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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

104. [1997, 35; 1998, 59–61] Proposed by Kenneth Davenport, Box 491,

Frackville, Pennsylvania.

Show that

1 · sin
π

2n
+ 3 · sin

3π

2n
+ 5 · sin

5π

2n
+ · · ·+ (2n− 1) sin

(2n− 1)π

2n
= n csc

π

2n
.

Solution III by Paul S. Bruckman, Edmonds, Washington.

Let

ok =
1− (−1)k

2
.

Then,

2n−1
∑

k=0

k sin
kπ

2n
· ok = n · csc

π

2n
, n = 1, 2, . . .

is easily evaluated using complex variables. That is,

sinx =
1

2i

(

eix − e−ix
)

,
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and then we can use geometric series sum formulas to evaluate the sum. Letting
θ = exp(iπ/2n) and using the fact that θ2n = −1, we have
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109. [1997, 184] Proposed by Kenneth Davenport, Box 491, Frackville, Penn-

sylvania.

Let n be a positive integer and a ≥ 2 be a positive integer. Show that

∫

∞

0

dx

1a + xa
+

∫

∞

0

dx

2a + xa
+ · · ·+

∫

∞

0

dx
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=

[

1
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+

1
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1
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]

π/a

sin(π/a)
.

Solution I by Russell Euler and Jawad Sadek, Northwest Missouri State Uni-

versity, Maryville, Missouri.

Consider
∫

C

f(z)dz
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where f(z) = 1/(ma + za), m = 1, 2, . . . , n and C is the boundary of the circular
sector described by 0 ≤ θ ≤ 2π/a and 0 ≤ r ≤ R.

The only singularity of f(z) that is inside C is a simple pole at z0 = meπi/a

and
Resz=z0f(z) = −eπi/a/(ama−1).

By the Residue Theorem,

∫ R

0

dx

ma + xa
+

∫ 2π/a

0

Reiθidθ

ma +Raeiaθ
+

∫ 0

R

e2πi/adr

ma + ra
=

−2πieπi/a

ama−1
. (1)

Let I = I(R) represent the second integral on the left hand side of (1). It is
straightforward to show that

|I| ≤
2πR

a|Ra −ma|
.

Since a ≥ 2, limR→∞ I(R) = 0. Then (1) becomes

(1− e2πi/a)

∫

∞

0

dx

ma + xa
=

−2πieπi/a

ama−1
. (2)

Equating real parts in (2) gives

(

1− cos
2π

a

)∫

∞

0
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ma + xa
=

2π sin π
a
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and so
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∞

0
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=
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=

π

ama−1 sin(π/a)
.

Therefore,

n
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.
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Solution II by Joseph E. Chance, University of Texas-Pan American, Edinburg,

Texas.

For i = 1, 2, . . . , n,

∫

∞

0

dx

ia + xa
=

1

ia

∫

∞

0

dx

1 + (x/i)a
.

Let y = x/i and the integral is transformed to

1

ia−1

∫

∞

0

dy

1 + ya
.

The required sum can now be written as

[

1
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+

1

2a−1
+ · · ·+

1
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]∫

∞

0
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.

In this integral let

u =
1

1 + ya
, or y =

(

1− u

u

)
1

a
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1

a

(
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u

)
1

a
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)

which transforms the integral to

1

a
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0
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1

a
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1
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In terms of the famous beta function, the integral is

1

a
B
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a
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a

)
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but in terms of the more famous gamma function and its identities, this beta func-
tion is

1

a

Γ
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)
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)
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π
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.

Solution III by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wis-

consin; Carl Libis, University of Alabama, Tuscaloosa, Alabama, Jerry Masuda,

Metropolitan Community College, Blue Springs, Missouri; and Ice B. Risteski,

Skopje, Macedonia.

According to Formula 402 on p. 303 of the Eleventh Edition of the C. R. C.

Standard Mathematical Tables for 0 < m < a,

∫

∞

0

tm−1dt

1 + ta
=

π

a sin mπ
a

. (∗)

Let k be an arbitrary fixed positive integer and let a ≥ 2 be a positive integer.
Then, letting m = 1 and t = x/k in (∗), we have
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Also partially solved by the proposer.

