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DIRECTED GRAPHS, MAGIC SQUARES,

AND GROTHENDIECK TOPOLOGIES

Min Ho Lee

1. Introduction. It is well-known that a graph can be represented by a

square matrix by considering its adjacency matrix. One of the goals of this paper

is to give an algebraic description of such a correspondence for directed graphs.

A directed graph can be viewed as an order pair (α, β) of mappings from the

set of directed edges to the set of vertices in such a way that a directed edge e is

the one with the initial vertex α(e) and the terminal vertex β(e) [4]. Thus, with

an appropriate morphism, we can consider the category of directed graphs whose

objects are ordered pairs of mappings of finite sets. More precisely, we consider the

category of directed graphs with a fixed set X of vertices whose objects are viewed

as the set of ordered pairs (α, β) of mappings α, β:Y → X from various finite sets

Y to the given set X . We extend the set of isomorphism classes of the objects in

this category to a set which has a ring structure and prove that the resulting ring

is isomorphic to the ring of m × m integral matrices, where m is the number of

elements in X (Theorem 1). We also consider a subring of this ring corresponding

to regular digraphs and show that it is isomorphic to the ring of generalized magic

squares (Theorem 2).

Given a finite set X , the category of single mappings φ:Z → X can be regarded

as a Grothendieck topology on the category of finite sets [2, 3]. In Section 7, we

discuss the action of the ring associated to directed graphs above on the objects of

this category.

2. Directed Graphs. A directed graph G = (V,E) consists of a finite set V

of vertices and a finite set E of edges, where each edge is an ordered pair of vertices.

Let V = {v1, . . . , vn} and E = {e1, . . . , en}. If el = (vi, vj), then vi is called the

initial vertex and vj is called the terminal vertex of el.

To each directed graph G = (V,E), we can associate an ordered pair (α, β) of

mappings α, β:E → V such that, for each edge e ∈ E, α(e) is the initial vertex

and β(e) is the terminal vertex of e [4]. Conversely, to each ordered pair (f, g) of

mappings f, g:Y → X of finite sets, we can associate a directed graph such that X

is the set of vertices, Y is the set of edges, and each y ∈ Y has the initial vertex
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f(y) and the terminal vertex g(y). This correspondence leads us to the following

definition of the category of directed graphs.

Definition 1. The category DG of directed graphs is defined by the following:

(i) The objects of DG are ordered pairs (f, g) of mappings f, g:Y → X of finite

sets.

(ii) A morphism from the pair (f1, g1) of mappings f1, g1:Y1 → X1 to the pair

(f2, g2) of mappings f2, g2:Y2 → X2 is a pair (µ, ν) of mappings µ:Y1 → Y2

and ν:X1 → X2 such that f2 ◦ µ = ν ◦ f1 and g2 ◦ µ = ν ◦ g1.

Remark 1. It can be easily shown that the pair (µ, ν) in (ii) of the above

definition is indeed a morphism in a category with (id, id) the identity morphism.

Definition 2. Let X be a fixed finite set. The category DGX of directed graphs

with vertices X is the subcategory of DG defined as follows:

(i) The objects of DGX are triples (Y, f, g), where Y is a finite set and f, g:Y → X

are mappings of Y into X .

(ii) A morphism from the triple (Y1, f1, g1) to the triple (Y2, f2, g2) is a mapping

ϕ:Y1 → Y2 such that f1 = f2 ◦ ϕ and g1 = g2 ◦ ϕ.

3. The Multiplication Operation. We define an operation ⊙ on the set

of objects of the category DGX as follows. Given two objects (Y1, f1, g1) and

(Y2, f2, g2) of DGX , let U be the pullback of g1:Y1 → X and f2:Y2 → X and

let p:U → Y1 and q:U → Y2 be the canonical projection mappings. Thus, we

have U = {(y1, y2) ∈ Y1 × Y2 | g1(y1) = f2(y2)} and g1 ◦ p = f2 ◦ q. We set

(Y1, f1, g1)⊙ (Y2, f2, g2) = (U, f1 ◦ p, g2 ◦ q). Then the triple (U, f1 ◦ p, g2 ◦ q) is an

object of DGX and therefore ⊙ is an operation on DGX .

