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Wilson’s Theorem, and its converse, give a necessary and sufficient condition for an

integer p to be a prime [1]. In this note, we give an analogous condition for (p, p + 2) to

be twin primes. This result, similar in nature to that of Clement [2], is not commonly

encountered in introductory number theory texts [3,4,5], and would make an interesting

topical addition to the first course.

We start with the well-known result that (p − 1)! ≡ −1 (mod p) if and only if p is a

prime. Since (p− 1)! is equal to (p− 1)(p− 2)!, and (p− 1) ≡ −1 (mod p), it follows that

(−1)(p− 2)! ≡ −1 (mod p) if and only if p is a prime. Repeating this reduction, next with

p− 2, n− 2 more times gives the result

(1) (n− 1)!(−1)n−1(p− n)! ≡ −1 (mod p), 1 ≤ n < p.

Choosing n = (p+ 1)/2 and substituting into (1), we obtain a key identity,

(2)

(

p− 1

2

)

!2 ≡

{

−1 (mod p), if p is a (4k + 1)-prime

+1 (mod p), if p is a (4k + 3)-prime.

In the case of twin primes, two cases arise.

Case 1. p = 4k + 1 and p+ 2 = 4k + 3.

Then (2) gives ((p− 1)/2)!2 ≡ −1 (mod p) and ((p+ 1)/2)!2 ≡ 1 (mod p + 2). The

latter is equivalent to (p2 + 2p + 1) ((p− 1)/2)!2 ≡ 4 (mod p + 2), and the reduction of

(p2 + 2p+ 1) ≡ 1 (mod p+ 2) gives ((p− 1)/2)!2 ≡ 4 (mod p+ 2), or

(3) ((p− 1)/2)!2 = 4 + r(p+ 2)
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for some r ∈ N. Hence, 4 + r(p + 2) ≡ −1 (mod p), or 2r = −5 + mp for some m ∈ Z.

Solving this for r and substituting into (3), we obtain

2 ((p− 1)/2)!2 + 5p = −2 +mp(p+ 2),

or as the equivalent congruence

(4) 2
(

((p− 1)/2)!2 + 1
)

+ 5p ≡ 0 (mod p(p+ 2)),

if and only if (p, p+ 2) are twin primes and p has the form 4k + 1.

Case 2. p = 4k − 1, and p+ 2 = 4k + 1.

Then (2) gives ((p− 1)/2) ≡ 1 (mod p) and ((p+ 1)/2)2 ≡ −1 (mod p + 2), and

duplication of the above steps gives as the companion to (4)

(5) 2
(

((p− 1)/2)!2 − 1
)

− 5p ≡ 0 (mod p(p+ 2)),

if and only if (p, p+ 2) are twin primes and p has the form 4k − 1.

Numerical checks are always assuring. When p = 17, then (4) demands 323|(2(8!)2 +

85 + 2); in fact, 323 · 10066269 = 3251404887. In contrast, when p = 13 we find that

195 –| (2(720)2 + 65 + 2). When p = 11, then (5) demands 143|(2(5!)2 − 55 − 2); in fact,

143 · 201 = 28743. In contrast, when p = 19, we find that 399 –| (2(9!)2 − 95− 2). Of course,

just like Wilson’s Theorem, equations (4), (5) are grossly impractical as a test (for twin

primes).

Extensions of the above equations (4), (5) are possible. We can show similarly that

(p, p+ 4) are a twin (4k + 1)-prime pair if and only if

(6) 36
(

((p− 1)/2)!2 + 1
)

− 7p ≡ 0 (mod p(p+ 4)),

and that (p, p+ 4) are a twin (4k + 3)-prime pair if and only if

(7) 36
(

((p− 1)/2)!2 − 1
)

+ 7p ≡ 0 (mod p(p+ 4)).
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