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GRAPHIC REPRESENTATIONS FOR ASSOCIATIVE ALGEBRAS

Thierry Dana-Picard and Mary Schaps

1. Introduction. In mathematics, many problems become easier to solve

when it is possible to have some kind of graphic representation either of the problem

itself, or of the objects which are involved in it. By that way, the searcher (or the

student) can get a geometric intuition of what he/she is studying. Associative

algebras arise in many fields of mathematics and their study is a very live field of

research. Therefore we present here a construction of some graphs associated to an

associative algebra with unit which provide this intuition.

2. Peirce Decomposition of an Algebra. Let A be an associative algebra

with unit 1 over a sufficiently large algebraically closed field K. In this note, we

will call A an algebra. In fact, A is a vector space over K. Since we have taken

K sufficiently large, a theorem of Wedderburn implies that, as a vector space, A

is the direct sum of a (non-unique) subalgebra S and an ideal J , i.e. A = S ⊕ J .

The subalgebra S is a direct sum of matrix blocks S ⊕i Mni
(K), and J is an ideal,

i.e. aJ ⊆ J and Ja ⊆ J for any a ∈ A. The subalgebra S is called a separable

subalgebra of A and J is called the radical of A.

If e is an idempotent element in A, i.e. e2 = e, then every element in A can be

written in the form a = eae+ ea(1− e) + (1− e)ae+ (1− e)a(1− e). Moreover, if

we write xAy = {xay ; a ∈ A}, it is clear that we have the following decomposition

of the algebra A:

A = eAe⊕ eA(1− e)⊕ (1− e)Ae⊕ (1− e)A(1 − e).

This decomposition is called the two-sided Peirce decomposition of A with

respect to e. The subspaces eAe, eA(1−e), (1−e)Ae and (1−e)A(1−e) are called

the Peirce components of A with respect to e.

Proposition 2.1. Let A be an arbitrary algebra. If J is the radical of A,

then eJe = eAe ∩ J , eJ(1 − e) = eA(1 − e) ∩ J , (1 − e)Je = (1 − e)Ae ∩ J ,

(1− e)J(1− e) = (1− e)A(1 − e) ∩ J .

For a proof. see [5].

Now let A be an algebra. Two idempotents e and f are orthogonal if ef =

fe = 0; an idempotent e is primitive if it cannot be written as the sum of two non-

zero idempotents. A family e1, e2, . . . , er of idempotents is a family of orthogonal
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idempotents if they are pairwise orthogonal, i.e. eiej = 0 for every i 6= j. The

family is complete if
∑

ei = 1.

The Peirce decomposition can be generalized in the following way: let e1, e2,

. . . , er be a finite set of idempotents such that
∑

ei = 1; then A = ⊕i,jeiAej . The

terms of this sum are also called Peirce components. More details can be found in

[5].

Figure 1. Two simple basis-graphs

3. Basis-Graphs. We consider now the following directed graph associated

to a finite dimensional algebra A:

1. Choose a complete set of primitive orthogonal idempotents e1, e2, . . . , er. The

number of vertices of the graph is the number of idempotents in the set; label

each vertex by an idempotent.

2. For i 6= j, the number of arrows from ei to ej is equal to dimK(eiAej).

3. The number of loops from ei to itself is equal to dimK(eiAei)− 1.

This graph is called the basis-graph of the algebra A.

Example 3.1. In Figure 1 we show basis-graphs for (i) upper-triangular matri-

ces of order 3 and (ii) K[x]/(x3).

For (i) we chose as idempotents the matrices E11, E22, E33, and the arrows

represent the matrices E12, E23, E13. Recall that Eij is the matrix with an (i, j)-

entry equal to 1 and 0 elsewhere. For (ii) the idempotent is 1, the loops represent

x and x2 respectively.

Remark 3.2. In representation theory of associative algebras one would use

another graph, named quiver, which contains arrows only for J/J2, where J is

the radical of the algebra. For instance, all the algebras K[x]/(xn) have the same

quiver, which contains one vertex and one loop.
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In fact, we can see that the basis-graph in (ii) can represent another algebra,

namely K[x, y]/(x2, y2, xy). We need to refine the definition in order to distinguish

various algebras with the same basis-graphs.

Let A be an algebra with radical J . The weighted basis-graph associated with

A is the basis-graph of A with the arrows and loops weighted as follows:

1. The number of arrows from ei to ej with weight k is equal to the number

nk
ij = dimK ei(J

k/Jk+1)ej . A k-weighted arrow is an arrow with k barbs.

2. Matrix units are weighted by infinity and marked by a solid triangular barb.

3. A trivial loop, i.e. a loop with only trivial products with other basis elements,

will be marked by a “circle” on it.

4. Products of arrows are assumed to be zero, unless identified with a particular

arrow or loop.

Example 3.3. In Figure 2 weighted basis-graphs are displayed for (i) upper-

triangular matrices of order 3, (ii) K[x, y]/(x, y)2 and (iii) K[x]/(x3).

Example 3.4. Figure 3 displays weighted basis-graph for 2 × 2-matrices and

3× 3-matrices.

Figure 2.

Figure 3. Matrices.
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Figure 4. Two different weighings.

Example 3.5. In Figure 4 we give an example of a basis-graph with two different

weighings. The weighted basis-graph on the left can be the basis-graph of an algebra

with additional relations among basis elements (e.g. ux = xv, vy = yu). It is not

difficult to define an algebra isomorphism between this new algebra and the algebra

corresponding to the displayed basis-graph.

