DIRECTED GRAPHS, MAGIC SQUARES, AND GROTHENDIECK TOPOLOGIES

Min Ho Lee

1. Introduction. It is well-known that a graph can be represented by a square matrix by considering its adjacency matrix. One of the goals of this paper is to give an algebraic description of such a correspondence for directed graphs.

A directed graph can be viewed as an order pair (α, β) of mappings from the set of directed edges to the set of vertices in such a way that a directed edge e is the one with the initial vertex $\alpha(e)$ and the terminal vertex $\beta(e)$ [4]. Thus, with an appropriate morphism, we can consider the category of directed graphs whose objects are ordered pairs of mappings of finite sets. More precisely, we consider the category of directed graphs with a fixed set X of vertices whose objects are viewed as the set of ordered pairs (α, β) of mappings $\alpha, \beta: Y \rightarrow X$ from various finite sets Y to the given set X. We extend the set of isomorphism classes of the objects in this category to a set which has a ring structure and prove that the resulting ring is isomorphic to the ring of $m \times m$ integral matrices, where m is the number of elements in X (Theorem 1). We also consider a subring of this ring corresponding to regular digraphs and show that it is isomorphic to the ring of generalized magic squares (Theorem 2).

Given a finite set X, the category of single mappings $\phi: Z \rightarrow X$ can be regarded as a Grothendieck topology on the category of finite sets [2,3]. In Section 7, we discuss the action of the ring associated to directed graphs above on the objects of this category.
2. Directed Graphs. A directed graph $G=(V, E)$ consists of a finite set V of vertices and a finite set E of edges, where each edge is an ordered pair of vertices. Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{n}\right\}$. If $e_{l}=\left(v_{i}, v_{j}\right)$, then v_{i} is called the initial vertex and v_{j} is called the terminal vertex of e_{l}.

To each directed graph $G=(V, E)$, we can associate an ordered pair (α, β) of mappings $\alpha, \beta: E \rightarrow V$ such that, for each edge $e \in E, \alpha(e)$ is the initial vertex and $\beta(e)$ is the terminal vertex of $e[4]$. Conversely, to each ordered pair (f, g) of mappings $f, g: Y \rightarrow X$ of finite sets, we can associate a directed graph such that X is the set of vertices, Y is the set of edges, and each $y \in Y$ has the initial vertex
$f(y)$ and the terminal vertex $g(y)$. This correspondence leads us to the following definition of the category of directed graphs.

Definition 1. The category $\mathcal{D} G$ of directed graphs is defined by the following:
(i) The objects of $\mathcal{D G}$ are ordered pairs (f, g) of mappings $f, g: Y \rightarrow X$ of finite sets.
(ii) A morphism from the pair $\left(f_{1}, g_{1}\right)$ of mappings $f_{1}, g_{1}: Y_{1} \rightarrow X_{1}$ to the pair (f_{2}, g_{2}) of mappings $f_{2}, g_{2}: Y_{2} \rightarrow X_{2}$ is a pair (μ, ν) of mappings $\mu: Y_{1} \rightarrow Y_{2}$ and $\nu: X_{1} \rightarrow X_{2}$ such that $f_{2} \circ \mu=\nu \circ f_{1}$ and $g_{2} \circ \mu=\nu \circ g_{1}$.

Remark 1. It can be easily shown that the pair (μ, ν) in (ii) of the above definition is indeed a morphism in a category with (id, id) the identity morphism.

Definition 2. Let X be a fixed finite set. The category $\mathcal{D} \mathcal{G}_{X}$ of directed graphs with vertices X is the subcategory of $\mathcal{D G}$ defined as follows:
(i) The objects of $\mathcal{D G}_{X}$ are triples (Y, f, g), where Y is a finite set and $f, g: Y \rightarrow X$ are mappings of Y into X.
(ii) A morphism from the triple $\left(Y_{1}, f_{1}, g_{1}\right)$ to the triple $\left(Y_{2}, f_{2}, g_{2}\right)$ is a mapping $\varphi: Y_{1} \rightarrow Y_{2}$ such that $f_{1}=f_{2} \circ \varphi$ and $g_{1}=g_{2} \circ \varphi$.
3. The Multiplication Operation. We define an operation \odot on the set of objects of the category $\mathcal{D G}_{X}$ as follows. Given two objects (Y_{1}, f_{1}, g_{1}) and $\left(Y_{2}, f_{2}, g_{2}\right)$ of $\mathcal{D} \mathcal{G}_{X}$, let U be the pullback of $g_{1}: Y_{1} \rightarrow X$ and $f_{2}: Y_{2} \rightarrow X$ and let $p: U \rightarrow Y_{1}$ and $q: U \rightarrow Y_{2}$ be the canonical projection mappings. Thus, we have $U=\left\{\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2} \mid g_{1}\left(y_{1}\right)=f_{2}\left(y_{2}\right)\right\}$ and $g_{1} \circ p=f_{2} \circ q$. We set $\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)=\left(U, f_{1} \circ p, g_{2} \circ q\right)$. Then the triple $\left(U, f_{1} \circ p, g_{2} \circ q\right)$ is an object of $\mathcal{D} \mathcal{G}_{X}$ and therefore \odot is an operation on $\mathcal{D} \mathcal{G}_{X}$.

