SOME CHARACTERIZATIONS OF PERFECT NUMBERS

Joe Flowers

Northeast Missouri State University

In this paper, several (perfectly many) characterizations of perfect numbers are presented. A positive integer n is perfect (by definition) if and only if $\sigma(n)=2 n$ where $\sigma(n)=\sum_{d \mid n} d$ is the sum of all (positive) divisors of n. Replacing d with n / d in the equation $\sum_{d \mid n} d=2 n$ yields the alternative definition: n is perfect if and only if $\sum_{d \mid n} 1 / d=2$.

Two very old unsolved problems concerning perfect numbers are:
(i) Do infinitely many perfect numbers exist?
(ii) Do any odd perfect numbers exist?

The function σ is an example of a multiplicative function since it has the property $\sigma(m n)=\sigma(m) \sigma(n)$ whenever $\operatorname{gcd}(m, n)=1$. Other multiplicative functions which appear in the paper are: τ where $\tau(n)=\sum_{d \mid n} 1$ is the number of divisors of n; Euler's function ϕ where $\phi(n)$ is the number of integers x such that $1 \leq x \leq n$ and $\operatorname{gcd}(n, x)=1 ; E$ where $E(n)=n ; U$ where $U(n)=1$ for all n; the Moebiüs function μ where $\mu(1)=1, \mu(n)=0$ if $p^{2} \mid n$ for some prime $p, \mu(n)=(-1)^{\alpha}$ if n is the product of α distinct primes; i where $i(1)=1, i(n)=0$ for $n>1 ; r$ where $r(n)=1 / n ; h$ where $h(n)=n^{2} ; f$ where $f(n)=\sigma\left(n^{2}\right)$.

Each of the following 28 formulas is a necessary and sufficient condition for n to be perfect. For the most part, each formula is obtained by substituting $2 n$ for $\sigma(n)$ in a more general formula involving σ.

The first three formulas all follow from LaGrange's identity,

$$
\left(\sum_{j=1}^{n} a_{j} b_{j}\right)^{2}=\sum_{j=1}^{n} a_{j}^{2} \sum_{j=1}^{n} b_{j}^{2}-\sum_{1 \leq k<j \leq n}\left(a_{k} b_{j}-a_{j} b_{k}\right)^{2}
$$

(see [1], page 27). The notation $\sum_{e<d}$ denotes the sum over pairs e and d of divisors of n :

$$
\begin{equation*}
\tau(n) \sum_{d \mid n} d^{2}=4 n^{2}+\sum_{e<d}(d-e)^{2} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\tau(n)+\sum_{e<d} \frac{e^{2}+d^{2}}{d e}=4 n ; \tag{2}\\
2 \sum_{d \mid n} d^{3}=4 n^{2}+\sum_{e<d} \frac{\left(d^{2}-e^{2}\right)^{2}}{d e} .
\end{gather*}
$$

To derive (1), using LaGrange's identity (with a_{j} the $j^{\text {th }}$ largest divisor of n and $b_{j}=1$),

$$
\sigma(n)^{2}=\left(\sum_{d \mid n} d \cdot 1\right)^{2}=\sum_{d \mid n} d^{2} \cdot \sum_{d \mid n} 1^{2}-\sum_{e<d}(d-e)^{2}
$$

so n is perfect (i.e. $\sigma(n)=2 n$) if and only if

$$
4 n^{2}=\tau(n) \cdot \sum_{d \mid n} d^{2}-\sum_{e<d}(d-e)^{2}
$$

For formula (2),

$$
\begin{aligned}
\tau(n)^{2} & =\left(\sum_{d \mid n} 1\right)^{2}=\left(\sum_{d \mid n} \sqrt{d} \cdot \frac{1}{\sqrt{d}}\right)^{2} \\
& =\sum_{d \mid n} d \cdot \sum_{d \mid n} \frac{1}{d}-\sum_{e<d}\left(\sqrt{\frac{e}{d}}-\sqrt{\frac{d}{e}}\right)^{2} \\
& =\frac{\sigma(n)^{2}}{n}-\sum_{e<d}\left(\frac{e}{d}+\frac{d}{e}-2\right) \\
& =\frac{\sigma(n)^{2}}{n}-\sum_{e<d} \frac{e^{2}+d^{2}}{d e}+2 \cdot \sum_{e<d} 1 \\
& =\frac{\sigma(n)^{2}}{n}-\sum_{e<d} \frac{e^{2}+d^{2}}{d e}+\tau(n) \cdot[\tau(n)-1]
\end{aligned}
$$

and so
(a)

