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SOME REPRESENTATIONS OF ((3)

Badih Ghusayni

1. Introduction. The Riemann zeta function ( is defined as

for each complex number z with real part Re z > 1. In this paper we only con-
centrate on ¢(3). R. Apéry [1] proved that ((3) is an irrational number using the

formula
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Motivated by Apéry’s proof, F. Beukers [2] later gave a shorter proof of the irra-

tionality of {(3) by means of double and triple integrals. Beukers’ proof hinged on

his formula
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where the integrals can be justified by replacing fol with limo f;_a.
e—
The value of {(3), however, remains unknown, let alone the values of ¢ at other
larger odd integers.

The formulas
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and

o) 18

are easy to prove [3]. However, no one knows the value of
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There is an interesting identity due to Comtet [4] that
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but there are no known values for

= 1
2

n=1

for integers k > 4.

In section 2 we use Beukers’ formula (2) to find a simple representation of ¢(3)
in terms of a single integral instead of a double integral. In section 3 we obtain a
series representation for {(3). The author hopes that some representation of {(3)
in the literature can be used to evaluate ((3).

2. An Integral Representation of ((3). Let us write Beukers’ formula as
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and consider (z,y) € (0,1) x (0,1).

For a fixed y, substitute w = xy — 1 in the innermost integral. Then
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Now
log(w + 1) :Z "+1 , Jw| < 1.
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converges uniformly to on [a,y — 1].

So
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since y — 1 € (0, 1) and absolute convergence implies convergence. Using the func-

tional equation for the dilogarithm

[3] we have
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It is worth mentioning that, by making a simple change of variable, the above

integral representation can be written as
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where it is easy to see that

3. A Series Representation of ((3). Using the well-known formula [3]
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we have
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On the other hand a simple integration by substitution followed by integration by
parts yields
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Combining we get

0 1 /3
Z 5 —2/ zlog(2sin $z)dx. (3)

() 0

Now clearly

o0

log(l—z)z—z%, |z] <1

n=1



174 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

even at boundary points except for z = 1, i.e. except at the points z = e** with
x # 2km. Consider the interval (0,27). Now

1—z:1—e”:(1—cosx)—sin:1:i

= 2sin? 2s1n—cos 51

= 2sin — — —COos —
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9sin 7r+:1: 4 7r+:1: _
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= 2sin %e(*%Jr%)i.

So
.z s €T, .
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Applying Abel’s theorem for trigonometric series we get

Using formula (3) we can now write
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Integrating by parts twice we get
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So
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Since the middle term is %g (3) [5], we consequently have the following series

representation
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