Remark 2. In graph-theoretic terms, the product of two graphs G1 = (X,E1)

and G2 = (X,E2) with vertices X and sets of edges E1 and E2, respectively, is the

graph G = (X,E) with vertices X and edges E = E1 ◦ E2, where “◦” denotes the

composition of relations.

Proposition 1. Suppose that (Y1, f1, g1), (Y2, f2, g2) are objects of DGX that

are isomorphic to the objects (Y ′

1 , f
′

1, g
′

1), (Y
′

2 , f
′

2, g
′

2) of DGX , respectively. Then

there is a canonical isomorphism between (Y1, f1, g1)⊙ (Y2, f2, g2) and (Y ′

1 , f
′

1, g
′

1)⊙

(Y ′

2 , f
′

2, g
′

2).
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Proof. Let φ1:Y1 → Y ′

1 and φ2:Y2 → Y ′

2 be bijections such that f ′

1 ◦ φ1 = f1,

g′1 ◦ φ1 = g1, f
′

2 ◦ φ2 = f2, and g
′

2 ◦ φ2 = g2. Let (U, f1 ◦ p, g2 ◦ q) = (Y1, f1, g1) ⊙

(Y2, f2, g2) and (U ′, f ′

1 ◦ p′, g′2 ◦ q′) = (Y ′

1 , f
′

1, g
′

1) ⊙ (Y ′

2 , f
′

2, g
′

2), where p:U → Y1,

q:U → Y2, p
′:U ′ → Y ′

1 , and q
′:U ′ → Y ′

2 are projections, and

U = {(y1, y2) ∈ Y1 × Y2 | g1y1 = f2y2}, U ′ = {(y′1, y
′

2) ∈ Y ′

1 × Y ′

2 | g′1y
′

1 = f ′

2y
′

2}.

We define φ:U → U ′ by φ(y1, y2) = (φ1(y1), φ2(y2)). If (y1, y2) ∈ U , then

(f ′

1 ◦ p
′)
(

φ(y′1, y
′

2)
)

= f ′

1 ◦ p
′(φ1(y1), φ2(y2)) = f ′

1 ◦ φ1(y1) = f1(y1) = f1 ◦ p(y1, y2)

and

(g′2 ◦ q
′)
(

φ(y′1, y
′

2)
)

= g′2 ◦ q
′(φ1(y1), φ2(y2)) = g′2 ◦ φ2(y2) = g2(y2) = g2 ◦ q(y1, y2).

Thus, we have (f ′

1 ◦ p
′) ◦φ = f1 ◦ p and (g′2 ◦ q

′) ◦φ = g2 ◦ q; hence the isomorphism

follows.

Proposition 2. There is a canonical isomorphism

(

(Y1, f1, g1)⊙ (Y2, f2, g2)
)

⊙ (Y3, f3, g3) ∼= (Y1, f1, g1)⊙
(

(Y2, f2, g2)⊙ (Y3, f3, g3)
)

for (Yi, fi, gi) ∈ DGX , i = 1, 2, 3.

Proof. Let (U, p, g) = (Y1, f1, g1) ⊙ (Y2, f2, g2) and (V, p′, q′) = (Y2, f2, g2) ⊙

(Y3, f3, g3). Thus,

U = {(y1, y2) ∈ Y1 × Y2 | g1y1 = f2y2}, V = {(y2, y3) ∈ Y2 × Y3 | g2y2 = f3y3}

and p:U → Y1, q:U → Y2, p
′:V → Y2, q

′:V → Y3 are the natural projections. We

have

(U, p, q)⊙ (Y3, f3, g3) = {
(

(y1, y2), y3
)

∈ U × Y3 | g2 ◦ q(y1, y2) = f3y3}

= {
(

(y1, y2), y3
)

∈ U × Y3 | g2y2 = f3y3}

= {
(

(y1, y2), y3
)

∈ (Y1 × Y2)× Y3 | g1y1 = f2y2, g2y2 = f3y3}.

Similarly, (Y1, f1, g1)⊙ (V, p′, q′) is equal to

{
(

y1, (y2, y3)
)

∈ Y1 × (Y2 × Y3) | g1y1 = f2y2, g2y2 = f3y3}.
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Thus, the mapping ((y1, y2), y3) 7→ (y1, (y2, y3)) determines a canonical isomor-

phism.

