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NOTE ON BIRATIONAL EXTENSIONS IN D-DIMENSION

Mee-Kyoung Kim

Abstract. Let (R,m) be a d-dimensional regular local ring with quotient field
K and (S, n) be a d-dimensional normal local domain birationally dominating R
with l(mS) = d. In this paper, it is shown that the following three properties hold.

(1) S is dominated by the m-adic prime divisor of R;

(2) ni ∩R = mi, for all i ≥ 1;

(3) R/m = S/n.

1. Introduction. Let (R,m) be a d-dimensional regular local ring with
quotient field K of R. A valuation v of K which birationally dominates R is called
a prime divisor of R if tr. degR/m V/m(V ) = d − 1, where V is the corresponding
valuation ring of v and m(V ) denotes the maximal ideal of V . Then the order
valuation vm of K is called the m-adic prime divisor of R [7].

Let v1, . . . , vr be elements of an ideal I in a local ring (T, p) and suppose that
whenever f(X1, . . . , Xr) is a form of (arbitrary) degree s with coefficients in T such
that f(v1, . . . , vr) ≡ 0 (mod Isp), then all the coefficients of f are in p. In these
circumstances, the elements v1, . . . , vr are said to be analytically independent in I.
Elements v1, . . . , vr are said to be analytically independent if they are analytically
independent in the ideal they generate. The analytic spread, l(I), of an ideal I in T
is the dimension of the graded ring ⊕≥0I

n/pIn. In [6], Northcott and Rees proved
that if T/p is an infinite field, then l(I) is the maximum number of elements in I
which are analytically independent in I.

Let (S, n) be a 2-dimensional normal local domain birational dominating a 2-
dimensional regular local ring (R,m). In [2], Huneke and Sally showed that if R is
maximally regular in S (i.e., if R ⊆ R0 ⊆ S and R0 is a regular ring, then R = R0),
then S is dominated by the m-adic prime divisor of R, ni ∩ R = mi for all i ≥ 1
and the residue fields of the two rings are the same. We extend these results to the
case of a dimension d ≥ 3 with an assumption l(mS) = d.

2. Main Theorems. In this section, (R,m) will denote a d-dimensional
regular local ring with quotient field K and (S, n) will denote a d-dimensional
normal local domain birationally dominating R (i.e., R ⊆ S ⊆ K and n ∩R = m).
Let x1, . . . , xd be a regular system of parameters for R; i.e., m = (x1, . . . , xd).

Lemma 1. If l(mS) = d, then nS[x2/x1, . . . , xd/x1] is a prime ideal in
S[x2/x1, . . . , xd/x1].
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Proof. Define the canonical homomorphism φ from S[T2, . . . , Td] onto
S[x2/x1, . . . , xd/x1]/nS[x2/x1, . . . , xd/x1] by φ(Ti) = xi/x1+nS[x2/x1, . . . , xd/x1]
for i = 2, 3, . . . , d, where T2, . . . , Td are indeterminates. Since l(mS) = d,
x1, . . . , xd are analytically independent, and hence, Kerφ = n[T2, . . . , Td]. Thus,
nS[x2/x1, . . . , xd/x1] is a prime ideal in S[x2/x1, . . . , xd/x1], by the First Isomor-
phism Theorem.

Theorem 1. If l(mS) = d, then S is dominated by the m-adic prime divisor of
R.

Proof. Since l(mS) = d, nS[x2/x1, . . . , xd/x1] is a prime ideal in
S[x2/x1, . . . , xd/x1], by Lemma 1. Moreover, since n ∩R = m, we get that

nS

[

x2

x1
, . . . ,

xd

x1

]

∩R

[

x2

x1
, . . . ,

xd

x1

]

= mR

[

x2

x1
, . . . ,

xd

x1

]

,

which is ht 1 prime and a principal ideal in R[x2/x1, . . . , xd/x1]. Hence, we have
the following local rings:

V = R

[

x2

x1
, . . . ,

xd

x1

]

mR[
x2

x1
,... ,

x
d

x1
]

⊆ W = S

[

x2

x1
, . . . ,

xd

x1

]

nS[
x2

x1
,... ,

x
d

x1
]

.

Let m(V ) and m(W ) be the maximal ideals of V and W , respectively. Then,
V ⊆ W ⊆ K and m(W ) ∩ V = m(V ). But, V is the discrete valuation of vm, the
m-adic prime divisor of R. Thus, V = W and

m(V ) ∩ S = m(W ) ∩ S

= nS

[

x2

x1
, . . . ,

xd

x1

]

nS[
x2

x1
,... ,

x
d

x1
]

∩ S

= n.

We remark that if l(mS) = d, then nS[x2/x1, . . . , xd/x1] is a ht 1 prime ideal,
since V = W in the proof of Theorem 1.

Theorem 2. If l(mS) = d, then ni ∩R = mi, for all i ≥ 1.
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Proof. Let V = R[x2/x1, . . . , xd/x1]mR[x2/x1,... ,xd/x1] be the discrete valuation
of vm, the m-adic prime divisor of R. Since l(mS) = d, we get that m(V ) ∩ S = n
by Theorem 1. Thus, for any α ∈ n,

(∗) vm(α) ≥ 1.

