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THE POWER INTEGRAL AND THE GEOMETRIC SERIES

Joseph Wiener and Miguel Paredes

The purpose of this note is to illustrate the importance of some ideas, methods,
and techniques of the calculus classics in modern problems of teaching calculus.
This approach, combined with the use of technology, provides, in our opinion,
a positive contribution to retaining a solid theoretical foundation of the calculus
and thus enhancing the success of the learning process. A number of such topics
can be offered as student projects in the context of teaching Calculus, History of
Mathematics, Differential Equations, Linear Algebra, Real Analysis, etc. These
projects will also appeal to the interest of students in other areas of mathematics
and at the same time develop their interest to a higher level.

The use of history in teaching mathematics will help convince the students that
a college course in the history of mathematics should be primarily a mathematics
course, and that a considerable amount of genuine mathematics should be injected
in the subject. Such a course will be a study of the development of ideas that shape
modern mathematical thinking and mathematicians who contributed those ideas.
On the other hand, mathematics did not develop in a vacuum. It has always been
an integral part of our life, thinking and culture. It has helped us to uncover the
mysteries of nature and create technologies that not only change our world, but also
our teaching methods. Therefore, in the teaching of calculus, it is very important
to use many ideas and methods of the calculus classics which, in combination with
modern technologies, will strengthen and broaden the students liberal education.

One of the examples that we suggest is the use of geometric progressions in
the teaching of definite integrals (Fermat’s idea).

Pierre Fermat (1601–65) is famous not only for his Last Theorem; he is also
known as a founder of the modern theory of numbers and probability theory. He
also did much to establish coordinate geometry and invented a number of methods
for determining maxima and minima that were later of use to Newton in founding
the calculus. Fermat recognized a principle in optics known as Fermat’s Law.
Fermat is also credited with a method of calculating areas under certain curves by
partitioning the basic interval with a sequence of points whose coordinates form a
geometric progression.

In this connection, we want to compare Fermat’s method with the approach
discussed in the note by Mathews [1] for the integral of the power function. In his
capsule, Mathews found the integrals of t1/2 and t4/3 on 0 ≤ t ≤ x by Riemann
sums with partition points

xk =
k2x

n2
and xk =

k3x

n3
, k = 0, 1, . . . , n
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respectively, and by using closed formulas for the sums of k and k2 (integral of t1/2)
and k4, k5, and k6 (integral of t4/3). Incidentally, recursive formulas for the sums
of integer powers can be derived by means of differentiation [3]. Furthermore, we
would like to observe that the use of these formulas in the calculation of the above
integrals may be avoided, and only the knowledge of the limit

lim
n→∞

1m + 2m + 3m + · · ·+ nm

nm+1
=

1

m+ 1
(1)

for particular values of m is essential. In the approach described below this remark-
able limit will be obtained in general form as a corollary of the main result.

Our preliminary discussion of Fermat’s ingenious method follows the account
given in the book Calculus Gems by George F. Simmons [2]. However a detailed
analysis of the method shows that it is by far more significant in calculus than
exhibited in the literature. Therefore, the following related topics are also included
in this investigation.
1. Generalization of Fermat’s method for the integral of tm with positive rational

m to all real m > −1.
2. Derivation of limit (1) by comparing two integer sums for tm; one with a

geometric sequence and the other with an arithmetic sequence of partition
points.

3. The integral definition of the logarithmic function.
4. Estimates for the partial sums of the harmonic series.
5. The integral of ln t.

Consider the power function f (t) = tm where m > −1.To find its integral on
0 ≤ t ≤ x, Fermat divides this interval by the geometric sequence of points (moving
from right to left)

x, xr, xr2, xr3, . . . , xrk−1, . . .

where 0 < r < 1 (Figure 1), and considers the following integral sum:

S1 = xm (x− xr) + (xr)
m
(xr − xr)

2
+
(

xr2
)m (

xr2 − xr3
)

+ · · ·

= xm+1 (1− r)

∞
∑

k=0

r(m+1)k = xm+1 1− r

1− rm+1
. (2)
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Figure 1.

We remark that this expression for the integral sum looks unusual because it
is given in the form of an infinite series. However, instead of the interval [0, x] we
can take an interval [∆, x], with 0 < ∆ < x, then write a finite Riemann sum and
make ∆ approach 0. Now, the integral of tm on [0, x] is the limit of (2) as r → 1.
If m ≥ 0 is an integer, then

1− rm+1 = (1− r)
(

1 + r + r2 + · · ·+ rm
)

and

S1 =
xm+1

1 + r + r2 + · · ·+ rm

So,

∫ x

0

tmdt = lim
r→1

S1 =
xm+1

m+ 1
. (3)

The same result follows from (2) for any real m > −1 by the application of
L’Hôpital’s rule.
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Moreover, let us compare the integral sum (2) with a sum obtained by dividing
the interval [0, x] with the arithmetic sequence 0, h, 2h, . . . , nh = x. We write the
integral sum

S2 = hmh+ (2h)
m
h+ · · ·+ (nh)

m
h

= hm+1 (1m + 2m + 3m + · · ·+ nm)

=
1m + 2m + 3m + · · ·+ nm

nm+1
xm+1.