We denote by MX the set of isomorphism classes MX = Obj(DGX)/ ∼= of

objects of DGX . By Proposition 1, the operation ⊙ on DGX induces an operation

on MX which will also be denoted by ⊙.

Proposition 3. If 1X is the identity mapping on X , then the set MX together

with the operation ⊙ is a monoid with (X, 1X , 1X) the identity element.

Proof. Obviously, (X, 1X , 1X) is an identity with respect to the operation ⊙.

The operation ⊙ is associative by Proposition 2; hence the proposition follows.

4. The Sum Operation. Given two directed graphs (Y1, f1, g1) and

(Y2, f2, g2) inDGX , we define Y1∐Y2 to be the disjoint union of Y1 and Y2 with inclu-

sions i1:Y1 → Y1∐Y2 and i2:Y2 → Y1∐Y2. We denote by f1∐f2, g1∐g2:Y1∐Y2 → X

the mappings that satisfy

(f1 ∐ f2) ◦ i1 = f1, (f1 ∐ f2) ◦ i2 = f2, (g1 ∐ g2) ◦ i1 = g1, (g1 ∐ g2) ◦ i2 = g2.

Then, we define the operations ⊕ on DGX by (Y1, f1, g1) ⊕ (Y2, f2, g2) = (Y1 ∐

Y2, f1 ∐ f2, g1 ∐ g2).

Remark 3. In graph-theoretic terms, the sum G1 ⊕ G2 of the graphs G1 =

(X,E1) and G2 = (X,E2) is (X,E), where E is just the disjoint union of the sets

of edges E1 and E2.

Lemma 1. Suppose that (Y1, f1, g1) and (Y2, f2, g2) are objects of DGX that are

isomorphic to the objects (Y ′

1 , f
′

1, g
′

1) and (Y ′

2 , f
′

2, g
′

2) of DGX , respectively. Then

there is a canonical isomorphism (Y1, f1, g1)⊕(Y2, f2, g2) ∼= (Y ′

1 , f
′

1, g
′

1)⊕(Y ′

2 , f
′

2, g
′

2).

Proof. Let φ1:Y1 → Y ′

1 and φ2:Y2 → Y ′

2 be bijections such that f ′

1 ◦ φ1 = f1,

g′1 ◦ φ1 = g1, f
′

2 ◦ φ2 = f2, and g
′

2 ◦ φ2 = g2. Define φ:Y1 ∐ Y2 → Y ′

1 ∐ Y ′

2 to be the

mapping satisfying φ(y1) = φ1(y1) if y1 ∈ Y1 and φ(y2) = φ2(y2) if y2 ∈ Y2. It can

be easily shown that φ induces an isomorphism between (Y1 ∐ Y2, f1 ∐ f2, g1 ∐ g2)

and (Y ′

1 ∐ Y ′

2 , f
′

1 ∐ f ′

2, g
′

1 ∐ g′2).

Lemma 2. Let (Y1, f1, g1), (Y2, f2, g2), and (Y3, f3, g3) be objects of DGX that

are isomorphic to the objects (Y ′

1 , f
′

1, g
′

1), (Y
′

2 , f
′

2, g
′

2), and (Y ′

3 , f
′

3, g
′

3), respectively.
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Then there are canonical isomorphisms (Y1, f1, g1) ⊕ (Y2, f2, g2) ∼= (Y ′

2 , f
′

2, g
′

2) ⊕

(Y ′

1 , f
′

1, g
′

1) and

(

(Y1, f1, g1)⊕ (Y2, f2, g2)
)

⊕ (Y3, f3, g3) ∼= (Y ′

1 , f
′

1, g
′

1)⊕
(

(Y ′

2 , f
′

2, g
′

2)⊕ (Y ′

3 , f
′

3, g
′

3)
)

.

Proof. The proof is straightforward and will be omitted.

Proposition 4. There are canonical isomorphisms

(Y1, f1, g1)⊙
(

(Y2, f2, g2)⊕ (Y3, f3, g3)
)

∼=
(

(Y1, f1, g1)⊙ (Y2, f2, g2)
)

⊕
(

(Y1, f1, g1)⊙ (Y3, f3, g3)
)

,
(

(Y1, f1, g1)⊙ (Y2, f2, g2)
)

⊕ (Y3, f3, g3)

∼=
(

(Y1, f1, g1)⊙ (Y3, f3, g3)
)

⊕
(

(Y2, f2, g2)⊙ (Y3, f3, g3)
)

.