110. [1997, 184] Proposed by Mohammad K. Azarian, University of Evansville,

Evansville, Indiana.

Let α, β, and γ be the three angles of any triangle. Show that

sinα

1 + sinβ sin γ
+

sinβ

1 + sinα sin γ
+

sin γ

1 + sinα sinβ
< 2.

Solution I by the proposer.

Without loss of generality, we may assume that sinα ≤ sinβ ≤ sin γ. Now,
from the fact that 0 ≤ (1− sinα)(1 − sinβ), we have

sinα+ sinβ ≤ 1 + sinα sinβ < 1 + 2 sinα sinβ.

On the other hand,

sinα+ sinβ + sin γ ≤ 1 + sinα+ sinβ < 2 + 2 sinα sinβ = 2(1 + sinα sinβ).

Therefore,

sinα

1 + sinβ sin γ
+

sinβ

1 + sinα sin γ
+

sin γ

1 + sinα sinβ

≤
sinα

1 + sinα sinβ
+

sinβ

1 + sinα sinβ
+

sin γ

1 + sinα sinβ

=
sinα+ sinβ + sin γ

1 + sinα sinβ
<

2(1 + sinα sinβ)

1 + sinα sinβ

= 2.

Solution II by Joe Howard, New Mexico Highlands University, Las Vegas, New

Mexico.

A generalization is given as Problem 25, p. 34 of Leningrad Math Olympiads

(1987–1991) by D. Fomin and A. Kirichenko, MathPro Press, 1994.
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Problem. If 0 ≤ A,B,C ≤ 1, prove

A

1 +BC
+

B

1 +AC
+

C

1 +AB
≤ 2.

Solution. Without loss of generality, assume 0 ≤ A ≤ B ≤ C ≤ 1. Since
0 ≤ (1−A)(1−B), we have A+B ≤ 1+AB ≤ 1+2AB. Furthermore, A+B+C ≤
A+B + 1 ≤ 2 + 2AB = 2(1 +AB). Hence,

A

1 +BC
+

B

1 +AC
+

C

1 +AB
≤

A

1 + AB
+

B

1 +AB
+

C

1 +AB
=

A+B + C

1 +AB
≤ 2.

Note that in the original problem, only one sin can be 1 (angle = π/2) so we have
strict inequality.

111. [1997, 185] Proposed by Herta T. Freitag, Roanoke, Virginia.

D is a 3 by 3 determinant whose elements are polygonal numbers Pn,k such
that

ai,j = Pn+3i+j−4,k , k ≥ 3,

where Pn,k is the nth polygonal number of k “dimensions” (P5,3 is the 5th triangular
number). Show that D is a cube independent of n.

Solution by Ice B. Risteski, Skopje, Macedonia.

The formula for the n-th polygonal number of k “dimensions” is given by
Pn,k = nr/2, where r = pn+ q, p = k− 2 and q = −k+4, (see [1]). Now, the 3× 3
determinant D whose entries are ai,j = Pn+3i+j−4,k , (k ≥ 3) has a form

D =
1

8
det





nr (n+ 1)(r + p) (n+ 2)(r + 2p)
(n+ 3)(r + 3p) (n+ 4)(r + 4p) (n+ 5)(r + 5p)
(n+ 6)(r + 6p) (n+ 7)(r + 7p) (n+ 8)(r + 8p)



 . (1)

Let R1, R2, and R3 denote the rows of determinant (1). Then, we easily obtain the
linear combination

R1 − 2R2 +R3 = 18p ( 1 1 1 ) .
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Hence, (1) will become

D =
9p

4
det





1 1 1
(n+ 3)(r + 3p) (n+ 4)(r + 4p) (n+ 5)(r + 5p)
(n+ 6)(r + 6p) (n+ 7)(r + 7p) (n+ 8)(r + 8p)





=
9p

4
det

(

np+ r + 7p np+ r + 9p
np+ r + 13p np+ r + 15p

)

= (6− 3k)3.