Remark 2. In graph-theoretic terms, the product of two graphs $G_{1}=\left(X, E_{1}\right)$ and $G_{2}=\left(X, E_{2}\right)$ with vertices X and sets of edges E_{1} and E_{2}, respectively, is the graph $G=(X, E)$ with vertices X and edges $E=E_{1} \circ E_{2}$, where "०" denotes the composition of relations.

Proposition 1. Suppose that $\left(Y_{1}, f_{1}, g_{1}\right),\left(Y_{2}, f_{2}, g_{2}\right)$ are objects of $\mathcal{D} \mathcal{G}_{X}$ that are isomorphic to the objects $\left(Y_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}\right),\left(Y_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}\right)$ of $\mathcal{D} \mathcal{G}_{X}$, respectively. Then there is a canonical isomorphism between $\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)$ and $\left(Y_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}\right) \odot$ $\left(Y_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}\right)$.

Proof. Let $\phi_{1}: Y_{1} \rightarrow Y_{1}^{\prime}$ and $\phi_{2}: Y_{2} \rightarrow Y_{2}^{\prime}$ be bijections such that $f_{1}^{\prime} \circ \phi_{1}=f_{1}$, $g_{1}^{\prime} \circ \phi_{1}=g_{1}, f_{2}^{\prime} \circ \phi_{2}=f_{2}$, and $g_{2}^{\prime} \circ \phi_{2}=g_{2}$. Let $\left(U, f_{1} \circ p, g_{2} \circ q\right)=\left(Y_{1}, f_{1}, g_{1}\right) \odot$ $\left(Y_{2}, f_{2}, g_{2}\right)$ and $\left(U^{\prime}, f_{1}^{\prime} \circ p^{\prime}, g_{2}^{\prime} \circ q^{\prime}\right)=\left(Y_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}\right) \odot\left(Y_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}\right)$, where $p: U \rightarrow Y_{1}$, $q: U \rightarrow Y_{2}, p^{\prime}: U^{\prime} \rightarrow Y_{1}^{\prime}$, and $q^{\prime}: U^{\prime} \rightarrow Y_{2}^{\prime}$ are projections, and

$$
U=\left\{\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2} \mid g_{1} y_{1}=f_{2} y_{2}\right\}, \quad U^{\prime}=\left\{\left(y_{1}^{\prime}, y_{2}^{\prime}\right) \in Y_{1}^{\prime} \times Y_{2}^{\prime} \mid g_{1}^{\prime} y_{1}^{\prime}=f_{2}^{\prime} y_{2}^{\prime}\right\}
$$

We define $\phi: U \rightarrow U^{\prime}$ by $\phi\left(y_{1}, y_{2}\right)=\left(\phi_{1}\left(y_{1}\right), \phi_{2}\left(y_{2}\right)\right)$. If $\left(y_{1}, y_{2}\right) \in U$, then

$$
\left(f_{1}^{\prime} \circ p^{\prime}\right)\left(\phi\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\right)=f_{1}^{\prime} \circ p^{\prime}\left(\phi_{1}\left(y_{1}\right), \phi_{2}\left(y_{2}\right)\right)=f_{1}^{\prime} \circ \phi_{1}\left(y_{1}\right)=f_{1}\left(y_{1}\right)=f_{1} \circ p\left(y_{1}, y_{2}\right)
$$

and

$$
\left(g_{2}^{\prime} \circ q^{\prime}\right)\left(\phi\left(y_{1}^{\prime}, y_{2}^{\prime}\right)\right)=g_{2}^{\prime} \circ q^{\prime}\left(\phi_{1}\left(y_{1}\right), \phi_{2}\left(y_{2}\right)\right)=g_{2}^{\prime} \circ \phi_{2}\left(y_{2}\right)=g_{2}\left(y_{2}\right)=g_{2} \circ q\left(y_{1}, y_{2}\right)
$$

Thus, we have $\left(f_{1}^{\prime} \circ p^{\prime}\right) \circ \phi=f_{1} \circ p$ and $\left(g_{2}^{\prime} \circ q^{\prime}\right) \circ \phi=g_{2} \circ q$; hence the isomorphism follows.

