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STABLE RINGS AND SIDE DIVISORS

Amir M. Rahimi

Abstract. All rings are commutative rings with identity. R̃ denotes the

set of all units in a ring R together with 0 and it is clear that R\R̃ = ∅ if and

only if R is a field. In addition to some other results, it is shown that R is not

stable if and only if there exists a unimodular sequence (y, u) in R with y ∈ R

and u ∈ R\R̃ such that u is not a side divisor of y. For each s ≥ 1, a sequence

a1, a2, . . . , as, as+1 of elements in a ring R is said to be stable, whenever the ideal

is (a1, a2, . . . , as, as+1) = (a1 + b1as+1, . . . , as + bsas+1) for some b1, b2, . . . , bs in

R. A sequence a1, a2, . . . , as, as+1 of elements in R is called a unimodular sequence

provided that (a1, a2, . . . , as, as+1) = R. For any fixed positive integer n, we shall

say R is n-stable (simply, stable for n = 1), whenever, for all s ≥ n any unimodular

sequence, a1, a2, . . . , as, as+1 in R is stable. u ∈ R\R̃ is said to be a side divisor of

y ∈ R, if u|y − z for some z ∈ R̃. Besides two other different proofs, we apply the

above result to show that R[X ] is not stable for any commutative ring R. At the

end, it is shown that any Artinian ring is stable.

1. Introduction. All rings are commutative rings with identity. For each

s ≥ 1, a sequence a1, a2, . . . , as, as+1 of elements in a ring R is said to be stable,

whenever the ideal (a1, a2, . . . , as, as+1) = (a1 + b1as+1, . . . , as + bsas+1) for some

b1, b2, . . . , bs ∈ R. A sequence a1, a2, . . . , as, as+1 of elements in R is called a uni-

modular sequence provided that (a1, a2, . . . , as, as+1) = R. For each fixed positive

integer n, we shall say n is in the stable range of R (simply, R is n-stable, or stable

for n = 1), if for all s ≥ n any unimodular sequence a1, a2, . . . , as, as+1 of elements

in R is stable. It is obvious that any sequence a1, a2, . . . , as, as+1 in R is stable,

whenever ai is a unit in R for some i = 1, 2, . . . , s, s+1. For example, assume as+1

is a unit in R, then (a1, a2, . . . , as, as+1) = (a1 +
as+1−a1

as+1
as+1, a2 +0as+1, . . . , as +

0as+1). For a detailed study of n-stable rings, see [1] and [3].

Let R̃ denote the set of all units in a ring R together with 0. It is clear that

R\R̃ is empty if and only if R is a field. Assume R\R̃ is not empty. u ∈ R\R̃ is a

side divisor of an element y in R provided that u|y− z for some z ∈ R̃. u is a pure

side divisor of y, if u|y − z for some z ∈ R̃\{0}. u is a universal side divisor in R,

whenever u is a side divisor of each y ∈ R. Furthermore, u ∈ R\R̃ is said to be a
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pure universal side divisor in R, whenever it is a pure side divisor of each element

y in R with y 6= 0 and y 6= u. See also the following remarks.

Remarks.

(a) If u is a pure side divisor of y ∈ R, then u does not divide y in R. Otherwise,

u|y − (y − z) for some z ∈ R̃\{0}, which is a contradiction to the choice of u.

(b) The choice of u ∈ R\R̃ makes it clear that if u is a pure side divisor of

y ∈ R, then y is different from 0 and u. This means 0 does not have any pure side

divisor in R and u cannot be a pure side divisor of itself.

(c) If u is a pure side divisor of y, then u is a side divisor of y. Conversely,

if u is a side divisor of y and u does not divide y, then u is a pure side divisor of

y. From this, it is clear that for any fixed element y in R, the set of all pure side

divisors of y is contained in the set of all side divisors of y.

2. Preliminary Lemmas.

Lemma 1. If all unimodular sequences of size n+ 1 (n ≥ 1 a fixed integer) are

stable, then any unimodular sequence of size larger than n is stable.