$$
\tau(n)+\sum_{e<d} \frac{e^{2}+d^{2}}{d e}=\frac{\sigma(n)^{2}}{n}
$$

Therefore, if n is perfect,

$$
\tau(n)+\sum_{e<d} \frac{e^{2}+d^{2}}{d e}=4 n
$$

Conversely, if (2) holds, then by (a),

$$
\frac{\sigma(n)^{2}}{n}=4 n
$$

which implies n is perfect.
To obtain formula (3),

$$
\begin{aligned}
\sigma(n)^{2} & =\left(\sum_{d \mid n} d\right)^{2}=\left(\sum_{d \mid n} \frac{1}{\sqrt{d}} \cdot d \sqrt{d}\right)^{2} \\
& =\sum_{d \mid n} \frac{1}{d} \cdot \sum_{d \mid n} d^{3}-\sum_{e<d}\left(\frac{e \sqrt{e}}{\sqrt{d}}-\frac{d \sqrt{d}}{\sqrt{e}}\right)^{2}
\end{aligned}
$$

or

$$
\begin{equation*}
\sigma(n)^{2}=\frac{\sigma(n)}{n} \sum_{d \mid n} d^{3}-\sum_{e<d} \frac{\left(d^{2}-e^{2}\right)^{2}}{d e} \tag{b}
\end{equation*}
$$

Replacing $\sigma(n)$ with $2 n$ shows that if n is perfect then (3) holds. Conversely, if (3) holds, then using (b) it follows that

$$
[\sigma(n)-2 n] \cdot\left(\sum_{d \mid n} d^{3}-n \sigma(n)-2 n^{2}\right)=0
$$

It's not difficult to check that

$$
\sum_{d \mid n} d^{3}<n \sigma(n)+2 n^{2} \text { for } n \leq 3
$$

and

$$
\sum_{d \mid n} d^{3}>n \sigma(n)+2 n^{2} \text { for } n>3
$$

Therefore, $\sigma(n)-2 n=0$ and so n is perfect.
Formulas (4)-(17) are based on Abel's partial summation formula (see [1], page 194). In these formulas, d ranges over positive divisors of n, d^{+}(for $1 \leq d<n$) is the smallest divisor of n larger than d and d^{-}(for $(1<d \leq n)$ is the largest divisor of n smaller than d. For example, if $n=28$ and $d=7$, then $d^{+}=14$ and $d^{-}=4$. Also, L_{d} is the sum of the divisors of n which are $\leq d$, i.e.

$$
L_{d}=\sum_{e \mid n ; e \leq d} e .
$$

Similarly,

$$
\begin{aligned}
& U_{d}=\sum_{e \mid n ; e \geq d} e \\
& F_{d}=\sum_{e \mid n ; e \leq d} \frac{1}{e} \\
& G_{d}=\sum_{e \mid n ; e \geq d} \frac{1}{e} \\
& S_{d}=\sum_{e \mid n ; e \leq d} e^{2} ;
\end{aligned}
$$

$$
\begin{aligned}
R_{d} & =\sum_{e \mid n ; e \geq d} e^{2} ; \\
t_{d} & =\sum_{e \mid n ; e \leq d} 1 \text { is the number of factors of } n \text { which are } \leq d ; \\
T_{d} & =\sum_{e \mid n ; e \geq d} 1 .
\end{aligned}
$$

$$
\begin{equation*}
\tau(n)=2+\sum_{d<n} L_{d}\left(\frac{1}{d}-\frac{1}{d^{+}}\right) ; \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\tau(n)=2 n-\sum_{d>1} U_{d}\left(\frac{1}{d^{-}}-\frac{1}{d}\right) ; \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\tau(n)=2 n-\sum_{d<n} F_{d}\left(d^{+}-d\right) ; \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\tau(n)=2+\sum_{d>1} G_{d}\left(d-d^{-}\right) ; \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{d \mid n} d^{2}=2 n^{2}-n \sum_{d<n} S_{d}\left(\frac{1}{d}-\frac{1}{d^{+}}\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{d \mid n} d^{2}=2 n+\sum_{d>1} R_{d}\left(\frac{1}{d^{-}}-\frac{1}{d}\right) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
2 n=2+\sum_{d>1} G_{d}\left[d^{2}-\left(d^{-}\right)^{2}\right] \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{d \mid n} d^{3}=2 n+\sum_{d>1} U_{d}\left[d^{2}-\left(d^{-}\right)^{2}\right] \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{d \mid n} d^{3}=2 n^{3}-\sum_{d<n} L_{d}\left[\left(d^{+}\right)^{2}-d^{2}\right] ; \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
n \cdot[\tau(n)-2]=\sum_{d<n} t_{d}\left(d^{+}-d\right) ; \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
2 n=\tau(n)+\sum_{d>1} T_{d}\left(d-d^{-}\right) ; \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{d \mid n} d^{2}=2 n+\sum_{d>1} U_{d}\left(d-d^{-}\right) . \tag{17}
\end{equation*}
$$

One form of Abel's formula is

$$
\sum_{j=1}^{n} a_{j} b_{j}=A_{n} b_{n}-\sum_{j=1}^{n-1} A_{j}\left(b_{j+1}-b_{j}\right)
$$

where

$$
A_{j}=\sum_{k=1}^{j} a_{k}
$$

Taking a_{j} to be the $j^{\text {th }}$ largest divisor of n and $b_{j}=1 / a_{j}$, it follows that

$$
\tau(n)=\sum_{d \mid n} 1=\sum_{d \mid n} d \cdot \frac{1}{d}=\frac{\sigma(n)}{n}-\sum_{d<n} L_{d}\left(\frac{1}{d^{+}}-\frac{1}{d}\right) .
$$

From this, (4) is clear.
Formula (5) is obtained either by repeating the proof as in (4) only using the reverse natural ordering of the divisors of n or else by replacing L_{d} in (4) with $2 n-U_{d^{+}}$and simplifying.