Proposition 2. There is a canonical isomorphism

$$
\left(\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)\right) \odot\left(Y_{3}, f_{3}, g_{3}\right) \cong\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(\left(Y_{2}, f_{2}, g_{2}\right) \odot\left(Y_{3}, f_{3}, g_{3}\right)\right)
$$

for $\left(Y_{i}, f_{i}, g_{i}\right) \in \mathcal{D} \mathcal{G}_{X}, i=1,2,3$.
Proof. Let $(U, p, g)=\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)$ and $\left(V, p^{\prime}, q^{\prime}\right)=\left(Y_{2}, f_{2}, g_{2}\right) \odot$ $\left(Y_{3}, f_{3}, g_{3}\right)$. Thus,

$$
U=\left\{\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2} \mid g_{1} y_{1}=f_{2} y_{2}\right\}, \quad V=\left\{\left(y_{2}, y_{3}\right) \in Y_{2} \times Y_{3} \mid g_{2} y_{2}=f_{3} y_{3}\right\}
$$

and $p: U \rightarrow Y_{1}, q: U \rightarrow Y_{2}, p^{\prime}: V \rightarrow Y_{2}, q^{\prime}: V \rightarrow Y_{3}$ are the natural projections. We have

$$
\begin{aligned}
(U, p, q) & \odot\left(Y_{3}, f_{3}, g_{3}\right)=\left\{\left(\left(y_{1}, y_{2}\right), y_{3}\right) \in U \times Y_{3} \mid g_{2} \circ q\left(y_{1}, y_{2}\right)=f_{3} y_{3}\right\} \\
& =\left\{\left(\left(y_{1}, y_{2}\right), y_{3}\right) \in U \times Y_{3} \mid g_{2} y_{2}=f_{3} y_{3}\right\} \\
& =\left\{\left(\left(y_{1}, y_{2}\right), y_{3}\right) \in\left(Y_{1} \times Y_{2}\right) \times Y_{3} \mid g_{1} y_{1}=f_{2} y_{2}, g_{2} y_{2}=f_{3} y_{3}\right\}
\end{aligned}
$$

Similarly, $\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(V, p^{\prime}, q^{\prime}\right)$ is equal to

$$
\left\{\left(y_{1},\left(y_{2}, y_{3}\right)\right) \in Y_{1} \times\left(Y_{2} \times Y_{3}\right) \mid g_{1} y_{1}=f_{2} y_{2}, g_{2} y_{2}=f_{3} y_{3}\right\}
$$

Thus, the mapping $\left(\left(y_{1}, y_{2}\right), y_{3}\right) \mapsto\left(y_{1},\left(y_{2}, y_{3}\right)\right)$ determines a canonical isomorphism.

We denote by M_{X} the set of isomorphism classes $M_{X}=\operatorname{Obj}\left(\mathcal{D} \mathcal{G}_{X}\right) / \cong$ of objects of $\mathcal{D} \mathcal{G}_{X}$. By Proposition 1, the operation \odot on $\mathcal{D} \mathcal{G}_{X}$ induces an operation on M_{X} which will also be denoted by \odot.

Proposition 3. If 1_{X} is the identity mapping on X, then the set M_{X} together with the operation \odot is a monoid with $\left(X, 1_{X}, 1_{X}\right)$ the identity element.

Proof. Obviously, $\left(X, 1_{X}, 1_{X}\right)$ is an identity with respect to the operation \odot. The operation \odot is associative by Proposition 2 ; hence the proposition follows.
4. The Sum Operation. Given two directed graphs $\left(Y_{1}, f_{1}, g_{1}\right)$ and $\left(Y_{2}, f_{2}, g_{2}\right)$ in $\mathcal{D} \mathcal{G}_{X}$, we define $Y_{1} \amalg Y_{2}$ to be the disjoint union of Y_{1} and Y_{2} with inclusions $i_{1}: Y_{1} \rightarrow Y_{1} \amalg Y_{2}$ and $i_{2}: Y_{2} \rightarrow Y_{1} \amalg Y_{2}$. We denote by $f_{1} \amalg f_{2}, g_{1} \amalg g_{2}: Y_{1} \amalg Y_{2} \rightarrow X$ the mappings that satisfy

$$
\left(f_{1} \amalg f_{2}\right) \circ i_{1}=f_{1}, \quad\left(f_{1} \amalg f_{2}\right) \circ i_{2}=f_{2}, \quad\left(g_{1} \amalg g_{2}\right) \circ i_{1}=g_{1}, \quad\left(g_{1} \amalg g_{2}\right) \circ i_{2}=g_{2} .
$$

Then, we define the operations \oplus on $\mathcal{D} \mathcal{G}_{X}$ by $\left(Y_{1}, f_{1}, g_{1}\right) \oplus\left(Y_{2}, f_{2}, g_{2}\right)=\left(Y_{1} \amalg\right.$ $\left.Y_{2}, f_{1} \amalg f_{2}, g_{1} \amalg g_{2}\right)$.

Remark 3. In graph-theoretic terms, the sum $G_{1} \oplus G_{2}$ of the graphs $G_{1}=$ $\left(X, E_{1}\right)$ and $G_{2}=\left(X, E_{2}\right)$ is (X, E), where E is just the disjoint union of the sets of edges E_{1} and E_{2}.

Lemma 1. Suppose that $\left(Y_{1}, f_{1}, g_{1}\right)$ and $\left(Y_{2}, f_{2}, g_{2}\right)$ are objects of $\mathcal{D} \mathcal{G}_{X}$ that are isomorphic to the objects $\left(Y_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}\right)$ and $\left(Y_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}\right)$ of $\mathcal{D} \mathcal{G}_{X}$, respectively. Then there is a canonical isomorphism $\left(Y_{1}, f_{1}, g_{1}\right) \oplus\left(Y_{2}, f_{2}, g_{2}\right) \cong\left(Y_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}\right) \oplus\left(Y_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}\right)$.