With a weighted basis-graph we have a “complete picture” of a basis of the

algebra filtered by the powers of the radical. Despite the fact that the construction

is in no way canonical, two algebras which are isomorphic have the same weighted

basis-graph. Therefore, establishing a complete list of algebras in a given dimension

n (up to isomorphism) is now partly combinatorial work. As an example, we give

now the complete lists of associative algebras with units in dimension 2, 3, and

4. We denote by K[x1, . . . , xn] the polynomial ring with n commuting variables,

and by K〈x1, . . . , xn〉 the polynomial ring with n non-commuting variables. The

algebras are described in the text from the left to the right.

1. Two-dimensional algebras. Any algebra is isomorphic either to K2 or to

K[x]/(x2) (see Figure 5).

2. Three-dimensional algebras. Any algebra is isomorphic either to K3, to

K[x, y]/(x, y)2 or to K[x]/(x3) or to the upper triangular matrices (see Figure

6).
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Figure 5. 2-dimensional algebras.

Figure 6. 3-dimensional algebras.

Figure 7. 4-dimensional algebras with 3 idempotents.
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3. Four-dimensional algebras. We will list the algebras according to decreasing

number of idempotents:

(a) With four idempotents, there is only one algebra, namely K4.

(b) With three idempotents, there are two algebras, namely K × T2(K) and

K2×K[x]/(x2), where T2(K) denotes the algebra of upper triangular matrices

of order 2 over K. For these two cases, see Figure 7.

(c) With two idempotents, we have the following algebras, whose respective

weighted basis-graphs are given in Figure 8:

• K[x]/(x2)×K[x]/(x2).

• K ×K[x, y]/(x, y)2.

• K ×K[x]/(x3).

• The algebra of 4× 4 matrices of the form







a 0 0 0
0 a 0 d
c 0 b 0
0 0 0 b







where a, b, c, d ∈ K.

• The algebra M2(K) of all square matrices of order 2.

• The algebra of 3× 3 matrices of the form





a c d
0 a 0
0 0 b





where a, b, c ∈ K, and its dual.



VOLUME 12, NUMBER 3, FALL 2000 189

• The Kronecker algebra, whose elements are the 3× 3 matrices of the form





a 0 0
0 a 0
b c d





where a, b, c, d ∈ K.

(d) The algebras with one idempotent, i.e. the local algebras are K[x, y, z]/

(x, y, z)2, K[x, y]/(x2, xy, y3), K[x]/(x4), K〈x, y〉/(x2, y2, yx − sxy), s 6= 0, 1

and K[x, y]/(x3, x2 + yx, xy + yx, y2), as displayed in Figure 9.

Figure 8. 4-dimensional algebras with 2 idempotents.
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Figure 9. 4-dimensional algebras with 1 idempotent.

A detailed list can be found in [3] (we took some notations from it); there the list

is longer as Gabriel distinguished between some algebras or parameterized families

with basis-graph containing one idempotent and 3 loops, for the sake of deformation.

For local 4-dimensional algebras, we got a one-parameter family of non- isomorphic

algebras with the same weighted basis-graph, namely K〈x, y〉/(x2, y2, yx− sxy).

Figure 10. Group algebras.

Remark 3.6. It is easy to understand that the basis-graph of a commutative

algebra contains only vertices and/or loops, but no non-looped arrow. In a commu-

tative algebra, eixej = eiejx. If i 6= j, then eiej = 0, so for the Peirce components

we get eiAej = eiejA = 0. In the examples of 3-dimensional algebras, the only



VOLUME 12, NUMBER 3, FALL 2000 191

non-commutative algebra is the algebra of upper triangular 2× 2 matrices (for an

algebraic proof of the fact that up to isomorphism this is the only non-commutative

algebra, see [4]).

A considerable work has been done using these graphs in deformation theory of

associative algebras with unit, as their behaviour under deformation is well-known,

and well suited (see [6]). If an algebra B is a deformation of an algebra A, then the

basis-graph of A is either the same as the basis-graph of B or it is obtained from

the basis-graph of B by coalescing vertices, adding a new loop for each vanishing

vertex. For example, the local algebra with one loop K[x]/(x2) deforms to K2,

whose basis-graph contains only two vertices. These techniques made possible a

classification of low dimension associative algebras with unit (e.g. see [1,8]). For

loopless basis-graphs, the classification is known up to dimension 9, for the other

cases, there exists upper bounds for the number of irreducible components of the

scheme Algn that classify them.

The basis-graph of an algebra is also used in studying the Donald-Flanigan

problem of deforming modular group algebras (i.e. group algebra of a finite group

over a field whose characteristic divides the order of the group) into semi-simple

algebras (e.g. see [7]). The following and last example we give here displays the

weighted basis-graphs of the group algebra KG, where G = D6 is the dihedral

group D6 = {a, b | a6 = b2 = e, ab = ba−1} and the characteristic of the field K is

(i) 0 and (ii) 2 (see Figure 10).

(i) In characteristic 0, KD6 is composed of 4 blocks isomorphic to K and two

blocks of 2× 2-matrices.

(ii) In characteristic 2, KD6 contains one local block and one matrix block over

K[x]/(x2).

In characteristic either 0 or non-dividing the order of the group, finding the

basis-graph of the group algebra is not difficult for small groups. When the char-

acteristic of the field divides the order of the group, the problem is much more

complicated and lays beyond the scope of the present paper.
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