PARABOLAS IN TAXICAB GEOMETRY

Y. Phoebe Ho and Yan Liu

1. Introduction. Reynolds [1] raised some open questions concerning the definition of taxicab parabolas. Moser, Kramer [2], and Iny [3] looked into these questions but did not answer all of them. We would like to provide an analysis to the solutions with more details in this paper.

Let's first take a look at the definition of taxicab metric.
Definition 1.1. Let $d_{T}: R^{2} \times R^{2} \rightarrow[0, \infty)$
be defined as

$$
d_{T}\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| .
$$

Then $\left(d_{T}, R^{2}\right)$ forms a metric space and d_{T} is called the taxicab metric on R^{2}.
In R^{2}, there are several different but equivalent ways to define straight lines using Euclidean metric. However, Chen [4] showed that these ways are no longer equivalent when Euclidean metric is replaced by taxicab metric. Liu [5] used the idea of a line being the bisector of two points to define the taxicab bisector (or taxicab line).

Definition 1.2 Let $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ be two points in R^{2}. Then the set

$$
D=\left\{(x, y)| | x-x_{1}\left|+\left|y-y_{1}\right|=\left|x-x_{2}\right|+\left|y-y_{2}\right|\right\}\right.
$$

is called the taxicab bisector (or the taxicab line) of the points P_{1} and P_{2}.
Since a parabola in Euclidean geometry is the set of the points which are equidistant to a fixed point; called the focus, and a fixed line; called the directrix, we need to discuss the distance between a point and a taxicab bisector before defining the taxicab parabola.

Theorem 1.1.[1] The shortest taxicab distance from a point to a Euclidean line is either the horizontal distance or the vertical distance whichever is smaller.

Liu [5] showed that there are three types of taxicab bisectors determined by the relation between the difference of x-coordinates and that of y-coordinates of P_{1} and P_{2}. Two of them are Euclidean line or the union of a Euclidean line segment and
two rays, while the third one is the union of a Euclidean line segment and regions enclosed by Euclidean rays. So Theorem 1.1 has helped us in defining $d_{T}(P, D)$ as the shortest taxicab distance from a point P to a bisector D.

Definition 1.3. Let D be a taxicab bisector and F be a point in R^{2} such that $F \notin D$. The set $M=\left\{P \in R^{2} \mid d_{T}(P, F)=d_{T}(P, D)\right\}$ is called a taxicab parabola with focus F and directrix D.

Throughout this paper, we denote a taxicab parabola by M with focus $F\left(f_{1}, f_{2}\right)$ and directrix D which is the taxicab bisector of two points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$.
2. Tri-line Directrix. The first type of bisectors has three components. We are going to show the results with the relation between the two points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ which determine the directrix of a parabola such that $x_{2}<x_{1}$, $y_{2}<y_{1}$, and $\left|x_{1}-x_{2}\right|>\left|y_{1}-y_{2}\right|$. Liu [5] showed that the bisector of $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ with such relation is $D=L_{1} \cup L_{2} \cup L_{3}$ where

$$
\begin{aligned}
& L_{1}=\left\{(x, y) \left\lvert\, x=\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right., y \geq y_{1}\right\}, \\
& L_{2}=\left\{(x, y) \left\lvert\, y=-x+\frac{1}{2}\left(y_{2}+y_{1}+x_{1}+x_{2}\right)\right., y_{1} \leq y \leq y_{2}\right\}, \text { and } \\
& L_{3}=\left\{(x, y) \left\lvert\, x=\frac{1}{2}\left(y_{1}-y_{2}+x_{1}+x_{2}\right)\right., y \leq y_{2}\right\}
\end{aligned}
$$

Although we obtain the different graphs of M according to the location of its focus, F and directrix, D. The proofs among the cases are similar. So we will just provide one of them. Also, we will only show the results with F to the right of D.

Those cases with F to the left of D are not discussed here for the results are just the opposite of what we have here.

With the assumption, $x_{2}<x_{1}, y_{2}<y_{1}$ and $\left|x_{1}-x_{2}\right|>\left|y_{1}-y_{2}\right|$, we have the following four cases.