Proof. Let $\phi_{1}: Y_{1} \rightarrow Y_{1}^{\prime}$ and $\phi_{2}: Y_{2} \rightarrow Y_{2}^{\prime}$ be bijections such that $f_{1}^{\prime} \circ \phi_{1}=f_{1}$, $g_{1}^{\prime} \circ \phi_{1}=g_{1}, f_{2}^{\prime} \circ \phi_{2}=f_{2}$, and $g_{2}^{\prime} \circ \phi_{2}=g_{2}$. Define $\phi: Y_{1} \amalg Y_{2} \rightarrow Y_{1}^{\prime} \amalg Y_{2}^{\prime}$ to be the mapping satisfying $\phi\left(y_{1}\right)=\phi_{1}\left(y_{1}\right)$ if $y_{1} \in Y_{1}$ and $\phi\left(y_{2}\right)=\phi_{2}\left(y_{2}\right)$ if $y_{2} \in Y_{2}$. It can be easily shown that ϕ induces an isomorphism between $\left(Y_{1} \amalg Y_{2}, f_{1} \amalg f_{2}, g_{1} \amalg g_{2}\right)$ and $\left(Y_{1}^{\prime} \amalg Y_{2}^{\prime}, f_{1}^{\prime} \amalg f_{2}^{\prime}, g_{1}^{\prime} \amalg g_{2}^{\prime}\right)$.

Lemma 2. Let $\left(Y_{1}, f_{1}, g_{1}\right),\left(Y_{2}, f_{2}, g_{2}\right)$, and $\left(Y_{3}, f_{3}, g_{3}\right)$ be objects of $\mathcal{D} \mathcal{G}_{X}$ that are isomorphic to the objects $\left(Y_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}\right),\left(Y_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}\right)$, and $\left(Y_{3}^{\prime}, f_{3}^{\prime}, g_{3}^{\prime}\right)$, respectively.

Then there are canonical isomorphisms $\left(Y_{1}, f_{1}, g_{1}\right) \oplus\left(Y_{2}, f_{2}, g_{2}\right) \cong\left(Y_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}\right) \oplus$ $\left(Y_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}\right)$ and
$\left(\left(Y_{1}, f_{1}, g_{1}\right) \oplus\left(Y_{2}, f_{2}, g_{2}\right)\right) \oplus\left(Y_{3}, f_{3}, g_{3}\right) \cong\left(Y_{1}^{\prime}, f_{1}^{\prime}, g_{1}^{\prime}\right) \oplus\left(\left(Y_{2}^{\prime}, f_{2}^{\prime}, g_{2}^{\prime}\right) \oplus\left(Y_{3}^{\prime}, f_{3}^{\prime}, g_{3}^{\prime}\right)\right)$.

Proof. The proof is straightforward and will be omitted.
Proposition 4. There are canonical isomorphisms

$$
\begin{aligned}
&\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(\left(Y_{2}, f_{2}, g_{2}\right) \oplus\left(Y_{3}, f_{3}, g_{3}\right)\right) \\
& \cong\left(\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)\right) \oplus\left(\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{3}, f_{3}, g_{3}\right)\right) \\
&\left(\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)\right) \oplus\left(Y_{3}, f_{3}, g_{3}\right) \\
& \cong\left(\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{3}, f_{3}, g_{3}\right)\right) \oplus\left(\left(Y_{2}, f_{2}, g_{2}\right) \odot\left(Y_{3}, f_{3}, g_{3}\right)\right)
\end{aligned}
$$

Proof. We shall prove the first isomorphism. The second one can be proved similarly. Let (U, α, β) and (V, γ, δ) be the left and the right hand sides of the isomorphism, respectively. Then we have $(U, \alpha, \beta)=\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2} \amalg Y_{3}, f_{2} \amalg\right.$ $f_{3}, g_{2} \amalg g_{3}$), where

$$
U=\left\{\left(y_{1}, y\right) \in Y_{1} \times\left(Y_{2} \amalg Y_{3}\right) \mid g_{1} y_{1}=\left(f_{2} \amalg f_{3}\right) y\right\} .
$$

But we have

$$
\left(f_{2} \amalg f_{3}\right) y= \begin{cases}f_{2} y_{2}, & \text { if } y=i_{2}\left(y_{2}\right), y_{2} \in Y_{2} \\ f_{3} y_{3}, & \text { if } y=i_{3}\left(y_{3}\right), y_{3} \in Y_{3},\end{cases}
$$

where $i_{2}: Y_{2} \rightarrow Y_{2} \amalg Y_{3}$ and $i_{3}: Y_{3} \rightarrow Y_{2} \amalg Y_{3}$ are the natural embeddings. Thus, it follows that U is equal to the set
$\left\{\left(y_{1}, i_{2}\left(y_{2}\right)\right) \in Y_{1} \times i_{2}\left(Y_{2}\right) \mid g_{1} y_{1}=f_{2} y_{2}\right\} \amalg\left\{\left(y_{1}, i_{3}\left(y_{3}\right)\right) \in Y_{1} \times i_{3}\left(Y_{3}\right) \mid g_{1} y_{1}=f_{3} y_{3}\right\}$.