Proof. The proof (by induction) is based on an argument communicated by

D. Estes and R. Guralnick.

Let (a1, a2, . . . , an, an+2) = R, with 1 =
∑n+2

i=1 aixi =
∑n

i=1 aixi + y, where

y = an+1xn+1 + an+2xn+2, ai, xi in R. Hence, (a1, a2, . . . , an, y) = R and by the

induction hypothesis we have (a1+ b1y, a2+ b2y, . . . , an+ bny) = R for appropriate

b1, b2, . . . , bn in R. Then (a1+b1xn+2an+2, . . . , an+bnxn+2an+2, an+1+0 ·an+2) =

R and the proof is complete.

Lemma 2. Let A be a proper ideal of a ring R. Then R/A is n-stable, whenever

R is n-stable.

Proof. Let (a1 + A, a2 + A, . . . , as + A, as+1 + A) = R/A, where s ≥ n.

Then 1 + A =
∑s+1

i=1 (aixi + A), xi ∈ R, so that 1 = (
∑s+1

i=1 aixi) + a for some

a ∈ A. Thus, (a1, a2, . . . , as, as+1xs+1 + a) = R. Now by hypothesis, there exist

b1, b2, . . . , bs ∈ R such that (a1 + b1y, a2 + b2y, . . . , as + bsy) = R, where y =

as+1xs+1 + a. Hence, (a1 + b1y + A, . . . , as + bsy + A) = R/A. Consequently,

(a1 + (b1xs+1)as+1 +A, . . . , as + (bsxs+1)as+1 +A) = R/A and the result follows.

Lemma 3. The direct product of n-stable rings is n-stable if and only if each

factor of the product is n-stable.
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Proof. Necessity. Let πk:
∏

i∈I Ri → Rk be the kth canonical projection. Then

the conclusion is immediate from Lemma 2 above.

Sufficiency. Assume Ri is n-stable for each i ∈ I. Let

({a1,i}, {a2,i}, . . . , {as,i}, {as+1,i}) = R =
∏

i∈I

Ri.

{1Ri
} ∈ R implies {1Ri

} =
∑s+1

j=1{aj,i}{xj,i} =
∑s+1

j=1{aj,ixj,i}, {xj,i} ∈ R,

so that 1Ri
=

∑s+1

j=1 aj,ixj,i, i.e., (a1,i, a2,i, . . . , as,i, as+1,i) = Ri for each

i ∈ I. Since Ri is n-stable, there exist b1,i, b2,i, . . . , bs,i ∈ Ri such that

1Ri
∈ (a1,i + b1,ias+1,i, . . . , as,i + bs,ias+1,i), which implies 1Ri

=
∑s

j=1(aj,i +

bj,ias+1,i)(yj,i), yj,i ∈ Ri. Thus, {1Ri
} = {

∑s

j=1(aj,i + bj,ias+1,i)(yj,i)} =∑s

j=1({aj,i} + {bj,i}{as+1,i}){yj,i}. Therefore, we have {1Ri
} ∈ ({a1,i} +

{b1,i}{as+1,i}, . . . , {as,i}+ {bs,i}{as+1,i}) and the result follows.

Lemma 4. If R is a local ring, then it is stable.

Proof. Let R be a local ring with the maximal idealM . Hence, any unimodular

sequence a1, a2, . . . , as, as+1 in R must have a unit element. Otherwise, each ideal

(ai) ⊆ M for each i = 1, 2, . . . , s, s+1 and this make R ⊆ M , which is a contradic-

tion. Now, the result is immediate from the fact that any unimodular sequence is

stable, if it contains a unit element. See the argument in the introduction above.

3. Main Results with Some Examples.

Example 1. Let Z be the ring of rational integers. Then Z̃ = {1, 0,−1} and

2 is a universal side divisor in Z, since for each y ∈ Z we have y ≡ 0 (mod 2) or

y ≡ 1 (mod 2).

It is shown in [4] that an integral domain with no universal side divisor cannot

be a Euclidean domain, and in [1] it is shown that a stable principal ideal domain is

always Euclidean. Hence, if R is a PID which has no universal side divisor then R

is not stable. The converse, however, need not be true. Again, let R = Z and note

that Z is not stable [1], but 2 is a universal side divisor in Z (Example 1 above).

