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ALGEBRAIC STRUCTURES OF SOME SETS
OF PYTHAGOREAN TRIPLES I

Marek Wéjtowicz

Abstract. Let P denote the set of all Pythagorean triples {(a,b,c) € Z3 :
a? +b* = %}, and let P, = {(a,b,c) € P :c—b =n}, for n # 0, and Py =
{(0,4,7) : 7 € Z}. Tt is shown that the ring operations defined by A. Grytczuk on
P..’s are determined by shifts and an injection acting from suitable subsets of Z+iZ
into Z3 (Section 2), and that all P,,’s are distributive lattices (Theorem 2). The ring
and the lattice structures of Il = {(a,b,c) € P : a = 2zy, b= 2> —y?, ¢ =2 +y?}
and some of its subsets are discussed in Theorems 3, 4, and 5.

1. Introduction. In 1994 B. Dawson [1] defined the operations & and ® on
P in such a way that (P; ®, ®) is a commutative ring with unit. The operations are
constructed on the sets P,,, n € Z, and next extended to P, but both the addition
and the multiplication are given in inconvenient form. Therefore Dawson stated
the open problem to define different “natural” ring operations on P. In 1997 A.
Grytczuk [2] gave the construction of new operations on P,,, namely ([2], Theorem):
(a) We have a = (a, b, c) € P, if and only if a = (a, (a® —n?)/(2n), (a®>+n?)/(2n)),

where a and n # 0 are the same parity.
(b) Under the following well defined operations €, and (,, on P:

a@nﬁ = (au a22_n27 a2+n2)®n<b7 b2 _n27 b2+n2)
n

2n 2n 2n

(atb—n (a+b—n)>-n? (a+b—n)?+n?
o ’ 2n ’ 2n ’

for n # 0, and coordinatewise for n = 0, the sets P,, are commutative rings
(without multiplicative units for n # 0).
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The purpose of this paper is to show that the above defined additions and
multiplications are quite natural in the category of rings (Theorem 1), and to
construct other natural algebraic operations on some subsets of P (Section 3).

We use standard notations. R, C, Z, and N stand for the sets of all real,
complex, whole, and natural numbers, respectively, endowed with their classical
algebraic ring and order structures, and ¢ € C denotes the imaginary unit.

A general and known procedure constructing ring (or group, field, etc.) oper-
ations on arbitrary sets, which will be applied in this paper, is presented below.

Lemma. Let X and Y be nonempty sets with card X = card Y, let A be a
binary operation on X, and let £ be a bijection ¥ — X. The binary operation
Ag, defined by the rule y1Agys := £ (Ey1ALy2), is well defined and the mapping
€ is an Ag — A isomorphism of the sets Y and X. In particular, if X = (X;+,-)
is a ring and £ denotes the shift function © — x — ¢, then we obtain the new ring
operations on X: x1 @y ko := x1 + 22 — ¢, and x1 O 29 := (k1 — t) - (w2 — t) + ¢,
and this shift establishes also a ring isomorphism from (X; @®;, ®¢) onto X.

(In this way any countable and infinite set can be endowed with the ring
structure carried from Z. For example, there exist formally many different ring
structures both on P and on P,’s, but most of them have nothing to do with the
Pythagorean equation.)

The particular case holds for the ring Z and its complex copies W,, = Z + in,
n = =+1,42,..., where the addition #,, and the multiplication %,, are those carried
from Z and acting on the real coordinate only, i.e. (a1 4 in)#n(az +in) = a1 +
as + in, and similarly for x,. As we shall see in the next section, shifts on W,,’s
are determined by the number n, the knowledge of which allows us to construct
adequate ring operations on P,.

2. Grytczuk’s Operations. Let &, and ®,, n = +1,+2,..., denote the
operations on W,, obtained from (W,,;#,, *,) by means of the shifts w — w — n,
ie.,

(a1 +1in) @y, (a2 +in) = a1 + a2 — n +in,
(a1 4+ in) Op (a2 +in) = (a1 — n)(az —n) + n + in.

The formulas defining €, and (), become more clear if we shall use the
rings (W,,;®,,®,) and the functions A:C — R3 defined by the rules A(z) =
(Im(22),Re(2?), |2]?), and A, = (1/2n)A, n = +1,42,.... These functions are
injective on each nonempty subset H of C with HN(—H) =0 or HN(—H) = {0},
hence on W,,, on the halfplane Im(z) > 0, on each quarter of C, etc. For any
a = (a,b,¢) € P, where n = ¢ — b # 0, we can determine uniquely the complex
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number & = a + in such that, by (a), we have @ = A, (&). Hence, Grytczuk’s
operations take the form

a@P B = An(a®,p),
a () B = An(a®,H).