Proof. We shall prove the first isomorphism. The second one can be proved

similarly. Let (U, α, β) and (V, γ, δ) be the left and the right hand sides of the

isomorphism, respectively. Then we have (U, α, β) = (Y1, f1, g1) ⊙ (Y2 ∐ Y3, f2 ∐

f3, g2 ∐ g3), where

U = {(y1, y) ∈ Y1 × (Y2 ∐ Y3) | g1y1 = (f2 ∐ f3)y}.

But we have

(f2 ∐ f3)y =

{

f2y2, if y = i2(y2), y2 ∈ Y2

f3y3, if y = i3(y3), y3 ∈ Y3,

where i2:Y2 → Y2 ∐ Y3 and i3:Y3 → Y2 ∐ Y3 are the natural embeddings. Thus, it

follows that U is equal to the set

{(y1, i2(y2)) ∈ Y1×i2(Y2) | g1y1 = f2y2}∐{(y1, i3(y3)) ∈ Y1×i3(Y3) | g1y1 = f3y3}.

On the other hand, V = V1 ∐ V2, where

V1 = {(y1, y2) ∈ Y1 × Y2 | g1y1 = f2y2}, V2 = {(y1, y3) ∈ Y1 × Y3 | g1y1 = f3y3}.
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We denote by j1:V1 → V1 ∐ V2 and j2:V2 → V1 ∐ V2 the natural embeddings and

define a mapping φ:V → U by φ
(

j1(y1, y2)
)

= (y1, i2(y2)) and φ
(

j2(y1, y3)
)

=

(y1, i3(y3)) for (y1, y2) ∈ V1 and (y1, y2) ∈ V2. Then φ is a bijection and it remains

to show that γ = α ◦ φ and δ = β ◦ φ. Indeed, we have

α ◦ φ
(

j1(y1, y2)
)

= α(y1, i2(y2)) = f1 ◦ pr1(y1, i2(y2)) = f1(y1),

where pr1 is the projection onto Y1. On the other hand, we have

γ
(

j1(y1, y2)
)

= (f1 ◦ p1 ∐ g3 ◦ p3)
(

j1(y1, y2)
)

= f1 ◦ p1(y1, y2) = f1(y1),

where p1 and p3 are natural projections onto Y1 and Y3, respectively. It follows

that γ = α ◦ φ. Similarly, we can show that δ = β ◦ φ.

By Lemma 1, the operation ⊕ is well-defined on MX and by Lemma 2, it is

commutative and associative. The operation ⊕ is also distributive over ⊙ on MX

by Proposition 4.

5. The Ring Structure. From the results of Sections 3 and 4, it follows

that the operations ⊙ and ⊕ on the set MX of isomorphism classes of the objects

of DGX satisfy most of the axioms necessary to make (MX ,⊙,⊕) a ring, except

the existence of an identity and an inverse for the operation ⊕. In order to remedy

this problem, we shall extend the operation ⊕ to the addition operation in the

monoid algebra Z[MX ] of MX over Z. More precisely, we define the ring RX by

RX = Z[MX ]/I, where I is the ideal of Z[MX ] generated by the elements of the

form x⊕ y − x− y, with x, y ∈MX .

Theorem 1. If X is a finite set with m elements, then RX is isomorphic to the

ring Mm(Z) of m×m matrices of integers.

Proof. We shall first construct a mapping ψ:Z[MX ] → Mm(Z) from the

monoid algebra Z[MX ] to the set Mm(Z) of m × m matrices of integers. Sup-

pose X = {x1, . . . , xm}. If ({y}, f, g) ∈MX with f(y) = xi and g(y) = xj , then we

set ψ({y}, f, g) = ei,j , where {ei,j | 1 ≤ i, j ≤ m} is the standard basis for Mm(Z).