Theorem 1. If u ∈ R\R̃ is a pure side divisor of an element y ∈ R, then (y, u)

is a stable unimodular sequence.
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Proof. If u is a pure side divisor of y, then there exists z ∈ R̃\{0} such that

u|y − z. Then y − z = ru for some r ∈ R. Since z = y − ru, then z ∈ (y, u) and

consequently (y, u) = R = (z) = (y − ru).

Corollary 1. If u ∈ R\R̃ is a pure universal side divisor in R, then (y, u) is a

stable unimodular sequence in R for all y ∈ R\{0, u}.

Theorem 2. Let u be a fixed element in R\R̃ such that (y, u) is a unimodular

sequence for some y in R. If (y, u) is stable then u is a pure side divisor of y.

Proof. If (y, u) is stable, then (y, u) = (y + ru) for some r ∈ R. Since (y, u) is

unimodular, we have R = (y, u) = (y + ru), thus y + ru = z is a unit in R. Hence,

u|y − z implies u is a pure side divisor of y.

Corollary 2. Let u be a fixed element in R\R̃ and (y, u) = R for each y ∈

R\{0, u}. If (y, u) is stable, then u is a pure universal side divisor in R.

Theorem 3. Assume R\R̃ is not empty. R is not stable if and only if there

exists a unimodular sequence (y, u) in R with y ∈ R and u ∈ R\R̃ such that u is

not a side divisor of y.

Proof. Necessity. If R is not stable, then by Lemma 1 above there exists a

non-stable unimodular sequence (y, u), where neither y nor u is a unit of R. Thus,

neither y nor u can be zero, so u is an element of R\R̃. If we assume that u is a

side divisor of y, then for some z ∈ R̃ we have u|y − z. Since (y, u) is not stable z

cannot be a unit of R, thus z = 0. Hence, u|y, i.e., y = qu for some q ∈ R. Let

1 = yy′ + uu′, y′, u′ ∈ R. Then 1 = (qy′ + u′)u which contradicts the fact that u is

not a unit in R.

Sufficiency. Assume R is stable. Then R = (y, u) = (y + ru) for some r ∈ R.

Hence, for some unit z ∈ R̃\{0} we have y + ru = z. Thus, u|y− z, i.e., u is a side

divisor of y.

Example 2. By applying the sufficient part of Theorem 3 and the fact that

5 ∈ Z = (3, 5) is not a side divisor of 3 in Z, then it is clear that Z is not stable.

Example 3. Let R[X ] be the ring of polynomials over R and assume R̃[X ] = R̃.

Again by applying the sufficient part of Theorem 3 and the fact that 1 − X2 ∈

R[X ] = (X, 1 −X2) is not a side divisor of X , we can conclude that R[X ] is not

stable. From this, it is clear that neither Z[X ] nor F [X ] is a stable ring, where Z

is the ring of rational integers and F is a field.
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Theorem 4. Let R[X ] be the ring of polynomials with an indeterminate over

a commutative ring R with identity. Then R[X ] is not a stable ring.

Proof. First approach. Let N be the nilradical of R. Then the result follows

from Example 3 and Lemma 2 above, since R[X ]/N [X ] ∼= (R/N)[X ].

Second approach. Following Lemma 6.1 in [1], it is shown that K[X ] is not

stable whenever K is a field. Now using this fact and R[X ]/M [X ] ∼= (R/M)[X ],

where M is a maximal ideal of R, together with Lemma 2 above, we conclude that

R[X ] is not stable. Compare this result with [2].

Third approach. Suppose R[X ] is stable, then R[X ] = (X, 1 − X2) = (X +

f(X)(1−X2)) for some f(X) =
∑n

i=0 fix
i, where fi is in R for each i = 0, 1, . . . , n.

Thus, X+f(X)(1−X2) is a unit in R[X ], which forces f0 and each of (f1+1), (f2−

f0), (f3−f1), . . . , (fn−fn−2), fn−1, fn to be a unit and a nilpotent in R, respectively.

Now from this and the fact that the difference of two nilpotent elements is again a

nilpotent, we come to a contrary situation that forces f0 to be both a unit and a

nilpotent element in R.

Theorem 5. Any commutative Artinian ring with identity is stable.

Proof. By applying Lemma 3, Lemma 4 above, and the fact that any Artinian

ring is the direct product of local rings [5], the result is immediate.
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