Case 2.1. Let $f_{2} \geq y_{1}$. Then we have three subcases.
(A) If $y_{1} \leq f_{2}-f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$ and let $\alpha=\frac{1}{2}\left(f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right)$,
then $M=\bigcup_{i=1}^{4} A_{i}$ where

$$
\begin{aligned}
& A_{1}=\left\{(x, y) \left\lvert\, y=2 x+f_{2}-f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right., \alpha \leq x \leq f_{1}\right\}, \\
& A_{2}=\left\{(x, y) \left\lvert\, y=f_{2}+f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right., x \geq f_{1}\right\}, \\
& A_{3}=\left\{(x, y) \left\lvert\, y=-2 x+f_{2}+f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right., \alpha \leq x \leq f_{1}\right\}, \text { and } \\
& A_{4}=\left\{(x, y) \left\lvert\, y=f_{2}-f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right., x \geq f_{1}\right\} .
\end{aligned}
$$

Proof of (A). Let $x_{2}<x_{1}, y_{2}<y_{1},\left|x_{1}-x_{2}\right|>\left|y_{1}-y_{2}\right|$, and $f_{2} \geq y_{1}$. Since F is to the right of $D, f_{1}>\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$ implies $f_{2}-f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)<f_{2}$. For any $(x, y) \in R^{2}$, if it is on the left side of D, then $d_{T}((x, y), D)<d_{T}((x, y), F)$. Hence, all we need to check are those points on the right side of D. From the
assumption $y_{1} \leq f_{2}-f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)<f_{2}$, any $(x, y) \in R^{2}$ on the right side of D along with $y<f_{2}-f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$ has the following result:

$$
\begin{aligned}
d_{T}((x, y), F) & >\left|x-f_{1}\right|+f_{2}-\left(f_{2}-f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right) \\
& =\left|x-f_{1}\right|+f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)>d_{T}((x, y), D)
\end{aligned}
$$

This implies that $(x, y) \notin M$.
Also if $y \geq y_{1}$, then $d_{T}((x, y), D)=\left|x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right|$.
(i) If $\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) \leq x \leq f_{1}$ and $y \geq f_{2}$, then

$$
\begin{aligned}
& \left|x-f_{1}\right|+\left|y-f_{2}\right|=\left|x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right| \\
\Longrightarrow & f_{1}-x+y-f_{2}=x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) \\
\Longrightarrow & y=2 x-f_{1}+f_{2}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) .
\end{aligned}
$$

In particular, when $y=f_{2}$, we have $f_{2}=2 x-f_{1}+f_{2}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$ which implies $x=\frac{1}{2}\left(f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right)=\alpha$.
(ii) If $x \geq f_{1}$ and $y \geq f_{2}$, then

$$
\begin{aligned}
& \left|x-f_{1}\right|+\left|y-f_{2}\right|=\left|x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right| \\
\Longrightarrow & x-f_{1}+y-f_{2}=x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) \\
\Longrightarrow & y=f_{1}+f_{2}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) .
\end{aligned}
$$

(iii) If $\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) \leq x \leq f_{1}$ and $f_{2}-f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) \leq y \leq f_{2}$, then

$$
\begin{aligned}
& \left|x-f_{1}\right|+\left|y-f_{2}\right|=\left|x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right| \\
\Longrightarrow & f_{1}-x+f_{2}-y=x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) \\
\Longrightarrow & y=-2 x+f_{1}+f_{2}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) .
\end{aligned}
$$

Again when $y=f_{2}, x=\alpha$.
(iv) If $x \geq f_{1}$ and $f_{2}-f_{1}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) \leq y \leq f_{2}$, then

$$
\begin{aligned}
& \left|x-f_{1}\right|+\left|y-f_{2}\right|=\left|x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)\right| \\
\Longrightarrow & x-f_{1}+f_{2}-y=x-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) \\
\Longrightarrow & y=-f_{1}+f_{2}+\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right) .
\end{aligned}
$$

For any other $(x, y) \in R^{2}, d_{T}((x, y), F)=d_{T}((x, y), D)$ will lead us to an empty set.

Therefore, $M=\bigcup_{i=1}^{4} A_{i}$.
For each of the remaining subcases, we are going to show only the graph of M with its hypotheses.
(B) If $y_{2}<\frac{1}{2}\left(f_{2}-f_{1}+\frac{1}{2}\left(y_{2}+y_{1}+x_{1}+x_{2}\right)\right)<y_{1}$, then the graph of M is

(C) If $\frac{1}{2}\left(f_{2}-f_{1}+\frac{1}{2}\left(y_{2}+y_{1}+x_{1}+x_{2}\right)\right) \leq y_{2}<y_{1}$, then the graph of M is

Similar to the subcases of Case 2.1, only the graph of M and its hypotheses are presented in each of the following cases and their subcases.

