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COMPLEX CONTINUED FRACTIONS: AN UNDERGRADUATE

RESEARCH PROBLEM PROPOSAL

Timothy P. Keller

1. Motivation and Background. Continued fractions are a rich source for

undergraduate research projects: appealing problems, easy to motivate by com-

putational example, and amenable to solution by standard techniques. A good

reference for the basic terminology and results is [2]. Before getting started, let’s

review some of the basic material.

Given a positive real number r, there is a standard algorithm for computing

the continued fraction expansion for r. Writing

r = a0 +
1

a1 +
1

a2 +
1

a3 +
1

.. .

the integers a0, a1, . . . are generated by taking a0 = ⌊r⌋, z0 = r and for i > 0

zi+1 =
1

zi − ai
,

ai+1 =

⌊

1

zi+1

⌋

, if zi+1 6= 0.
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The nth partial quotient is the rational number pn/qn given by

r = a0 +
1

a1 +
1

a2 +
1

a3 +
1

.. . +
1

an−1 +
1

an

,

which is compactly denoted by {a0; a1, . . . , an}.
One way to think about the continued fraction expansion of a real number

r > 0 is to consider it as an extension of the Euclidean algorithm. If r is a rational

number p/q, where p and q are positive integers with gcd(p, q) = 1, then the

process given above terminates with aN+1 = 0 for some N , and pN = p, qN = q.

The partial quotients satisfy pn+1qn − qn+1pn = (−1)n, hence s = (−1)NqN−1 and

t = (−1)NpN−1 are integers so that sp+ tq = 1. If r > 0 is an irrational real, then

no ai is 0, but pn/qn → r as n → ∞.

To what extent can these ideas be generalized? A very general (and ambitious)

investigation could start with an integral domain R, associated quotient field K and

an algebraic extension L ⊇ K, equipped with a suitable topology. For convenience,

the set of non-zero elements of a ring R will be denoted R∗. If R is an integral

domain, then an element c of R is a divisor of an element a of R, if there is an

element b in R so that a = bc. An element c is a greatest common divisor of two

elements a and b in R∗ if c is a common divisor of a and b and given any common

divisor d of a and b, then d is a divisor of c. (Note gcd(a, b) is only defined up to

associates, i.e. if u is a unit of R and d is a greatest common divisor of a and b, then

ud is a greatest common divisor of a and b.) An integral domain R is a greatest

common divisor domain, GCD domain for short, if gcd(a, b) exists for all a and b

in R∗. If R is a GCD domain, then it does not necessarily follow that there exist

elements s and t in R so that sa+ tb = gcd(a, b); if this latter property holds, one

has what is called a Bezout domain [1]. The ring of integers is a Bezout domain

and there is an algorithm for actually finding s and t: the well-known Euclidean

algorithm. The Euclidean algorithm is a consequence of the property that given

two integers with 0 < b ≤ a, there exist integers p and q so that a = bp + q and
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0 ≤ q < b. That is, the integers are a Euclidean domain. In many ways the integers

are the nicest of all possible domains; on the other hand, it’s hard to see how to

generalize an idea starting with just one example.

Fortunately, there is another ‘nice’ example to consider. The set of Gaussian

integers, that is the set of complex numbers Z[i] = {x + yi|x and y are integers },
is also a Euclidean domain in the sense that, if | · | is the usual complex norm, then

given Gaussian integers a and b with 0 < |b| ≤ |a|, then there are Gaussian integers

p and q so that a = bp + q and 0 ≤ |q| < |b|. To say that a complex number z

has a continued fraction expansion would mean that there exist Gaussian integers

a0, a1, . . . so that the corresponding partial quotients converge to z in the topology

on C associated with the complex norm | · |. It would be interesting to investigate

whether such an expansion exists; and, given the existence of the expansion, it

would be even more interesting to describe an algorithm for actually finding the

Gaussian integers a0, a1, . . . . This could be a good undergraduate research project.

In what follows, some ideas will be presented and discussed that might help initiate

such an undergraduate research project.

2. Extending the Greatest Integer Function. To begin our attempt at

finding an algorithm that given z ∈ C∗ constructs Gaussian integers a0, a1, . . . so

that pn/qn → z as n → ∞, we proceed by analogy with the real case and look

for the appropriate analogy to the greatest integer function. That is, a function

G:C → Z[i] so that for z in Z[i], G(z) = z. After having decided on the function G,
the proposed algorithm is the same as the algorithm in the real case, except that

G takes the place of ⌊·⌋.
Reviewing the proofs for some of the basic results found in [2], it is found that

many of them generalize to the complex case with very little change, and with no

restriction on the choice of the function G. In particular,

Proposition 1.

pn = anpn−1 + pn−2 and qn = anqn−1 + qn−2

for n > 0, where p−1 = 1, q−1 = 0 and p0 = 0, q0 = 1 in the case |z| < 1.