Since for n → ∞ this sum tends to the same limit as (2), which is xm+1/ (m+ 1),
then the remarkable limit (1) follows from here for any real m > −1.

For the integral

∫ x

1

tmdt =

∫ x

0

tmdt−

∫ 1

0

tmdt

it follows from (3) that

∫ x

1

tmdt =
xm+1 − 1

m+ 1
,

and letting m → −1 in this equation gives

∫ x

1

dt

t
= lim

m→−1

xm+1 − 1

m+ 1
= lim

m→−1

xm+1 lnx

1

and generates the integral definition of the logarithm

∫ t

1

dt

t
= lnx, x > 0.

An immediate consequence of this formula is the conclusion on the divergence
of the harmonic series. In fact, by the Mean Value Theorem we have

∫ k+1

k

dt

t
= ln (k + 1)− ln k =

1

k + c
,
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where 0 < c < 1, and therefore,

1

k + 1
< ln (k + 1)− ln k <

1

k
.

Adding these inequalities for k = 1, 2, . . . , n gives

1

2
+

1

3
+ · · ·+

1

n
+

1

n+ 1
< ln (n+ 1) < 1 +

1

2
+

1

3
+ · · ·+

1

n
(4)

and clearly shows that the harmonic series diverges since its nth partial sum

Hn = 1 +
1

2
+

1

3
+ · · ·+

1

n

is unbounded being greater than ln (n+ 1).
Furthermore, this discussion leads to a remarkable estimate for the growth rate

of the partial sums of the harmonic series. Indeed, subtracting from Hn each part
of the inequalities (4), it is seen that

0 < Hn − ln (n+ 1) < 1−
1

n+ 1
< 1.

From here, we conclude that the variableHn−ln (n+ 1) has a finite limit as n → ∞,
since it is increasing and bounded from above. This famous limit,

lim
n→∞

[Hn − ln (n+ 1)] = γ,

is known as the Euler-Mascheroni constant. In other words,

Hn = ln (n+ 1) + γ + βn,

where βn → 0 as n → ∞. Although the number γ can be evaluated with any
precision (γ = 0.57721566 . . . ), its arithmetic nature remains the greatest enigma,
and nobody has shown that it cannot be rational.
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Euler used the divergence of the harmonic series to prove that the number of
primes is infinite. Assume that the number of primes is finite and denote all primes
by p1, p2, p3, . . . , pN . Let us take the following fractions:

1

1− 1
p1

,
1

1− 1
p2

, . . . ,
1

1− 1
pN

.

Each of these terms can be written as a geometric series.

1

1− 1
pi

= 1 +
1

pi
+

1

p2i
+

1

p3i
+ · · · , i = 1, 2, . . . , N.

Multiplying both sides of these N equalities, we obtain

N
∏

i=1

1

1− 1
pi

=

(

1 +
1

p1
+

1

p2
+ · · ·

)

· · · · ·

(

1 +
1

pN
+

1

p2N
+ · · ·

)

= 1 +
1

2
+

1

3
+

1

4
+ · · · .

Hence, the harmonic series is convergent, a contradiction.
For the integral of ln t between 0 and x, Fermat’s method generates the integral

sum

S = (x− xr) lnx+
(

xr − xr2
)

ln (xr) +
(

xr2 − xr3
)

ln
(

xr2
)

+ · · ·

= x (1− r)
[

lnx+ r ln (xr) + r2 ln
(

xr2
)

+ · · ·
]

,

which is transformed into

S = x (1− r)
(

1 + r + r2 + · · ·
)

lnx+ x (1− r) r
(

1 + 2r + 3r2 + 4r3 + · · ·
)

ln r,

or

S = x lnx+ xr
ln r

1 − r
.
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Hence,

∫ x

0

ln tdt = lim
r→1

S = x ln x− x. (5)

We may only guess how Fermat had arrived at his method. However, the
substitution t = es changes the integral of e(m+1)sds to the power integral (3).
Therefore, if the partition points for the integral of the exponential function form an
arithmetic sequence, the partition points for the power integral create a geometric
sequence.
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