On the other hand, $V=V_{1} \amalg V_{2}$, where
$V_{1}=\left\{\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2} \mid g_{1} y_{1}=f_{2} y_{2}\right\}, \quad V_{2}=\left\{\left(y_{1}, y_{3}\right) \in Y_{1} \times Y_{3} \mid g_{1} y_{1}=f_{3} y_{3}\right\}$.

We denote by $j_{1}: V_{1} \rightarrow V_{1} \amalg V_{2}$ and $j_{2}: V_{2} \rightarrow V_{1} \amalg V_{2}$ the natural embeddings and define a mapping $\phi: V \rightarrow U$ by $\phi\left(j_{1}\left(y_{1}, y_{2}\right)\right)=\left(y_{1}, i_{2}\left(y_{2}\right)\right)$ and $\phi\left(j_{2}\left(y_{1}, y_{3}\right)\right)=$ $\left(y_{1}, i_{3}\left(y_{3}\right)\right)$ for $\left(y_{1}, y_{2}\right) \in V_{1}$ and $\left(y_{1}, y_{2}\right) \in V_{2}$. Then ϕ is a bijection and it remains to show that $\gamma=\alpha \circ \phi$ and $\delta=\beta \circ \phi$. Indeed, we have

$$
\alpha \circ \phi\left(j_{1}\left(y_{1}, y_{2}\right)\right)=\alpha\left(y_{1}, i_{2}\left(y_{2}\right)\right)=f_{1} \circ \operatorname{pr}_{1}\left(y_{1}, i_{2}\left(y_{2}\right)\right)=f_{1}\left(y_{1}\right)
$$

where pr_{1} is the projection onto Y_{1}. On the other hand, we have

$$
\gamma\left(j_{1}\left(y_{1}, y_{2}\right)\right)=\left(f_{1} \circ p_{1} \amalg g_{3} \circ p_{3}\right)\left(j_{1}\left(y_{1}, y_{2}\right)\right)=f_{1} \circ p_{1}\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right),
$$

where p_{1} and p_{3} are natural projections onto Y_{1} and Y_{3}, respectively. It follows that $\gamma=\alpha \circ \phi$. Similarly, we can show that $\delta=\beta \circ \phi$.

By Lemma 1, the operation \oplus is well-defined on M_{X} and by Lemma 2, it is commutative and associative. The operation \oplus is also distributive over \odot on M_{X} by Proposition 4.
5. The Ring Structure. From the results of Sections 3 and 4, it follows that the operations \odot and \oplus on the set M_{X} of isomorphism classes of the objects of $\mathcal{D} \mathcal{G}_{X}$ satisfy most of the axioms necessary to make $\left(M_{X}, \odot, \oplus\right)$ a ring, except the existence of an identity and an inverse for the operation \oplus. In order to remedy this problem, we shall extend the operation \oplus to the addition operation in the monoid algebra $\mathbb{Z}\left[M_{X}\right]$ of M_{X} over \mathbb{Z}. More precisely, we define the ring \mathcal{R}_{X} by $\mathcal{R}_{X}=\mathbb{Z}\left[M_{X}\right] / \mathcal{I}$, where \mathcal{I} is the ideal of $\mathbb{Z}\left[M_{X}\right]$ generated by the elements of the form $x \oplus y-x-y$, with $x, y \in M_{X}$.

Theorem 1. If X is a finite set with m elements, then \mathcal{R}_{X} is isomorphic to the ring $M_{m}(\mathbb{Z})$ of $m \times m$ matrices of integers.

Proof. We shall first construct a mapping $\psi: \mathbb{Z}\left[M_{X}\right] \rightarrow M_{m}(\mathbb{Z})$ from the monoid algebra $\mathbb{Z}\left[M_{X}\right]$ to the set $M_{m}(\mathbb{Z})$ of $m \times m$ matrices of integers. Suppose $X=\left\{x_{1}, \ldots, x_{m}\right\}$. If $(\{y\}, f, g) \in M_{X}$ with $f(y)=x_{i}$ and $g(y)=x_{j}$, then we set $\psi(\{y\}, f, g)=e_{i, j}$, where $\left\{e_{i, j} \mid 1 \leq i, j \leq m\right\}$ is the standard basis for $M_{m}(\mathbb{Z})$. Consider an element

$$
V=\sum_{j=1}^{k} n_{j}\left(Y_{j}, f_{j}, g_{j}\right) \in \mathbb{Z}\left[M_{X}\right]
$$