Consider an element

V =
k

∑

j=1

nj(Yj , fj , gj) ∈ Z[MX ].
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For 1 ≤ j ≤ k, we assume that Yj = {yj,i | 1 ≤ i ≤ lj} and denote by

fj,i, gj,i, the restrictions of fj, gj to the set {yj,i}. Then we have (Yj , fj , gj) =

⊕
lj
i=1({yj,i, fj,i, gj,i}). We define ψ(V ) by

ψ(V ) =

k
∑

j=1

lj
∑

i=1

njψ({yj,i, fj,i, gj,i}).

Now, using the fact that two elements ({x}, f, g) and ({y}, f ′, g′) in Z[MX ] are

isomorphic if and only if f(x) = f ′(y) and g(x) = g′(y), it follows that ψ induces

a homomorphism of abelian groups from RX to Mm(Z). In order to consider the

product operations, suppose ψ({y1}, f1, g1) = ei,j, ψ({y2}, f2, g2) = ek,l, so that

f1(y1) = xi, g1(y1) = xj , f2(y2) = xk, and g2(y2) = xl. Let ({y1}, f1, g1) ⊙

({y2}, f2, g2) = (U, λ, µ) with

U = {(y1, y2) ∈ {y1} × {y2} | g1(y1) = f2(y2)} =

{

∅, if xj 6= xk

{(y1, y2)}, if xj = xk.

If xj = xk, then

λ(y1, y2) = f1 ◦pr1(y1, y2) = f1(y1) = xi, µ(y1, y2) = g2 ◦pr2(y1, y2) = g2(y2) = xl.

Hence, we have

ψ(U, λ, µ) =

{

0, if j 6= k

ei,l, if j = k.

Thus, ψ transfers the operation ⊙ to the multiplication operation of matrices. It

follows that ψ induces a ring homomorphism from RX to Mm(Z).

6. Magic Squares. In this section we slightly generalize the usual definition

of magic squares and show that these generalized magic squares correspond to

regular digraphs under the isomorphism described in Theorem 1.
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Definition 3. An element A = (ai,j) of Mm(Z) is a generalized magic square if

m
∑

i=1

ai,j =

m
∑

l=1

ak,l

for all j, k ∈ {1, . . . ,m}.

The set of generalized magic squares in Mm(Z) is a subring of Mm(Z), which

we denote by M0
m(Z).

Definition 4. An object (Y, f, g) of DGX is regular if f and g are surjective and

|f−1(x)| = |g−1(x)| = |Y |/|X |

for all x ∈ X , where | · | denotes the cardinality of a set.

Remark 4. The directed graph represented by a regular object (Y, f, g) is a

(|Y |/|X |) – regular digraph in the usual sense (see e.g. [1]), that is, a directed

graph such that the in-degree and the out-degree of each vertex is equal to |Y |/|X |.

Let DG0
X be the subcategory of DGX consisting of the objects of DGX that are

regular. If (Y1, f1, g1) and (Y2, f2, g2) are objects of DG0
X , then both (Y1, f1, g1)⊙

(Y2, f2, g2) and (Y1, f1, g1)⊕ (Y2, f2, g2) are objects of DG0
X . Thus, if we set

M0
X = DG0

X/
∼=, R0

X = Z[M0
X ]/I0,

where I0 is the ideal of Z[M0
X ] generated by elements of the form x ⊕ y − x − y,

with x, y ∈M0
X , then R0

X becomes a subring of RX .

Theorem 2. The isomorphism described in Theorem 1 induces an isomorphism

between R0
X and M0

m(Z).

Proof. Let ψ̃:RX → Mm(Z) be the isomorphism constructed in the proof

of Theorem 1 and let V =
∑k

j=1 nj(Yj , fj, gj) ∈ Z[MX ] be a representative of

Ṽ ∈ RX . For 1 ≤ j ≤ k, we assume that Yj = {yj,i | 1 ≤ i ≤ lj} and denote by

fj,i, gj,i, the restrictions of fj, gj to the set {yj,i}. If ψ̃(Ṽ ) = (νa,b) ∈Mm(Z), with

1 < a, b < m, then we have

νa,b =

K
∑

j=1

nj|f
−1
j (xa) ∩ g

−1
j (xb)|;
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hence, we have

m
∑

a=1

νa,b =
k
∑

j=1

nj

∣

∣

∣

∣

( m
⋃

a=1

f−1
j (xa)

)

∩ g−1
j (xb)

∣

∣

∣

∣

=
k
∑

j=1

nj|g
−1
j (xb)| =

k
∑

j=1

nj |Y |

|X |
.

