ON A SYMMETRIC FUNCTION OF THE PRIMITIVE ROOTS OF PRIMES

Joseph B. Dence and Thomas P. Dence

1. Introduction. The elementary symmetric functions of n variables are:

$$
\begin{aligned}
s_{1} & =u_{1}+u_{2}+\cdots+u_{n} \\
s_{2} & =u_{2} u_{1}+u_{3} u_{1}+u_{3} u_{2}+\cdots+u_{n} u_{n-1}=\sum_{i>j} u_{i} u_{j} \\
s_{3} & =\sum_{i>j>k} u_{i} u_{j} u_{k} \\
& \vdots \\
s_{n} & =\prod_{i=1}^{n} u_{i} .
\end{aligned}
$$

In a previous paper [1] we investigated the elementary symmetric function s_{1} of the primitive roots of a prime. The principal tool was the use of certain cyclotomic polynomials. The present work continues this line of investigation and considers the function s_{2} of the primitive roots. Throughout, p denotes an odd prime, $d \geq 1$ is any divisor of $p-1$, and $\left\{g_{i}\right\}$ is the set of primitive roots of p.
2. Numerical Results. The first few odd primes, beginning with $p=5$, yield the following simple results: $p=5: s_{2} \equiv 1(\bmod p) ; p=7: s_{2} \equiv 1(\bmod p)$; $p=11: s_{2} \equiv 1(\bmod p) ; p=13: s_{2} \equiv-1(\bmod p) ; p=17: s_{2} \equiv 0(\bmod p)$. The residues obtained strongly urge the computation of the residues modulo p of s_{2} for many more primes. A sampling of these computations is given in Table 1. Since in [1] it was important to note whether $p-1$ is squarefree or not, Table 1 has been organized so that the primes p in columns (1)-(3) are those where $p-1$ is not squarefree; in columns (4) and (5) $p-1$ is squarefree.
(1)

p	$s_{2}(\bmod p)$
5	1
61	1
277	1
373	1
4621	1

	(2)
p	$s_{2}(\bmod p)$
19	0
37	0
73	0
193	0
457	0

	(3)
p	$s_{2}(\bmod p)$
29	-1
53	-1
293	-1
421	-1
797	-1

(5)

p	$s_{2}(\bmod p)$		p	$s_{2}(\bmod p)$
31	0		23	1
43	0		47	1
67	0		59	1
79	0	83	1	
683	0		463	1

Table 1. Residues of the Symmetric Function s_{2} of the Primitive Roots of Various Primes p.

The table suggests strongly that for all primes $p \geq 5$ the congruence

$$
s_{2} \equiv 0 \text { or } \pm 1 \quad(\bmod p)
$$

holds. Our object is to show this by making a connection with s_{1}.
3. Sums of Squares of the Primitive Roots. The connection with s_{1} is made by considering the sums of squares of the primitive roots. Let

$$
S=\sum_{i=1}^{\phi(p-1)} g_{i}^{2} ;
$$

then it follows algebraically that $2 s_{2}=s_{1}^{2}-S$, and we need the residues modulo p of S in order to compute the residues modulo p of s_{2}. We do this by again appealing to certain properties of the cyclotomic polynomials.

The nth cyclotomic polynomial, $\Phi_{n}(x)$, is defined as

$$
\Phi_{n}(x)=\prod_{\zeta}(x-\zeta)
$$

where ζ spans all of the primitive nth roots of unity. We recall that the degree of $\Phi_{n}(x)$ is $\phi(n)$, and all of the coefficients in $\Phi_{n}(x)$ are integers [4]. Write

$$
\Phi_{n}(x)=\sum_{k=0}^{\phi(n)} c(n, k) x^{k},
$$

as in [1]. Then if $n=d$, a divisor of $p-1$, Theorem 3 in [1] shows that the coefficient $c(d, \phi(n)-1)$ is 0 if d is not squarefree, +1 if d is squarefree and contains an odd number of prime factors, and -1 if $d=1$ or d is squarefree and contains an even number of prime factors. Since the roots of $\Phi_{d}(x) \equiv 0(\bmod p)$ are all of the incongruent integers of order d modulo p, the preceding gives us Theorem 1 [6].

Theorem 1. The sum of the incongruent integers of order d modulo p is congruent to $\mu(d)$, where μ is the Möbius function.

