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MIXED INSURANCE RISK MODELS

Liansheng Chen and Jinhua Tao

1. Introduction. Traditionally, the distribution of aggregate claims of a

portfolio has been a central topic in risk theory. The discussion has focused on two

problems: the choice of the distribution and its numerical evaluation by means of

an approximation. Consider the collective risk model where the aggregate claim

random variable S for a portfolio of insurance policies over a fixed period can be

expressed as

S = X1 +X2 + · · ·+XN .

In this model, X1, X2, · · · are claim size random variables and N is the claim

frequency random variable. The case of when N is a simple counting random

variable with fixed parameters has been extensively studied. In this paper we

generalize the above model to a mixed risk model where the random variable N

depends on another random risk parameter. The parameter itself is assumed to

be distributed over the population of risks under consideration in accordance with

some distribution. There are several situations in which this might be a useful way

to consider the distribution of N . For example, consider a population of insureds

where various classes of insureds within the population generate numbers of claims

according to different distributions.

2. Probability Distribution of S. Let S = X1 + · · · + XN , where N is

a counting random variable (r.v.) whose distribution depends on some random

parameter Λ. In order to make the model mathematically attractive, we assume

the following conditions.

1)X1, X2, · · · are identically distributed with common cumulative distribution func-

tion (c.d.f.) FX(x).

2) The random variables N,X1, X2, · · · are mutually independent (this implies that

Λ, X1, X2, · · · are mutually independent).

We further denote the conditional probability density function (p.d.f.) of non-

negative r.v. N given that Λ = λ by fN |λ(n), for n = 0, 1, 2, · · · . Also, we denote

the c.d.f. of Λ by FΛ(λ). Using the law of total probability we can get the following
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propositions about the distribution, expectations, and moment generating function

of S.

Proposition 2.1. The c.d.f of S can be written as

FS(x) = P (S ≤ x) =

∫ ∞
∑

n=0

F ∗n
X (x)fN |λ(n)dFΛ(λ).

Proof.

P (S ≤ x) = P (X1 + · · ·+XN ≤ x)

=

∫ ∞
∑

n=0

P (X1 + · · ·+XN ≤ x|N = n&Λ = λ)fN |λ(n)dFΛ(λ)

where the integral is the Riemann-Stieltjes integral. Note that for each fixed λ

and n, P (X1 + · · · +XN ≤ x) = F ∗n
X (x), the nth convolution of the c.d.f. of X1.

Therefore the result holds.

Proposition 2.2.

E(S) = EΛ[E(N |Λ)] ·E(X1).

Proof. Since

E(S) = E(X1 + · · ·+XN )

= EΛ{EN [E(X1 + · · ·+XN |N)|Λ]}

= EΛ{EN [N ·E(X1)|Λ]}

= EΛ[E(N |Λ)] · E(X1).

Note that EΛ[E(N |Λ)] represents the mean claim number over the entire pop-

ulation and E(N |λ) is the mean claim number over the population class of risk

component λ.
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Proposition 2.3.

V ar(S) = EΛ[E(N |Λ)] · V ar(X1) + {EΛ[V ar(N |Λ)] + V arΛ[E(N |Λ)]} · [E(X1)]
2

Proof. Using the law of total probability, the independence condition of Xi’s,

and the definition of variance: V ar(S) = E(S2)− [E(S)]2, it is easy to prove that

1)

V ar(N) = E(N2)− [E(N)]2

= EΛ[E(N2|Λ)]− [EΛ(E(N |Λ))]2

= EΛ[E(N2|Λ)]− EΛ[E(N |Λ)]2 + EΛ[E(N |Λ)]2 − [EΛ(E(N |Λ))]2

= EΛ[V ar(N |Λ)] + V arΛ[E(N |Λ)].

2) Similarly,

V ar(S) = EN [V ar(X1 + · · ·+XN |N)] + V arN [E(X1 + · · ·+XN |N)]

= EN [N · V ar(X1)] + V arN [E(N ·X1)]

= E(N) · V ar(X1) + V ar(N) · [E(X1)]
2.

The result of Proposition 2.3 follows from 1) and 2).

Proposition 2.4.

MS(t) = EΛ[MN |Λ(logMX1
(t))]

where MS(t) and MX1
(t) are the moment generating functions (MGF) for ran-

dom variables S and X1 respectively, and MN |Λ(t) is the MGF for the conditional

random variable N given Λ.

