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A NEW GENERALIZATION OF REED-MULLER CODES

Todd D. Vance

Abstract. An error-correcting code can be defined as a set of functions map-

ping P , called the set of places, to A, called the alphabet. With classical Generalized

Reed-Muller Codes, P is an m-dimensional vector space Fm over a finite field F ,

and A is just the finite field F . Then, C = GRM(ν,m) is defined to be the set

of all functions from P to A which, when represented as a polynomial of minimal

degree through Lagrange interpolation, (see [2], for example) has degree less than

or equal to ν.

This procedure can be generalized. C = Aν is taken to be an element of

the filtration of some filtered F -algebra B. A is another F -algebra, and P =

HOMALG (B,A). Then, C = Cν(B,A) is the set of elements of Bν viewed as

functions from P to A via b(x) := x(b) for x ∈ P and b ∈ B.

1. Filtered Algebras.

Definition 1 (Algebra). Let A be a vector space over a field F . In addition,

define a multiplication µ : A × A → A that makes A a ring with unity. Assume

also that F is injected in the center of A via f 7→ f1, where 1 is the identity of A.

Then, A is an F -algebra or simply an algebra.

Definition 2 (Algebra Homomorphism). Let f :B → A, where A and B are F -

algebras, be a linear map of vector spaces that is also a ring homomorphism taking

the unit of B to the unit of A. Then, f is called a homomorphism from B to A.

The set of all homomorphisms from B to A will be denoted HOMALG (A,B).

An example which motivates the remainder of the paper follows: let F be a

field and X be any set. Then, we define the polynomial algebra with coefficients in

F and indeterminates in X as the algebra F [X ]: let X̂ be the free Abelian monoid

generated by X . Then, the underlying set of F [X ] is the vector space over F with

standard basis X̂. Multiplication is just the multiplication in X̂ extended bilinearly

to all of F [X ]. For example, if X = {x1, x2, . . . , xn}, then F [X ] = F [x1, x2, . . . , xn]

is just the set of all polynomials over F with variables x1, x2, . . . , xn along with the

standard polynomial addition and multiplication.
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It can be shown that F [X ] is a free commutative F -algebra over the set X .

This means that, given any set map φ : X → A, A any algebra, there is a unique

algebra homomorphism φ♯:F [X ] → A that extends the domain of φ as a set map.

For example, if X = {x1, x2, . . . , xm} is a finite set and F [X ] is the m-variable

polynomial algebra over F , then let A = F be the one-dimensional algebra. Then,

a set map φ:F [X ] → F can be viewed as substitution of field elements for the

variables. That is, each such φ is identified with an m-tuple (a1, a2, . . . , am) ∈ Fm.

Then, φ♯ is just the homomorphism from F [X ] to F that sends a polynomial f to

f(a1, a2, . . . , am). In fact, all homomorphisms from F [X ] to F arise in this way (by

restriction of the homomorphism to X ⊂ F [X ]). Thus, we have the identification

of sets HOMALG (F [X ], F ) = Fm. More generally, for any X and any F -algebra

A, we have HOMALG (F [X ], A) = AX , where AX is the set of all set maps from X

to A.

Definition 3 (Filter). Let B be an F -algebra. Let Z+ be the set of non-negative

integers, i.e. Z+ = {0, 1, 2, . . .}. Suppose

B =
⋃

ν∈Z+

Bν

where

B0 ⊂ B1 ⊂ B2 ⊂ · · · .

If, in addition, BνBµ ⊂ Bν+µ for ν, µ ∈ Z
+, then we say B is filtered. The list

{B0, B1, . . . } is called a filter on B.

A filter is just a generalization of the degree of a polynomial. For example, if

B = F [x1, . . . , xm] is the polynomial ring of m variables, then the standard filtering

on B is

Bν = {f ∈ B | deg f ≤ ν}.

More information about algebras and filtered algebras can be found in [4] and

[5].

2. Algebraic Reed-Muller Codes.

Definition 4 (Code). Let A and P be sets. Let AP be the set of all set maps

f :P → A. Then a code is a subset C ⊂ AP . A is called the alphabet of the code

and P is the set of places.
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Most often P and A, and therefore C are finite. Also, A is often taken to

be a field and C is taken to be a vector subspace of AP , which has a vector space

structure on it through pointwise addition and scalar multiplication of the functions.

See [1] for more information about codewords defined as functions.

Let B be any filtered F -algebra (with filtration {B0, B1, . . . }) and A another

algebra. Then, let P = HOMALG (B,A). Then, we have a set map ρ:B → AP

defined as follows: for b ∈ B and x ∈ P , ρ(b):P → A via ρ(b)(x) = x(b). Note that

more than one element of B can have the same image in AP under ρ.

Definition 5 (Algebraic Reed-Muller Code). Let F be any field, and B, {Bν},

A, P , and ρ be as above. The code

Cν(B,A) = {c ∈ AP | ρ(b) = c for some b ∈ Bν}

is called the ν-th order algebraic Reed-Muller code in B and over A.

For example, if A = F is a finite field and A = F [x1, . . . , xm], then the Cν(B,A)

are just the classical generalized Reed-Muller codes which are well studied and often

used in applications. Thus, we have a new generalization of Reed-Muller codes.

(More information about classical generalized Reed-Muller codes can be found in

[6], [3], and [1].)

Note that it is routinely shown that if A = F is a finite field and B any filtered

algebra, then the Cν(B,A) are equivalent to classical generalized Reed-Muller codes

with some coordinate positions deleted. On the other hand, if A is an algebra that

is not a field, then we have a generalization of Reed-Muller codes to a large class

of non-field alphabets.
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