In particular, Theorem 1 gives immediately for any odd prime p,

$$
s_{1} \equiv \mu(p-1) \quad(\bmod p)
$$

But from [2], for any g_{i}, the integer g_{i}^{2} has order

$$
\frac{p-1}{(2, p-1)}=\frac{p-1}{2}
$$

There are

$$
\phi\left(\frac{p-1}{2}\right)
$$

incongruent integers of order $(p-1) / 2$, whereas there are $\phi(p-1)$ primitive roots. Hence, squaring and reducing the primitive roots modulo p produces

$$
\frac{\phi(p-1)}{\phi\left(\frac{p-1}{2}\right)}
$$

copies of the integers of order $d=(p-1) / 2$. Theorem 2 follows from this and from Theorem 1.

Theorem 2.

$$
S \equiv \frac{\phi(p-1)}{\phi\left(\frac{p-1}{2}\right)} \mu\left(\frac{p-1}{2}\right) \quad(\bmod p)
$$

if p is any odd prime.
A more general result than Theorem 2 was stated in [5]. It is clear that the residues of S are restricted to $0, \pm 1, \pm 2$. We illustrate this in Table 2.

p	$\phi(p-1)$	$\phi((p-1) / 2) \mu((p-1) / 2)$	S	$S(\bmod p)$	
11	4	4	-1	153	-1
41	16	8	0	8036	0
53	24	12	1	21944	2
61	16	8	-1	20372	-2
79	24	24	1	61937	1
211	48	48	-1	848008	-1

Table 2. Residues Modulo p of the Sums of Squares of the Primitive Roots of Various Primes p.
4. The Main Result. In view of the relationship between s_{1}, s_{2} and S, and of the result in Theorem 2, the following theorem emerges.
$\underline{\text { Theorem 3 }}$. Let $\left\{g_{i}\right\}$ denote the primitive roots of the prime $p \geq 5$, and let

$$
\Phi_{p-1}(x)=\sum_{k=0}^{\phi(p-1)} c(p-1, k) x^{k}
$$

be the $(p-1)$ st cyclotomic polynomial. Then

$$
\begin{aligned}
s_{2}=\sum_{i>j} g_{i} g_{j} & \equiv c(p-1, \phi(p-1)-2)(\bmod p) \\
& \equiv \frac{1}{2}\left((\mu(p-1))^{2}-\frac{\phi(p-1)}{\phi\left(\frac{p-1}{2}\right)} \mu\left(\frac{p-1}{2}\right)\right)(\bmod p)
\end{aligned}
$$

That the right-hand side of the last congruence is actually integral can be seen by considering various cases of factorization of $p-1,(1 / 2)(p-1)$.

The formula in Theorem 3 can be presented pictorially (in Figure 1) by considering, in fact, the different cases of factorization of $p-1,(1 / 2)(p-1)$. There are precisely five such cases of factorization; these correspond to the five columns of Table 1.

As a matter of distribution, we observe that among the first 100 primes (beginning with $p=5$) the residues $-1,0,1$ of s_{2} occur in the ratios $12: 59: 29$. The question of what these ratios should be in the limit of infinitely many primes is an interesting one.

Finally, we note in conclusion that although Theorem 3 might be generalizable to an arbitrary elementary symmetric function s_{n} and to an arbitrary modulus (but one which still has primitive roots), the result is apt to be too complex to permit a simple pictorial presentation analogous to Figure 1. This has long been suspected [3].

> References

1. J. B. Dence, "Primitive Roots the Cyclotomic Way," Missouri Journal of Mathematical Sciences, 12 (1999), 5-11.
2. J. B. Dence and T. P. Dence, Elements of the Theory of Numbers, Harcourt/Academic Press, San Diego, California, 1999.
3. A. R. Forsyth, "Primitive Roots of Prime Numbers and Their Residues," Messenger of Mathematics, 13 (1883/1884), 169-192.
4. L. J. Goldstein, Abstract Algebra, Prentice-Hall, Englewood Cliffs, New Jersey, 1973, 226-227.
5. R. Moller, "Sums of Powers of Numbers Having a Given Exponent Modulo a Prime," American Mathematical Monthly, 59 (1952), 226-230.
6. M. A. Stern, "Bemerkungen über hohere Arithmetik," Journal für Mathematik, 6 (1830), 147-153.

Joseph B. Dence
Department of Chemistry
University of Missouri
St. Louis, MO 63121
Thomas P. Dence
Department of Mathematics
Ashland University
Ashland, OH 44805
email: tdence@ashland.edu

Figure 1.
Classification of the Primes on the Basis of the Residues Modulo p of the Symmetric Function s_{2}.