Proof. By the definition of MGF and the independence condition of Xi’s,

MS(t) = E(etS)

= EΛ{EN [E(et(X1+···+XN )|N)|Λ]}

= EΛ{EN [(MX1
(t))N |Λ]}

= EΛ{EN [exp(N logMX1
(t))|Λ]}

= EΛ[MN |Λ(logMX1
(t))].
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3. Mixed Compound Poisson Model. In practice, people usually choose

the Binomial, Poisson or Negative Binomial random variables to model the count-

ing random variable N . Because of the special structure and the mathematical

simplicities of the expectations of Poisson distribution, not only do Propositions

2.1–2.4 have simpler forms but also the distribution of S has a special recursive

property. In particular, we will study the mixed compound Poisson model in this

section, i.e., N is a Poisson random variable with a random mean Λ whose p.d.f. is

denoted by fΛ(λ).

a) Distribution function:

FS(x) =

∫ ∞
∑

n=0

F ∗n
X (x) ·

e−λλn

n!
fΛ(λ)dλ

b) Expectation: E(S) = E(Λ) · E(X1)

c) Variance: V ar(S) = E(Λ) ·E(X2
1 ) + V ar(Λ) · [E(X1)]

2

d) Moment generating function:

MS(t) = EΛ[e
Λ(MX1

(t)−1)] = MΛ(MX1
(t)− 1)

e) Recursion formula for p.d.f. of S: Usually, the calculation of convolutions in-

volved in 1) is tedious. However, Harry Panjer [6] has derived a recursion formula

for the distribution of the compound Poisson model (λ is a fixed parameter) when

the claim size (X1) distribution is on the positive integers. This formula can reduce

computational time dramatically when a large number of claims are expected to

occur. For completeness, we present both the theorem and its proof here.

Theorem 1. The compound Poisson distribution with the claim size distribu-

tion defined on the positive integers with probability function fX(x), x = 1, 2, 3, · · ·

satisfies

fS(x) =
λ

x

x
∑

k=1

kfX(k)fS(x− k), x = 1, 2, 3, · · ·

with fS(0) = e−λ.
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Proof. For the Poisson distribution,

nP{N = n} = λP{N = n− 1}, n = 1, 2, 3, · · · .

Multiplying each side by [MX(−z)]n−1M ′
X(−z), (note that MX(−z) is actu-

ally the Laplace transform of p.d.f. of X) and summing over n yields

∞
∑

n=1

nP{N = n}[MX(−z)]n−1M ′
X(−z)

= λ

∞
∑

n=1

P{N = n− 1}[MX(−z)]n−1M ′
X(−z).

Recognizing that MS(−z) =
∑∞

n=0 P{N = n}[MX(−z)]n, the above equation

can be written as

M ′
S(−z) = λM ′

X(−z)MS(−z).

Taking the inverse Laplace transform and using the fact that X is defined only

on positive integers yields

xfS(x) = λ

x
∑

k=1

kfX(k)fS(x − k),

and the proof is complete.

Applying this theorem to each risk class in the population and using the law

of total probability, we have the following corollary.

Corollary. Let S be a finite mixture of the compound Poisson model (i.e., fΛ(λ)

is defined only on m values λ1, · · · , λm). Then when the claim size distribution is

defined on the positive integers, the distribution of S can be computed recursively

as follows:

fS(x) =

m
∑

i=1

fS|λi
(x)fΛ(λi), x = 1, 2, 3, · · ·
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and

fS|λi
(x) =

λi

x

x
∑

k=1

kfX(k)fS|λi
(x− k),

with fS|λi
(0) = e−λi i = 1, · · · ,m.

f) Relation between mixed compound Poisson model and compound negative bino-

mial model.

The following theorem states that for some special mixing functions the mixed

compound Poisson model can be viewed as a compound risk model. Therefore, all

the results for the compound model apply to this particular mixed model.

Theorem 2. For the mixture of a compound Poisson model, if Λ is a random

variable with Gamma distribution, then the aggregate claim random variable S has

a compound negative binomial distribution.

Proof. Recall that a Gamma random variable with parameters α and β has a

p.d.f.

f(λ) =
βα

Γ(α)
λα−1e−βλ, λ > 0

where Γ(·) is the Gamma function, and a MGF

MΛ(t) =

(

β

β − t

)α

, t < β.

Also recall that a negative binomial random variable N , with parameters p

and r, has a MGF

MN (t) =

(

p

1− qet

)r

where q = 1− p.
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Since the MGF uniquely determines the distribution, we only need to show

that the MGF of the mixed Poisson with Gamma mixing is equal to the MGF of a

compound negative binomial.

From part d) of this section and the MGF of Gamma distribution we have

MS(t) = MΛ(MX1
(t)− 1)

=

(

β

β −MX1
(t) + 1

)α

=

(

p

1− qMX1
(t)

)r

,

with p = β
β+1 , q = 1

β+1 and r = α.

It is clear to see that the last expression is the MGF for the compound negative

binomial model with parameters p, q and r.
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