For $1 \leq j \leq k$, we assume that $Y_{j}=\left\{y_{j, i} \mid 1 \leq i \leq l_{j}\right\}$ and denote by $f_{j, i}, g_{j, i}$, the restrictions of f_{j}, g_{j} to the set $\left\{y_{j, i}\right\}$. Then we have $\left(Y_{j}, f_{j}, g_{j}\right)=$ $\oplus_{i=1}^{l_{j}}\left(\left\{y_{j, i}, f_{j, i}, g_{j, i}\right\}\right)$. We define $\psi(V)$ by

$$
\psi(V)=\sum_{j=1}^{k} \sum_{i=1}^{l_{j}} n_{j} \psi\left(\left\{y_{j, i}, f_{j, i}, g_{j, i}\right\}\right)
$$

Now, using the fact that two elements $(\{x\}, f, g)$ and $\left(\{y\}, f^{\prime}, g^{\prime}\right)$ in $\mathbb{Z}\left[M_{X}\right]$ are isomorphic if and only if $f(x)=f^{\prime}(y)$ and $g(x)=g^{\prime}(y)$, it follows that ψ induces a homomorphism of abelian groups from \mathcal{R}_{X} to $M_{m}(\mathbb{Z})$. In order to consider the product operations, suppose $\psi\left(\left\{y_{1}\right\}, f_{1}, g_{1}\right)=e_{i, j}, \psi\left(\left\{y_{2}\right\}, f_{2}, g_{2}\right)=e_{k, l}$, so that $f_{1}\left(y_{1}\right)=x_{i}, g_{1}\left(y_{1}\right)=x_{j}, f_{2}\left(y_{2}\right)=x_{k}$, and $g_{2}\left(y_{2}\right)=x_{l}$. Let $\left(\left\{y_{1}\right\}, f_{1}, g_{1}\right) \odot$ $\left(\left\{y_{2}\right\}, f_{2}, g_{2}\right)=(U, \lambda, \mu)$ with

$$
U=\left\{\left(y_{1}, y_{2}\right) \in\left\{y_{1}\right\} \times\left\{y_{2}\right\} \mid g_{1}\left(y_{1}\right)=f_{2}\left(y_{2}\right)\right\}= \begin{cases}\emptyset, & \text { if } x_{j} \neq x_{k} \\ \left\{\left(y_{1}, y_{2}\right)\right\}, & \text { if } x_{j}=x_{k}\end{cases}
$$

If $x_{j}=x_{k}$, then
$\lambda\left(y_{1}, y_{2}\right)=f_{1} \circ \operatorname{pr}_{1}\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right)=x_{i}, \quad \mu\left(y_{1}, y_{2}\right)=g_{2} \circ \operatorname{pr}_{2}\left(y_{1}, y_{2}\right)=g_{2}\left(y_{2}\right)=x_{l}$.

Hence, we have

$$
\psi(U, \lambda, \mu)= \begin{cases}0, & \text { if } j \neq k \\ e_{i, l}, & \text { if } j=k\end{cases}
$$

Thus, ψ transfers the operation \odot to the multiplication operation of matrices. It follows that ψ induces a ring homomorphism from \mathcal{R}_{X} to $M_{m}(\mathbb{Z})$.
6. Magic Squares. In this section we slightly generalize the usual definition of magic squares and show that these generalized magic squares correspond to regular digraphs under the isomorphism described in Theorem 1.

Definition 3. An element $A=\left(a_{i, j}\right)$ of $M_{m}(\mathbb{Z})$ is a generalized magic square if

$$
\sum_{i=1}^{m} a_{i, j}=\sum_{l=1}^{m} a_{k, l}
$$

for all $j, k \in\{1, \ldots, m\}$.
The set of generalized magic squares in $M_{m}(\mathbb{Z})$ is a subring of $M_{m}(\mathbb{Z})$, which we denote by $M_{m}^{0}(\mathbb{Z})$.

Definition 4. An object (Y, f, g) of $\mathcal{D} \mathcal{G}_{X}$ is regular if f and g are surjective and

$$
\left|f^{-1}(x)\right|=\left|g^{-1}(x)\right|=|Y| /|X|
$$

for all $x \in X$, where $|\cdot|$ denotes the cardinality of a set.
Remark 4. The directed graph represented by a regular object (Y, f, g) is a $(|Y| /|X|)$ - regular digraph in the usual sense (see e.g. [1]), that is, a directed graph such that the in-degree and the out-degree of each vertex is equal to $|Y| /|X|$.

Let $\mathcal{D} \mathcal{G}_{X}^{0}$ be the subcategory of $\mathcal{D} \mathcal{G}_{X}$ consisting of the objects of $\mathcal{D} \mathcal{G}_{X}$ that are regular. If $\left(Y_{1}, f_{1}, g_{1}\right)$ and $\left(Y_{2}, f_{2}, g_{2}\right)$ are objects of $\mathcal{D} \mathcal{G}_{X}^{0}$, then both $\left(Y_{1}, f_{1}, g_{1}\right) \odot$ $\left(Y_{2}, f_{2}, g_{2}\right)$ and $\left(Y_{1}, f_{1}, g_{1}\right) \oplus\left(Y_{2}, f_{2}, g_{2}\right)$ are objects of $\mathcal{D} \mathcal{G}_{X}^{0}$. Thus, if we set

$$
M_{X}^{0}=\mathcal{D} \mathcal{G}_{X}^{0} / \cong, \quad \mathcal{R}_{X}^{0}=\mathbb{Z}\left[M_{X}^{0}\right] / \mathcal{I}^{0}
$$

where \mathcal{I}^{0} is the ideal of $\mathbb{Z}\left[M_{X}^{0}\right]$ generated by elements of the form $x \oplus y-x-y$, with $x, y \in M_{X}^{0}$, then \mathcal{R}_{X}^{0} becomes a subring of \mathcal{R}_{X}.