Similarly, we have

m
∑

b=1

νa,b =

k
∑

j=1

nj

∣

∣

∣

∣

f−1
j (xa) ∩

( m
⋃

b=1

g−1
j (xb)

)∣

∣

∣

∣

=

k
∑

j=1

nj |f
−1
j (xa)| =

k
∑

j=1

nj |Y |

|X |
.

Thus, it follows that (νa,b) ∈M0
m(Z).

7. Grothendieck Topologies. In the previous sections we regarded directed

graphs as the objects in the category of pairs of mappings of finite sets. In this sec-

tion, we consider the category of single mappings of finite sets, which is essentially

a Grothendieck topology on the category of finite sets.

Definition 5. We define S to be the category whose objects are mappings of

finite sets ψ:A→ B and whose morphisms from ψ:A→ B to ψ′:A′ → B′ are pairs

of mappings α:A→ A′ and β:B → B′, such that β ◦ ψ = ψ′ ◦ α.

Definition 6. Given a finite set X , we define SX to be the subcategory of

S whose objects are the mappings φ:Z → X in S and whose morphisms from

φ:Z → X to φ′:Z ′ → X are maps ν:Z → Z ′ such that φ = φ′ ◦ ν.

Remark 5. The category S can be regarded as a Grothendieck topology on the

category of finite sets by using the objects of SX as a covering of X , and therefore

the category of finite sets equipped with this topology is a site (see [2, 3]).

Given objects (Y, f, g) and (Z, φ) of DGX and SX , respectively, let W be the

pullback of g:Y → X and φ:Z → X , that is, W = {(y, z) ∈ Y × Z | g(y) =

φ(z)}. Then we define the action of (Y, f, g) on (Z, φ) by (Y, f, g) · (Z, φ) = (W, f ◦

πY ), where πY :W → Y is the natural projection. If (MX ,⊙) denotes the monoid

considered in Proposition 3, then it follows from the next theorem that MX acts

on the set Obj(SX) of objects of SX .
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Theorem 3. Given a pair of objects (Y1, f1, g1) and (Y2, f2, g2) of DGX and an

object (Z, φ) of SX , we have

(Y1, f1, g1) ·
(

(Y2, f2, g2) · (Z, φ)
)

=
(

(Y1, f1, g1)⊙ (Y2, f2, g2)
)

· (Z, φ).

Proof. We have (Y2, f2, g2) · (Z, φ) = (W, f2 ◦ πY2
), where πY2

:W → Y2 is the

natural projection and W = {(y2, z) ∈ Y2 × Z | g2(y2) = φ(z)}. Thus, we obtain

(Y1, f1, g1) ·
(

(Y2, f2, g2) · (Z, φ)
)

= (W ′, f1 ◦ πY1
),

with

W ′ = {(y1, y2, z) ∈ Y1 × Y2 × Z | g1(y1) = (f2 ◦ πY2
)(y2, z) = f2(y2)},

πY1
:W ′ → Y1, πY2

:W ′ → Y2, and (f1 ◦πY1
)(y1, y2, z) = f1(y1). On the other hand,

we have

(Y1, f1, g1)⊙ (Y2, f2, g2) = (U, f1 ◦ π
′

Y1
, g2 ◦ π

′

Y2
),

where π′

Y1
:U → Y1 and π′

Y2
:U → Y2 are natural projections and

U = {(y1, y2) ∈ Y1 × Y2 | g1(y1) = f2(y2)};

hence, it follows that

(

(Y1, f1, g1)⊙ (Y2, f2, g2)
)

· (Z, φ) = (U ′, (f1 ◦ π
′

Y1
) ◦ π′

U ),

with

U ′ = {(y1, y2, z) ∈ Y1 × Y2 × Z | g2 ◦ π
′

Y2
(y1, y2) = g2(y2) = φ(z)},

π′

U :U
′ → U and ((f1 ◦ π′

Y1
) ◦ π′

U )(y1, y2, z) = (f1 ◦ π′

Y1
)(y1, y2) = f1(y1). Therefore,

we have W ′ = U and f1 ◦ πY1
= (f1 ◦ π

′

Y1
) ◦ π′

U ; hence, the theorem follows.
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