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COMPOSITE RULES FOR IMPROPER INTEGRALS

Robert L. Doucette

1. Introduction. In this note we consider how composite rules for approxi-
mate integration may be applied to certain types of improper integrals. Recall that
composite rules are based on piecewise polynomials, e.g. the composite trapezoid
rule is based on piecewise linear interpolation.

From approximation theory we know that if pn is the piecewise linear function
which interpolates a function f ∈ C2[0, 1] at the points {i/n : 0 ≤ i ≤ n} then

‖pn − f‖∞ = O(n−2).

In [1] de Boor considers what happens when f is taken to be the square root
function. The rate of convergence deteriorates:

‖pn − f‖∞ = O(n−1/2).

However, if, rather than using a uniform mesh, we concentrate more mesh points
toward the origin, then the optimal rate of convergence O(n−2) can be recovered.
In particular, if pq,n is the piecewise linear polynomial interpolating f(x) = x1/2 at
the points

xi :=

(
i

n

)q
, 0 ≤ i ≤ n, (1)

then
‖pq,n − f‖∞ = O(n−2),

provided that q ≥ 4. It follows that if q ≥ 4 then the optimal order of convergence
holds for the corresponding composite trapezoid rule, i.e.

∣∣∣∣ ∫ 1

0

pq,n(x)− f(x)dx

∣∣∣∣ = O(n−2). (2)

From numerical experiments however, it appears that the same rate of conver-
gence holds for q as small as 4/3. In the following figure

t = log2

(∣∣∣∣ ∫ 1

0

pq,n(x)− f(x)dx

∣∣∣∣/∣∣∣∣ ∫ 1

0

pq,2n(x)− f(x)dx

∣∣∣∣),
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with n = 8192. If the rate of convergence is O(n−m) then

t ≈ log2(C/n−m)/(C/(2n)−m) = m.

Points (q, t) are plotted for various values of q. These points appear to lie on or
very near to the curve t = min{(3/2)q, 2}, whose graph is included in the figure.

2. A Composite Trapezoid Rule. By considering similar empirical results
for the functions xα with various values of α we guess that a more general result
holds. We assume here and throughout that −1 < α < 1. In Theorem 1 below we
show that a Trapezoid Rule may be applied with optimal rate of convergence in
the numerical integration of functions which behave like the function xα up to and
including the second derivative. Our definition of “behave like the function xα up
to and including the mth derivative” is given by

Cmα (0, 1] := {u ∈ Cm(0, 1] : for k = 0, 1, . . . ,m, |xk−αu(k)(x)|
is bounded for x ∈ (0, 1]}.

For u ∈ Cmα (0, 1], let

Mk := sup
x∈(0,1]

|xk−αu(k)(x)|, 0 ≤ k ≤ m.

We first prove a lemma about the meshes given in (1).
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Lemma. Let q > 1. For i > 1,

xi − xi−1 ≤
1

n
q2q−1

(
i− 1

n

)q−1
.

Proof. By the Mean Value Theorem xi − xi−1 = 1
nqγ

q−1, γ ∈ ( i−1n , in ). Note
that

γq−1 <

(
i

n

)q−1
=

(
i

i− 1

)q−1(
i− 1

n

)q−1
≤ 2q−1

(
i− 1

n

)q−1
.

The lemma now follows.
We modify slightly our previous definition of pq,n on the interval [0, x1], now

taking it to be identically zero there.
Theorem 1. If f ∈ C2

α(0, 1] then, for q > 2/(1 + α), equation (2) holds.
Proof. By hypothesis |f(x)| ≤M0x

α. Hence,

∫ x1

0

|pq,n(x)− f(x)|dx =

∫ x1

0

|f(x)|dx ≤M0
xα+1
1

α+ 1

=
M0

α+ 1

(
1

n

)q(α+1)

≤ M0

α+ 1

(
1

n

)2

. (3)

Next suppose i > 1. Using the standard error formula for interpolating poly-
nomials, for each x ∈ [xi−1, xi] there is a γ ∈ (xi−1, xi) such that

pq,n(x)− f(x) =
1

2!
f ′′(γ)(x− xi−1)(x− xi).

Note that

|f ′′(γ)(x− xi−1)(x− xi)| ≤ γα−2|γ2−αf ′′(γ)|(xi − xi−1)2

≤ xα−2i−1 M2(xi − xi−1)2.



86 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

It follows that ∫ xi

xi−1

|pq,n(x)− f(x)|dx ≤ M2

2

(xi − xi−1)3

x2−αi−1
. (4)

Because q > 2/(1 + α) there is an ε > 0 such that q = 2/(1 + α− ε). We write

(xi − xi−1)3

x2−αi−1
=

(xi − xi−1)2

x1−α+εi−1

(xi − xi−1)

x1−εi−1
. (5)

Using our Lemma

(xi − xi−1)2

x1−α+εi−1
≤ q222q−2

(
1

n

)2(
i− 1

n

)q(1+α−ε)−2
= q222q−2

(
1

n

)2

. (6)

By (4), (5), and (6),

∣∣∣∣ ∫ 1

x1

pq,n(x)− f(x)dx

∣∣∣∣ ≤ n∑
i=2

∫ xi

xi−1

|pq,n(x)− f(x)|dx

≤ q222q−2M2

2

(
1

n

)2 n∑
i=2

(xi − xi−1)

x1−εi−1
. (7)

Suppose that ε < 1. It is not difficult to show that x1−εi ≤ 2qx1−εi−1 , for 2 ≤ i ≤ n.
It follows that

n∑
i=2

(xi − xi−1)

x1−εi−1
≤ 2q

n∑
i=2

(xi − xi−1)

x1−εi

≤ 2q
∫ 1

0

1

x1−ε
dx =

2q

ε
.