For each i ≥ 1, let z ∈ ni ∩R. Let us express

z =

t
∑

j=1

aj1αj2 · · ·αji ,

where αj1 , . . . , αji ∈ n. Then, by (*),

vm(z) ≥ min
j=1,... ,t

{vm(αj1αj2 · · ·αji)}

= min
j=1,... ,t

{vm(αj1 ) + · · ·+ vm(αji)}

≥ i.

By the definition of order valuation vm, z ∈ mi. To see the other inclusion we will
use an inductive argument. n∩R = m by the hypothesis. Assume inductively that
mi ⊆ ni ∩R. Then,

mi+1 = mmi

⊆ (n ∩R)(ni ∩R)

⊆ n(ni ∩R) ∩R(ni ∩R)

⊆ nni ∩R

= ni+1 ∩R.

Thus, mi ⊆ ni ∩R, for all i ≥ 1.
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Corollary 1. If l(mS) = d, then the natural map from grm(R), the associated
graded ring of R, to grn(S), the associated graded ring of S, is an injection.

Proof. It is clear, since ni ∩R = mi, for all i ≥ 1.

Theorem 3. If l(mS) = d, then R/m = S/n.

Proof. By the Dimension Inequality [3], we have that

ht(n) ≥ ht(m) + tr. degR S − tr. degR/m S/n,

where tr. degR S is the transcendence degree of the field of fractions of S over that
of R. Since S birationally dominates R and dim(S) = dim(R), tr. degR/m S/n = 0.
Let (V,m(V )) be the m-adic divisor of R. Then V/m(V ) is a pure transcendental
extension of R/m of transcendental degree d− 1, i.e., tr. degR/m V/m(V ) = d− 1.
By Theorem 1, we have the following injections:

R

m
→֒

S

n
→֒

V

m(V )
.

Hence, we have

tr. degR/m V/m(V ) = tr. degR/m S/n+ tr. degS/n V/m(V ).

Therefore,
tr. degS/n V/m(V ) = d− 1.

Hence, we get

R

m
(Y1, . . . , Yd−1) ∼=

V

m(V )
∼=

S

n
(Z1, . . . , Zd−1),

where Yi, Zi are indeterminates. Since R/m ⊆ S/n, we have R/m = S/n.

Corollary 2. If l(mS) = d, then x1, . . . , xd form a subset of a minimal basis
for every ideal J of S containing mS.

Proof. By Theorem 2, we have the following commutative diagram:

m
m2 →֒ n

n2

‖ ↑
J∩R

(J∩R)m →֒ J
nJ .
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By Theorem 3, x1, . . . , xd are linearly independent over S/n(= R/m). Hence,
x1, . . . , xd form a subset of a minimal basis for J .

Lemma 2. [2] Let (A, p) be a 2-dimensional regular local ring with quotient
field k and (B, q) be a 2-dimensional normal local domain birationally dominating
A. Suppose that A is maximally regular in S. Then

(1) ht(pB) = 1;

(2) pB is not a principal ideal;

(3) l(pB) = 2.

Proof.

(1) We may assume that A 6= B and that A/p is infinite. By Zariski’s Main
Theorem [5], ht(pB) = 1.

(2) Suppose that pB is principal. Express

pB = αB, for some α ∈ p = (α, β).

Then, β/α ∈ B. Since A[β/α] is a 2-dimension, q ∩ A[β/α] is either (i) a ht 2
maximal ideal of A[β/α] containing pA[β/α] or (ii) a ht 1 prime pA[β/α].

Case i. If q∩A[β/α] is a ht 2 maximal ideal of A[β/α] containing pA[β/α], then
C = A[β/α]q∩A[β/α] is the quadratic transformation of A, i.e., C is a 2-dimensional
regular local ring such that A ⊂ C ⊂ B, which is a contradiction to the maximal
regularity of A in B.

Case ii. If q ∩ A[β/α] = pA[β/α] is a ht 1 prime ideal of A[β/α], then D =
A[β/α]pA[β/α] is a discrete valuation ring, i.e., D is a 1-dimensional regular local
ring such that A ⊂ D ⊂ B, which is a contradiction to the maximal regularity of
A in B.

(3) It is true that
ht(pB) ≤ l(pB) ≤ dim(B).

The first inequality is Lemma 4 in [6] and the second inequality is a result of Burch
[1]. Since dim(B) = 2 and ht(pB) = 1, l(pB) = 1 or 2. Suppose that l(pB) = 1. By
Lemma 4.5 in [4], pB is principal, which is a contradiction to (2). Hence, l(pB) = 2.

Corollary 3. [2] Let (A, p) be a 2-dimensional regular local ring with quotient
field k and (B, q) be a 2-dimensional normal local domain birationally dominating
A. Suppose that A is maximally regular in B. Then

(1) B is dominated by the p-adic prime divisor of A;

(2) qi ∩ A = pi, for all i ≥ 1;

(3) A/p = B/q.
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Proof. By Lemma 2, l(pB) = 2. Hence, (1), (2), and (3) are clear by Theorems
1, 2, and 3.
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