Reference

1. J. T. Bruening, Solution to Problem 97, Missouri Journal of Mathematical

Sciences, 9 (1997), 189–191.

Also solved by James T. Bruening, Southeast Missouri State University, Cape

Girardeau, Missouri; Carl Libis, University of Alabama, Tuscaloosa, Alabama; Ken-

neth B. Davenport, Box 491, Frackville, Pennsylvania; and the proposer.

112. [1997, 185] Proposed by Mathew Timm, Bradley University, Peoria, Illi-

nois.

Let Y be a connected, first countable Hausdorff space. Then Y is h-connected if
and only if where p:X → Y is a finite-sheeted covering projection from a connected
space X onto Y , it follows that X is homeomorphic to Y . Y is trivially h-connected
if and only if whenever p:X → Y is a connected finite-sheeted covering projection
of X onto Y , it follows that p is a homeomorphism of X onto Y .

Note that for non-trivially h-connected spaces, the covering projection p:X →
Y is not required to be a homeomorphism, only that some homeomorphism exist
between X and Y . Examples of non-trivially h-connected spaces include the circle
S1, the torus S1 × S1, and, more generally, the n-tori S1 × · · · × S1. Examples of
trivially h-connected spaces include any simply connected finite simplicial complex
or, more generally, any finite simplicial complex whose fundamental group has no
proper finite index subgroups.

Recall that a topological space Y has the fixed point property if and only if,
for every continuous function f :Y → Y , there is a y ∈ Y such that f(y) = y.

Now assume that Y is a first countable, Hausdorff, connected, locally path
connected, semi-locally 1-connected space. Show that if Y is h-connected and has
the fixed point property, then Y is trivially h-connected.
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Solution by the proposer.

Since Y is connected, locally path connected, and semi-locally 1-connected, it
follows from [2, 2.5.13] that for each subgroup H ≤ π1(Y ), there is a covering pro-
jection p:X → Y of a connected, locally path connected, semi-locally 1-connected
X onto Y such that p∗(π1(X)) = H .

Now assume that Y is h-connected and has the fixed point property. In addi-
tion, assume that Y is non-trivially h-connected. Then there is an n-to-1 covering
projection p:X → Y for some 1 < n < +∞. The space X satisfies the conditions
listed in the first paragraph of the solution. In particular, X is connected and
[π1(Y ) : p∗(π1(X))] = n > 1 is finite. Therefore, by standard results in group
theory, e.g., [1, 3.3.5], there is a normal subgroup N ≤ π1(Y ), called the normal
core of p∗(π1(X)), such that N ≤ p∗(π1(X)) and n ≤ [π1(Y ) : N ] = k < +∞.

By the remarks in the first paragraph of this solution, there is a covering
projection q: Ỹ → Y such that Ỹ is connected and q∗(Ỹ ) = N . Since N is normal
in π1(Y ), it follows from [2, 2.6.2] that q: Ỹ → Y is a regular covering and has a
group of covering transformations AutY Ỹ ∼= π1(Y )/N .

Now let f ∈ AutY Ỹ . Since Ỹ is a connected k-to-1 covering of Y and Y is
h-connected it follows that Ỹ is homeomorphic to Y . Since Y has the fixed point
property, so does Ỹ . Therefore, f has a fixed point, y0. So, by [2, 2.6.5] and the
paragraph following [2, 2.6.6], it follows that f = idỸ . Thus AutY Ỹ

∼= π1(Y )/N =
1. So N = π1(Y ). So, since N ≤ p∗(π1(X)), it also follows that p∗(π1(X)) = π1(Y ).
Thus, p is a 1-1 covering projection and so it follows that p is a homeomorphism.
Thus, Y is trivially h-connected.

An inspection of the above proof points out that the full power of the fixed
point property is not needed. All that is required is that homeomorphisms from Y
to itself have the fixed point property.

References

1. W. R. Scott, Group Theory, Dover, 1987.

2. E. H. Spanier, Algebraic Topology, McGraw-Hill, 1996.