If ε ≥ 1, then

n∑
i=2

(xi − xi−1)

x1−εi−1
≤
∫ 1

0

xε−1dx =
1

ε
.
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Hence,

n∑
i=2

(xi − xi−1)

x1−εi−1

is bounded in n for any ε > 0.
Putting (3) and (7) together we see that the result follows.
If q < 2/(1 + α) the proof may be modified to show that O(n−q(1+α)) is the

rate of convergence in this case.
We note that there are many numerical techniques for the integration of func-

tions with singularities such as those which we describe here. See [3]. In a recent
article, Flynn [2] discusses an efficient and easily implemented method for the nu-
merical integration of improper integrals. Adaptive quadrature methods [4] are also
used in such cases.

3. General Result on Composite Rules. The next theorem generalizes
Theorem 1 and shows that any of the popular composite methods, such as Simpson’s
rule, may be applied to certain improper integrals without deterioration in the rate
of convergence observed in the case of smooth functions, provided that q is chosen
sufficiently large. Let

0 ≤ ξ0 < ξ1 < · · · < ξr ≤ 1. (8)

For v: [0, 1] → R, let Qv be the polynomial of degree r interpolating v at the ξi.
Define xi,j := xi−1 + ξj(xi − xi−1), 1 ≤ i ≤ n, 0 ≤ j ≤ r. The proof of the next
theorem is very similar to that of Theorem 1.

Theorem 2. Suppose that the ξi in (8) are chosen to produce a quadrature rule

∫ 1

0

v ≈
∫ 1

0

Qv

of precision R. Let f ∈ CR+1
α (0, 1]. If pq,n is the piecewise polynomial whose

restriction to [0, x1] is identically zero, and whose restriction to [xi−1, xi], i > 1, is
the polynomial of degree r which interpolates f at the points {xi,j}, 0 ≤ j ≤ r,
then ∣∣∣∣ ∫ 1

0

pq,n(x)− f(x)dx

∣∣∣∣ = O(n−(R+1)),

provided that q > (R+ 1)/(1 + α).
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Sketch of Proof. It is straightforward to show that

∫ x1

0

|pq,n(x)− f(x)|dx ≤ M0

α+ 1

(
1

n

)R+1

.

For i > 1 we use a standard formula for the error in the interpolating polyno-
mial

f(x)− pq,n(x) = f [xi0, xi1, . . . , xir, x]

r∏
j=0

(x− xij), x ∈ [xi−1, xi].

If R > r, we continue by writing

f [xi0, xi1, . . . , xir, x]

= p(x) + f [xi0, xi1, . . . , xir, xi0, xi1, . . . , xiR−r−1, x]

R−r−1∏
j=0

(x− xij),

where p is a polynomial of degree R− r − 1. Since

f [xi0, xi1, . . . , xir, xi0, xi1, . . . , xiR−r−1, x] =
f (R+1)(γ)

(R+ 1)!
, γ ∈ (xi−1, xi),

we see that f(x)− pq,n(x) equals a sum of the polynomial

p̃(x) = p(x)

r∏
j=0

(x− xij)

and of

f (R+1)(γ)

(R+ 1)!

R−r−1∏
j=0

(x− xij)
r∏
j=0

(x− xij).
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Note that p̂(x) := p̃(xi−1 + x(xi − xi−1)) has degree R and zeros ξj , 0 ≤ j ≤ r. It
follows that

∫ xi

xi−1

p̃(x)dx = (xi − xi−1)

∫ 1

0

p̂(x)dx =

∫ 1

0

Qp̂(x)dx = 0.

Since

|f (R+1)(γ)| = γα−R−1|γR+1−αf (R+1)(γ)|

≤ xα−R−1i−1 |γR+1−αf (R+1)(γ)|

≤ xα−R−1i−1 MR+1

we have ∣∣∣∣ ∫ xi

xi−1

pq,n(x)− f(x)dx

∣∣∣∣ ≤ MR+1

(R+ 1)!

(xi − xi−1)R+2

xR+1−α
i−1

.

An inequality similar to (7) holds with

q222q−2M2

2

(
1

n

)2

replaced by

qR+12(q−1)(R+1)MR+1

(R+ 1)!

(
1

n

)R+1

.

From here the proof follows that of Theorem 1.
4. Numerical Example. For comparison purposes we choose to consider an

example found in [2]. We approximate the integral

∫ 1

0

1/
√

2x− x2dx =

∫ 1

1/2

1/
√
x− x2dx = 1.5707963267 . . . .
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We use Simpson’s rule, i.e. ξ0 = 0, ξ1 = 1/2, ξ2 = 1, a rule with precision 3. The
integrand belongs to C4

α(0, 1] with α = −1/2. Our Theorem 2 predicts convergence
at the rate O(n−4) provided that q > 4/(1 + α) = 8. In the table below the values
in the columns labeled “rate” are values of t. Recall from the introduction that t
is an empirical measure of m, if the theoretical rate of convergence is O(n−m).

q = 1 q = 4 q = 10

n approx. rate approx. rate approx. rate
16 1.2154585722 - 1.5674994559 - 1.5728090531 -
32 1.3201997723 0.50 1.5699744101 2.00 1.5709359174 3.85
64 1.3938304725 0.50 1.5705909909 2.00 1.5708055229 3.92
128 1.4457443959 0.50 1.5707450018 2.00 1.5707969168 3.96
256 1.4824001114 0.50 1.5707834961 2.00 1.5707963642 3.98
512 1.5083009511 0.50 1.5707931192 2.00 1.5707963291 3.99
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