Theorem 2. The isomorphism described in Theorem 1 induces an isomorphism between \mathcal{R}_{X}^{0} and $M_{m}^{0}(\mathbb{Z})$.

Proof. Let $\tilde{\psi}: \mathcal{R}_{X} \rightarrow M_{m}(\mathbb{Z})$ be the isomorphism constructed in the proof of Theorem 1 and let $V=\sum_{j=1}^{k} n_{j}\left(Y_{j}, f_{j}, g_{j}\right) \in \mathbb{Z}\left[M_{X}\right]$ be a representative of $\tilde{V} \in \mathcal{R}_{X}$. For $1 \leq j \leq k$, we assume that $Y_{j}=\left\{y_{j, i} \mid 1 \leq i \leq l_{j}\right\}$ and denote by $f_{j, i}, g_{j, i}$, the restrictions of f_{j}, g_{j} to the set $\left\{y_{j, i}\right\}$. If $\tilde{\psi}(\tilde{V})=\left(\nu_{a, b}\right) \in M_{m}(\mathbb{Z})$, with $1<a, b<m$, then we have

$$
\nu_{a, b}=\sum_{j=1}^{K} n_{j}\left|f_{j}^{-1}\left(x_{a}\right) \cap g_{j}^{-1}\left(x_{b}\right)\right| ;
$$

hence, we have

$$
\sum_{a=1}^{m} \nu_{a, b}=\sum_{j=1}^{k} n_{j}\left|\left(\bigcup_{a=1}^{m} f_{j}^{-1}\left(x_{a}\right)\right) \cap g_{j}^{-1}\left(x_{b}\right)\right|=\sum_{j=1}^{k} n_{j}\left|g_{j}^{-1}\left(x_{b}\right)\right|=\sum_{j=1}^{k} \frac{n_{j}|Y|}{|X|} .
$$

Similarly, we have

$$
\sum_{b=1}^{m} \nu_{a, b}=\sum_{j=1}^{k} n_{j}\left|f_{j}^{-1}\left(x_{a}\right) \cap\left(\bigcup_{b=1}^{m} g_{j}^{-1}\left(x_{b}\right)\right)\right|=\sum_{j=1}^{k} n_{j}\left|f_{j}^{-1}\left(x_{a}\right)\right|=\sum_{j=1}^{k} \frac{n_{j}|Y|}{|X|} .
$$

Thus, it follows that $\left(\nu_{a, b}\right) \in M_{m}^{0}(\mathbb{Z})$.
7. Grothendieck Topologies. In the previous sections we regarded directed graphs as the objects in the category of pairs of mappings of finite sets. In this section, we consider the category of single mappings of finite sets, which is essentially a Grothendieck topology on the category of finite sets.

Definition 5. We define \mathcal{S} to be the category whose objects are mappings of finite sets $\psi: A \rightarrow B$ and whose morphisms from $\psi: A \rightarrow B$ to $\psi^{\prime}: A^{\prime} \rightarrow B^{\prime}$ are pairs of mappings $\alpha: A \rightarrow A^{\prime}$ and $\beta: B \rightarrow B^{\prime}$, such that $\beta \circ \psi=\psi^{\prime} \circ \alpha$.

Definition 6. Given a finite set X, we define \mathcal{S}_{X} to be the subcategory of \mathcal{S} whose objects are the mappings $\phi: Z \rightarrow X$ in \mathcal{S} and whose morphisms from $\phi: Z \rightarrow X$ to $\phi^{\prime}: Z^{\prime} \rightarrow X$ are maps $\nu: Z \rightarrow Z^{\prime}$ such that $\phi=\phi^{\prime} \circ \nu$.

Remark 5. The category \mathcal{S} can be regarded as a Grothendieck topology on the category of finite sets by using the objects of \mathcal{S}_{X} as a covering of X, and therefore the category of finite sets equipped with this topology is a site (see $[2,3]$).

Given objects (Y, f, g) and (Z, ϕ) of $\mathcal{D} \mathcal{G}_{X}$ and \mathcal{S}_{X}, respectively, let W be the pullback of $g: Y \rightarrow X$ and $\phi: Z \rightarrow X$, that is, $W=\{(y, z) \in Y \times Z \mid g(y)=$ $\phi(z)\}$. Then we define the action of (Y, f, g) on (Z, ϕ) by $(Y, f, g) \cdot(Z, \phi)=(W, f \circ$ $\left.\pi_{Y}\right)$, where $\pi_{Y}: W \rightarrow Y$ is the natural projection. If $\left(M_{X}, \odot\right)$ denotes the monoid considered in Proposition 3, then it follows from the next theorem that M_{X} acts on the set $\operatorname{Obj}\left(\mathcal{S}_{X}\right)$ of objects of \mathcal{S}_{X}.