It is now obvious that €, and (©,, are both associative and commutative, and
that they fulfill the distributive law; however, the fact that @, and (©,, are well
defined is nontrivial and is proved in [2].

By the above observations, and since for every n = £1,4£2,..., the rings
(Wp; Bn, ©n) and Z are isomorphic via the mapping ¢, (w) = Re(w) — n, the main
result of [2] can be presented in the following way.

Theorem 1. For every integer n # 0, (Pn;@,,,(©,,) is a commutative ring
isomorphic, via the mapping 1, (@) = ¢,(&) = a + b — ¢ (where o = (a, b, ¢) and
n = ¢ — b) with a subring of Z without multiplicative unit.

The last part of the above theorem follows also from the form of v,,: if 1 =
tp(a) =a+b—c, then (a +b)? = (c+ 1)%. Hence, 2ab = 2¢ + 1, a contradiction.

Corollary 1. For every integer n # 0, the set

Gn =Un(Py)={a+b—c:a’>+b*=c*and c—b=n}

is a proper ring ideal of Z.

From the categorical point of view, the Grytczuk’s operations seem to be
“proper” (i.e., they fulfill Dawson’s requirement to be natural) because they are
generated by shifts, and the isomorphisms ¥, defined in Theorem 1 are of the
simplest ring nature.

3. Other Algebraic Operations on Subsets of P. The possibility of
unique transferring, by means of the function A,,, natural operations from a subset
of W,, onto the set P,, suggests the constructing of new algebraic operations on
subsets of P using suitable operations defined on some subsets of Z + ¢Z. In the
first theorem of this section we discuss the lattice structure of P,, and the next
ones are devoted to the connections between algebraic structures of the sets W =
(Z+iN)U{0} and W, respectively, and the set II := A(W) C P and II,, := A(W,,),
respectively. Similar results can be obtained when W and W,, are replaced by other
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subsets of Z+iZ on which the function A is injective (here we have WN(—W) = {0}
and W,, N (=W,,) = () which implies injectivity of A both on W and on W,,).

The fact that the P,’s have the lattice structure follows from the observation
that if (ax +in) € D,, := A, Y (Pn), n = 1,2,..., k = 1,2, then max{ay,as} + in,
min{ay,az} + in € D,. It follows that two natural functions map P, (lattice)
isomorphically onto a sublattice of Z: the first one, universal for all P,,’s, is of the
form (a,b,c) — a, and the second one is 1, defined in Theorem 1 (since for all
z,y,t € R we have: max{z — t,y — ¢t} = max{z,y} — ¢, and min{z — t,y — t} =
min{z,y} —t). Hence we obtain the following theorem.

Theorem 2. Endowed with the ordering oy = (a1, b1,¢1) < (az,b2,¢2) = ag if
and only if a; < a9, the sets P,, n = +1,+£2,..., are distributive lattices isomorphic
with sublattices of Z, and we have

sup(aq, as) = A, (max{a,as} +in), and
inf(aq,as) = Ay (min{ai, as} + in),

where n = ¢; — by = ¢ — bs.

Corollary 2. With the above notations, for every n = +1,42, ..., we have:

(i) the mapping 1), is both a ring and lattice isomorphism;

(i) the sets G, and G/, =G, +n={a € Z : a®> +b* = 2 and c — b = n} are
sublattices of the lattice Z.

From the Lemma given in Section 1 it follows that A carries in a natural way
all algebraic structures of W to the set II, and the same procedure takes place
in the case W,, and II,; hence, the following three theorems are now immediate
consequences of this fact.

Theorem 3. The set II is a semiring with unit under the following pairs of
addition and multiplication.
(i) Az® Au:= A(z+u), and Az ® Au = A(z - u);
(ii) Az ® Au := A(z + u), and Az ® Au := A(z x u), where + and - denote the
classical operations, and * denotes the coordinatewise multiplication in C.

Theorem 4. For every n € N, the set II,, is a commutative ring with unit under
the following pairs of addition and multiplication.
(i) Az[+]nAu := A(z#,u), and Az[],Au := A(z x, w);
(ii) Az{+)nAu:= A(z ®p u), and Az{")p,Au = A(z Op u),

where @©,, On, #n, and *, are defined in Section 2.
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Theorem 5. Endowed with the ordering Az < Aw if and only if z < u in W, the

set II is a distributive lattice and II,,, n = £1, +2, ..., is its distributive sublattice,
and we have

sup{A(ny + imy), A(ng + imz)} = A(max{ni,n2} + i max{m, ms}), and
inf{A(ny 4+ imy), A(na + img)} = A(min{ni,n2} + i min{my, ma}).
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