=g_{n-k+2}$, our question can be replaced from "Is there any t such that $g_{n}^{(k)} \mid g_{n t}^{(k)}$ for some n ?" to "Is there any t such that $g_{n-k+2} \mid g_{n t-k+2}$ for some n ?"

Theorem 3.4. For $k \geq 3$, there exists t such that $g_{n-k+2} \nmid g_{n t-k+2}$ for some n.
Proof. If $k=3$, then

$$
G_{3}=(1,1,2,4,7,13,24,44,81,147, \ldots)
$$

Here, $g_{4}=4, g_{9}=81$ and hence, $g_{4} \not \backslash g_{9}$. In this case, $n=5$ and $k=3$.
Now, suppose that $k \geq 4$. Then, for any positive integer n, the $g_{n k+n-k}$ and $g_{n k+n-k+1}$ are odd numbers. Let $n=k+2, t=k$ and let $m=n+1$. Then

$$
m t-k+2=(n+1) k-k+2=\left(n+\frac{n-2}{k}\right) k-k+2=n k+n-k .
$$

So, $g_{m t-k+2}$ is an odd number. Since $n=k+2, k \geq 4$ and $G_{k}=(1,1,2,4,8, \ldots)$,

$$
g_{m-k+2}=g_{n+1-k+2}=g_{5}
$$

Since $k \geq 4$, in any cases, $g_{5}=8$. Since g_{m-k+2} is an even number and $g_{m k-k+2}$ is an odd number, there exists t such that $g_{n-k+2} \nmid g_{n t-k+2}$ for some n.

Now we have another question for any positive integers m and n. The question is "how many k-Fibonacci numbers are there between n^{m} and n^{m+1} ?"

Lemma 3.5. For positive integers n and r,

$$
\begin{equation*}
n g_{r} \leq g_{r+n} \tag{2.3}
\end{equation*}
$$

Proof. If $n=1$, then $g_{r} \leq g_{r+1}$. By induction on n, we may assume true for n, and consider $n+1$. That is,

$$
\begin{aligned}
n g_{r} \leq g_{r+n} \Rightarrow & n g_{r}+g_{r} \leq g_{r+n}+g_{r} \\
\Rightarrow & (n+1) g_{r} \leq g_{r+n-1}+g_{r+n-2}+\cdots+g_{r+n-k}+g_{r} \\
& =g_{r+n}+\left(g_{r+n-1}+\cdots+g_{r+n-(k-1)}+g_{r+n-k}+g_{r}\right)-g_{r+n} \\
& =g_{r+n+1}+g_{r+n-k}+g_{r}-g_{r+n}
\end{aligned}
$$

Since $g_{r+n}=g_{r+n-1}+g_{r+n-2}+\cdots+g_{r+n-k}$ and $n \geq 1, g_{r+n-k}+g_{r} \leq g_{r+n}$. Thus, $(n+1) g_{r} \leq g_{r+n+1}$.

Therefore, $n g_{r} \leq g_{r+n}$ for any positive integers n, r.
Theorem 3.6. Let m and n be any two positive integers. Then there are no more than $n k$-Fibonacci numbers between the consecutive powers n^{m} and n^{m+1}.

Proof. Suppose that the interval between some n^{m} and n^{m+1} were to contain at least $n+1 k$-Fibonacci numbers:

$$
n^{m}<g_{r+1}, g_{r+2}, \ldots, g_{r+n+1}, \ldots<n^{m+1}
$$

Since $n^{m}<g_{r+1}, n \cdot n^{m}<n g_{r+1}$. So, by (2.3),

$$
n^{m+1}<n g_{r+1} \leq g_{r+n+1}
$$

Consequently, $n^{m+1}<g_{r+n+1}$, a contradiction.
One of the most well-known properties of the Fibonacci sequence is the formula for the sum $S_{n}^{(2)}$ of the first n terms. A glance at the first few cases quickly leads to the conjecture

$$
S_{n}^{(2)}=F_{1}+F_{2}+\cdots+F_{n}=F_{n+2}-1
$$

which is immediately confirmed by mathematical induction. In case $k \geq 3$, we can easily verify that

$$
S_{n}^{(k)}=\frac{1}{k-1}\left(g_{n+2}^{(k)}-g_{n+(k-2)}^{(k)}-2 g_{n+(k-3)}^{(k)}-\cdots-(k-2) g_{n+1}^{(k)}-1\right) .
$$

*This paper was supported by Faculty Research Fund, Sungkyunkwan Univ., 1999.
References

1. W. Y. C. Chen and J. D. Louck, "The Combinatorial Power of the Companion Matrix," Linear Algebra Appl. 232 (1996), 261-278.
2. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
3. G.-Y. Lee, "A Completeness on Generalized Fibonacci Sequences," Bull. Korean Math. Soc. 32 (1995), 239-249.
4. G.-Y. Lee and S.-G. Lee, "A Note of Generalized Fibonacci Numbers," The Fibonacci Quarterly, 33 (1995), 273-278.
5. G.-Y. Lee, S.-G. Lee and H.-G. Shin, "On the k-generalized Fibonacci Matrix $Q_{k}, "$ Linear Algebra Appl., 251 (1997), 73-88.

Gwang-Yeon Lee
Department of Mathematics
HanSeo University
Seosan 356-820, Korea
email: gylee@gaya.hanseo.ac.kr
Jin-Soo Kim
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
email: lion@math.skku.ac.kr
Sang-Gu Lee
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
email: sglee@yurim.skku.ac.kr