Theorem 3. Given a pair of objects $\left(Y_{1}, f_{1}, g_{1}\right)$ and $\left(Y_{2}, f_{2}, g_{2}\right)$ of $\mathcal{D} \mathcal{G}_{X}$ and an object (Z, ϕ) of \mathcal{S}_{X}, we have

$$
\left(Y_{1}, f_{1}, g_{1}\right) \cdot\left(\left(Y_{2}, f_{2}, g_{2}\right) \cdot(Z, \phi)\right)=\left(\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)\right) \cdot(Z, \phi)
$$

Proof. We have $\left(Y_{2}, f_{2}, g_{2}\right) \cdot(Z, \phi)=\left(W, f_{2} \circ \pi_{Y_{2}}\right)$, where $\pi_{Y_{2}}: W \rightarrow Y_{2}$ is the natural projection and $W=\left\{\left(y_{2}, z\right) \in Y_{2} \times Z \mid g_{2}\left(y_{2}\right)=\phi(z)\right\}$. Thus, we obtain

$$
\left(Y_{1}, f_{1}, g_{1}\right) \cdot\left(\left(Y_{2}, f_{2}, g_{2}\right) \cdot(Z, \phi)\right)=\left(W^{\prime}, f_{1} \circ \pi_{Y_{1}}\right)
$$

with

$$
W^{\prime}=\left\{\left(y_{1}, y_{2}, z\right) \in Y_{1} \times Y_{2} \times Z \mid g_{1}\left(y_{1}\right)=\left(f_{2} \circ \pi_{Y_{2}}\right)\left(y_{2}, z\right)=f_{2}\left(y_{2}\right)\right\}
$$

$\pi_{Y_{1}}: W^{\prime} \rightarrow Y_{1}, \pi_{Y_{2}}: W^{\prime} \rightarrow Y_{2}$, and $\left(f_{1} \circ \pi_{Y_{1}}\right)\left(y_{1}, y_{2}, z\right)=f_{1}\left(y_{1}\right)$. On the other hand, we have

$$
\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)=\left(U, f_{1} \circ \pi_{Y_{1}}^{\prime}, g_{2} \circ \pi_{Y_{2}}^{\prime}\right)
$$

where $\pi_{Y_{1}}^{\prime}: U \rightarrow Y_{1}$ and $\pi_{Y_{2}}^{\prime}: U \rightarrow Y_{2}$ are natural projections and

$$
U=\left\{\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2} \mid g_{1}\left(y_{1}\right)=f_{2}\left(y_{2}\right)\right\}
$$

hence, it follows that

$$
\left(\left(Y_{1}, f_{1}, g_{1}\right) \odot\left(Y_{2}, f_{2}, g_{2}\right)\right) \cdot(Z, \phi)=\left(U^{\prime},\left(f_{1} \circ \pi_{Y_{1}}^{\prime}\right) \circ \pi_{U}^{\prime}\right)
$$

with

$$
U^{\prime}=\left\{\left(y_{1}, y_{2}, z\right) \in Y_{1} \times Y_{2} \times Z \mid g_{2} \circ \pi_{Y_{2}}^{\prime}\left(y_{1}, y_{2}\right)=g_{2}\left(y_{2}\right)=\phi(z)\right\}
$$

$\pi_{U}^{\prime}: U^{\prime} \rightarrow U$ and $\left(\left(f_{1} \circ \pi_{Y_{1}}^{\prime}\right) \circ \pi_{U}^{\prime}\right)\left(y_{1}, y_{2}, z\right)=\left(f_{1} \circ \pi_{Y_{1}}^{\prime}\right)\left(y_{1}, y_{2}\right)=f_{1}\left(y_{1}\right)$. Therefore, we have $W^{\prime}=U$ and $f_{1} \circ \pi_{Y_{1}}=\left(f_{1} \circ \pi_{Y_{1}}^{\prime}\right) \circ \pi_{U}^{\prime}$; hence, the theorem follows.

References

1. G. Chartrand, M. Behzad, and L. Lesniak-Foster, Graphs and Digraphs, Prindle, Weber, and Schmidt, Boston, 1979.
2. S. MacLane and I. Moeerdijk, Sheaves in Geometry and Logic, Springer-Verlag, Heidelberg, 1992.
3. G. Tamme, Introduction to Étale Cohomology, Springer-Verlag, Heidelberg, 1994.
4. R. Walter, Categories and Computer Science, Cambridge Univ. Press, Cambridge, 1991.

Min Ho Lee
Department of Mathematics
University of Northern Iowa
Cedar Falls, IA 50614
email: lee@math.uni.edu