(This result greatly simplifies the computation of the partial quotients.)

Proposition 2. For n > 0,

pn+1qn − qn+1pn = (−1)n.
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Proposition 3. If z is irrational, then for all n, one may find a complex number

zn+1 so that

z = {a0; a1, . . . , an, zn+1} and z − pn
qn

=
(−1)n

qn(qnzn+1 + qn−1)
.

One candidate for such a function is G(x + yi) = ⌊x⌋ + ⌊y⌋i. Note that for

a real number r, |r − ⌊r⌋| < 1, but |G(z) − z| > 1 is certainly possible for some

non-real z. One could consider the function H defined by

H(z) =

{ ⌊z⌋, if Im (z) = 0

w ∈ Z[i]∗ so that |z − w| is smallest, if Im (z) 6= 0.

In the second case, there may be ties for the role of w so that |z − w| is smallest;

so in that event, choose among the w’s so that Re (w) is smallest. If that doesn’t

break the tie, then take the w so that Im (w) is as small as possible.

Consider some sample computations using G and H.

3. Some Computations.

Using G. Let’s try computing a continued fraction expansion for z =
√
2+

√
3i.

Using the function G, one computes the ai’s and the partial quotients for z − a0 to

be:

Table 1.

p−1 = 1 q−1 = 0

a0 = 1 + i p0 = 0 q0 = 1

a1 = i p1 = 1 q1 = −2i |q1|2 = 4

a2 = −i p2 = −i q2 = −1 |q2|2 = 1

a3 = 1− i p3 = −i q3 = −1− i |q3|2 = 2

a4 = 1− i p4 = −1− 2i q4 = −3 |q4|2 = 9

a5 = i p5 = −4 + i q5 = −1 + 5i |q5|2 = 26

a6 = −i p6 = 2i q6 = 2 + i |q6|2 = 5

a7 = 2− i p7 = −2 + 5i q7 = 4 + 5i |q7|2 = 41

a8 = 19− 41i p8 = 167 + 160i q8 = 283− 68i |q8|2 = 84713
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and so on . . . .

Note that a0 + p8/q8 ≈ 1.414634 + 1.731707i, which is actually a ray of false

hope for convergence: a0 + p9/q9 ≈ 1.429462 + 1.668563i, which is further from z

than a0 + p8/q8, and a31 + p31/q31 ≈ 0.056528 + 0.977573i, — not at all close to√
2 +

√
3i.

Consider the proof given on p. 84 in [2] that for a real r > 0, the partial

quotients converge to r. The key to the proof is that qn → ∞ as n → ∞; since the

qi’s are integers, this follows from the earlier result that for all i, qi+1 > qi. From

Proposition 3, the proof of convergence then follows easily. Note that using the

function G to generate the ai’s does not produce a sequence of partial quotients so

that |qi+1| > |qi|. Let’s try using H to generate the ai’s.

Using H. Let’s try computing a continued fraction expansion for z =
√
2+

√
3i

again. Using the function H, one computes the ai’s and the partial quotients for

z − a0 to be:

Table 2.

p−1 = 1 q−1 = 0

a0 = 1 + 2i p0 = 0 q0 = 1

a1 = 2 + i p1 = 1 q1 = 2 + i |q1|2 = 5

a2 = −3− i p2 = −3− i q2 = −4− 5i |q2|2 = 41

a3 = −20 + 40i p3 = 101− 100i q3 = 282− 59i |q3|2 = 83005

a4 = 4− i p4 = 300− 502i q4 = 1065− 523i |q4|2 = 1407754

a5 = 1− 2i p5 = −602− 1204i q5 = 301− 2712i |q5|2 = 7445545

a6 = −3− 2i p6 = −301 + 4314i q6 = −5262 + 7011i |q6|2 = 76842765

a7 = 1− 2i p7 = 7725 + 3712i q7 = 9061 + 14823i |q7|2 = 301823050

a8 = 1− 2i p8 = 14848− 7424i q8 = 33445 + 3712i |q8|2 = 1132346969

and so on . . . .

Note the values of |qi| do seem to be increasing and

a0 + p8/q8 ≈ 1.4142135623731+ 1.732050807569i

is fairly close to
√
2 +

√
3i.

These calculations motivate two general questions:
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Question 1. Does the sequence of partial quotients obtained using H converge

to z?

Question 2. If the answer to question 1 is ‘no’, is there any function F , so that

the sequence of partial quotients obtained using F converge to z?
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