Case 2.2. Let $y_{2}<f_{2}<y_{1}$.
(A) If $y_{2} \leq \frac{1}{2}\left(f_{2}-f_{1}+\frac{1}{2}\left(y_{2}+y_{1}+x_{1}+x_{2}\right)\right)$, then the graph of M is

(B) If $y_{2}>\frac{1}{2}\left(f_{2}-f_{1}+\frac{1}{2}\left(y_{2}+y_{1}+x_{1}+x_{2}\right)\right)$, then the graph of M is

Case 2.3. Let $y_{2}=f_{2}$.
(A) If $y_{1}<f_{2}+f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$, then the graph of M is

7
(B) If $y_{1}=f_{2}+f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$, then the graph of M is

In both Case 2.2 and Case 2.3, if $y_{1}>f_{2}+f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$, then F has to be on the left side of D which is contradictory to our assumption.

Case 2.4. Let $f_{2}<y_{2}$.
(A) If $y_{1}<f_{2}+f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$, then the graph of M is

(B) If $y_{1}=f_{2}+f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$, then the graph of M is

(C) If $y_{2}>f_{2}+f_{1}-\frac{1}{2}\left(y_{2}-y_{1}+x_{1}+x_{2}\right)$, then the graph of M is

(D) If $y_{2}=f_{2}+f_{1}-\frac{1}{2}\left(y_{1}-y_{2}+x_{1}+x_{2}\right)$, then the graph of M is

3. One-line Directrix. The second type of taxicab bisector is either a horizontal line or a vertical line. In the first two cases, D is the taxicab bisector of $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ where $y_{1}=y_{2}$ while the last two cases, $x_{1}=x_{2}$. Again, we will only present the assumptions and the graphs.

Case 3.1. If $D=\left\{(x, y) \left\lvert\, x=\frac{1}{2}\left(x_{1}+x_{2}\right)\right.\right\}$ and $f_{1}>\frac{1}{2}\left(x_{1}+x_{2}\right)$, then the graph of M is

Case 3.2. If $D=\left\{(x, y) \left\lvert\, x=\frac{1}{2}\left(x_{1}+x_{2}\right)\right.\right\}$ and $f_{1}<\frac{1}{2}\left(x_{1}+x_{2}\right)$, then the graph of M is

Case 3.3. If $D=\left\{(x, y) \left\lvert\, y=\frac{1}{2}\left(y_{1}+y_{2}\right)\right.\right\}$ and $f_{2}>\frac{1}{2}\left(y_{1}+y_{2}\right)$, then the graph of M is

Case 3.4. If $D=\left\{(x, y) \left\lvert\, y=\frac{1}{2}\left(y_{1}+y_{2}\right)\right.\right\}$ and $f_{2}<\frac{1}{2}\left(y_{1}+y_{2}\right)$, then the graph of M is

The same mechanics can be used for the discussion of the case that $\left|x_{1}-x_{2}\right|>$ $\left|y_{1}-y_{2}\right|, x_{2}<x_{1}$, and $y_{2}>y_{1}$, and the case $\left|x_{1}-x_{2}\right|<\left|y_{1}-y_{2}\right|$. When
$\left|x_{1}-x_{2}\right|=\left|y_{1}-y_{2}\right|$, the directrix D is more complicated than the previous cases, thus it will be saved for the sequel of this paper.

References

1. B. Reynolds, "Taxicab Geometry" Pi Mu Epsilon Journal, 7 (1980), 77-88.
2. J. Moser and J. Kramer, "Lines and Parabolas in Taxicab Geometry," Pi Mu Epsilon Journal, 7 (1982), 441-444.
3. D. Iny, "Geometry: Another Look at Conic Sections," Pi Mu Epsilon Journal, 7 (1984), 645-647.
4. G. Chen, Lines and Circles in Taxicab Geometry, CMSU Thesis (1992).
5. Y. Liu, Conic Sections in Taxicab Geometry, CMSU Preprint.
