A NECESSARY AND SUFFICIENT CONDITION FOR TWIN PRIMES

Joseph B. Dence
University of Missouri-St. Louis

Thomas P. Dence

Ashland University

Wilson's Theorem, and its converse, give a necessary and sufficient condition for an integer p to be a prime [1]. In this note, we give an analogous condition for $(p, p+2)$ to be twin primes. This result, similar in nature to that of Clement [2], is not commonly encountered in introductory number theory texts $[3,4,5]$, and would make an interesting topical addition to the first course.

We start with the well-known result that $(p-1)!\equiv-1(\bmod p)$ if and only if p is a prime. Since $(p-1)$! is equal to $(p-1)(p-2)$!, and $(p-1) \equiv-1(\bmod p)$, it follows that $(-1)(p-2)!\equiv-1(\bmod p)$ if and only if p is a prime. Repeating this reduction, next with $p-2, n-2$ more times gives the result

$$
\begin{equation*}
(n-1)!(-1)^{n-1}(p-n)!\equiv-1 \quad(\bmod p), \quad 1 \leq n<p \tag{1}
\end{equation*}
$$

Choosing $n=(p+1) / 2$ and substituting into (1), we obtain a key identity,

$$
\left(\frac{p-1}{2}\right)!^{2} \equiv \begin{cases}-1(\bmod p), & \text { if } p \text { is a }(4 k+1) \text {-prime } \tag{2}\\ +1(\bmod p), & \text { if } p \text { is a }(4 k+3) \text {-prime }\end{cases}
$$

In the case of twin primes, two cases arise.
Case 1. $p=4 k+1$ and $p+2=4 k+3$.
Then (2) gives $((p-1) / 2)!^{2} \equiv-1(\bmod p)$ and $((p+1) / 2)!^{2} \equiv 1(\bmod p+2)$. The latter is equivalent to $\left(p^{2}+2 p+1\right)((p-1) / 2)!^{2} \equiv 4(\bmod p+2)$, and the reduction of $\left(p^{2}+2 p+1\right) \equiv 1(\bmod p+2)$ gives $((p-1) / 2)!^{2} \equiv 4(\bmod p+2)$, or

$$
\begin{equation*}
((p-1) / 2)!^{2}=4+r(p+2) \tag{3}
\end{equation*}
$$

for some $r \in \mathbb{N}$. Hence, $4+r(p+2) \equiv-1(\bmod p)$, or $2 r=-5+m p$ for some $m \in \mathbb{Z}$. Solving this for r and substituting into (3), we obtain

$$
2((p-1) / 2)!^{2}+5 p=-2+m p(p+2)
$$

or as the equivalent congruence

$$
\begin{equation*}
2\left(((p-1) / 2)!^{2}+1\right)+5 p \equiv 0 \quad(\bmod p(p+2)) \tag{4}
\end{equation*}
$$

if and only if $(p, p+2)$ are twin primes and p has the form $4 k+1$.
Case 2. $p=4 k-1$, and $p+2=4 k+1$.
Then (2) gives $((p-1) / 2) \equiv 1(\bmod p)$ and $((p+1) / 2)^{2} \equiv-1(\bmod p+2)$, and duplication of the above steps gives as the companion to (4)

$$
\begin{equation*}
2\left(((p-1) / 2)!^{2}-1\right)-5 p \equiv 0 \quad(\bmod p(p+2)) \tag{5}
\end{equation*}
$$

if and only if $(p, p+2)$ are twin primes and p has the form $4 k-1$.
Numerical checks are always assuring. When $p=17$, then (4) demands $323 \mid\left(2(8!)^{2}+\right.$ $85+2$); in fact, $323 \cdot 10066269=3251404887$. In contrast, when $p=13$ we find that $195+\left(2(720)^{2}+65+2\right)$. When $p=11$, then (5) demands $143 \mid\left(2(5!)^{2}-55-2\right)$; in fact, $143 \cdot 201=28743$. In contrast, when $p=19$, we find that $399+\left(2(9!)^{2}-95-2\right)$. Of course, just like Wilson's Theorem, equations (4), (5) are grossly impractical as a test (for twin primes).

Extensions of the above equations (4), (5) are possible. We can show similarly that $(p, p+4)$ are a twin $(4 k+1)$-prime pair if and only if

$$
\begin{equation*}
36\left(((p-1) / 2)!^{2}+1\right)-7 p \equiv 0 \quad(\bmod p(p+4)) \tag{6}
\end{equation*}
$$

and that $(p, p+4)$ are a twin $(4 k+3)$-prime pair if and only if

$$
\begin{equation*}
36\left(((p-1) / 2)!^{2}-1\right)+7 p \equiv 0 \quad(\bmod p(p+4)) \tag{7}
\end{equation*}
$$

References

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, Oxford, 1979, 68, 88.
2. P. A. Clement, "Congruences for Sets of Primes," American Mathematical Monthly, 56 (1949), 23-25.
3. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
4. C. Vanden Eynden, Elementary Number Theory, Random House, New York, 1987.
5. K. H. Rosen, Elementary Number Theory and its Applications, 3rd ed., Addison-Wesley, Reading, PA, 1993.