For (6), similar to the proof of (4) only taking b_{j} to be the $j^{\text {th }}$ largest divisor of n and $a_{j}=1 / b_{j}$,

$$
\tau(n)=\sum_{d \mid n} \frac{1}{d} \cdot d=\frac{\sigma(n)}{n} \cdot n-\sum_{d<n} F_{d}\left(d^{+}-d\right)
$$

Therefore, n is perfect if and only if (6) holds. Again, formula (7) follows by "reverse ordering" or by putting $F_{d}=2-G_{d^{+}}$in (6).

Formulas (8)-(17) are derived in similar fashion:
for (8),

$$
\sigma(n)=\sum_{d \mid n} d^{2} \cdot \frac{1}{d}=\frac{1}{n} \sum_{d \mid n} d^{2}-\sum_{d<n} S_{d}\left(\frac{1}{d^{+}}-\frac{1}{d}\right)
$$

for (10),

$$
\sigma(n)=\sum_{d \mid n} \frac{1}{d} \cdot d^{2}=n \cdot \sigma(n)-\sum_{d<n} F_{d}\left[\left(d^{+}\right)^{2}-d^{2}\right]
$$

for (12),

$$
\sum_{d \mid n} d^{3}=\sum_{d \mid n} d \cdot d^{2}=\sigma(n) \cdot n^{2}-\sum_{d<n} L_{d}\left[\left(d^{+}\right)^{2}-d^{2}\right]
$$

for (14),

$$
\sigma(n)=\sum_{d \mid n} 1 \cdot d=\tau(n) \cdot n-\sum_{d<n} t_{d}\left(d^{+}-d\right)
$$

for (16),

$$
\sum_{d \mid n} d^{2}=\sum_{d \mid n} d \cdot d=\sigma(n) \cdot n-\sum_{d<n} L_{d}\left(d^{+}-d\right)
$$

Formulas $(9),(11),(13),(15),(17)$ are related respectively to $(8),(10),(12),(14),(16)$ in the same way that (5) and (7) are related to (4) and (6).

Formulas (18)-(28) are all based upon Dirichlet multiplication. If f and g are realvalued functions defined on the set \mathbb{Z}^{+}of positive integers, then the Dirichlet product (or convolution) of f and g is given by

$$
(f * g)(n)=\sum_{d \mid n} f(d) \cdot g(n / d)
$$

The following facts are assumed here (see [2], chapter 4): the system of all real-valued multiplicative functions f on \mathbb{Z}^{+}for which $f(1) \neq 0$ forms an Abelian group under Dirichlet multiplication with identity element i (defined earlier); $\phi * \tau=\sigma ; \phi * U=E ; \mu * U=i$. Also, notice that the definitions of σ and τ may be expressed as $\sigma=E * U$ and $\tau=U * U$.

$$
\begin{equation*}
(2-k) \cdot n=\sum_{d \mid n} \phi(d) \cdot[\tau(n / d)-k], \quad k \text { any constant; } \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{p \mid n} \sigma(n / p)-\sum_{p, q \mid n} \sigma(n / p q)+\sum_{p, q, r \mid n} \sigma(n / p q r)-+\cdots=n \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
2 n(2 n-1)=\sum_{d<n}\left[\sigma\left(n^{2} / d^{2}\right)-\sigma(d)\right] \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
4 n^{2}=\sigma\left(n^{2}\right)+n \sum_{d<n} \frac{\tau\left(\frac{n}{d}\right) \sigma\left(d^{2}\right)-\sigma(d)^{2}}{d} \tag{28}
\end{equation*}
$$

To derive (18), if n is perfect then (since $\phi * \tau=\sigma$),

$$
\sum_{d \mid n} \phi(d) \cdot \tau(n / d)=(\phi * \tau)(n)=\sigma(n)=2 n
$$

and

$$
\sum_{d \mid n} k \cdot \phi(d)=k \sum_{d \mid n} \phi(d)=k \cdot(\phi * U)(n)=k \cdot E(n)=k n .
$$

Subtracting these two equations gives (18). Conversely, if (18) holds, then $\sigma(n)-k n=$ $(2-k) n$, so $\sigma(n)=2 n$.

Choosing $k=0,1,2$ in (18) yields the following characterizations of n being perfect: for $k=0$,

$$
\sum_{d \mid n} \phi(d) \cdot \tau(n / d)=2 n
$$

for $k=1$,

$$
\sum_{d<n} \phi(d)[\tau(n / d)-1]=n
$$

for $k=2$,

$$
\sum_{\substack{d>1 \\ d \text { not prime }}} \phi(n / d) \cdot[\tau(d)-2]=\phi(n) .
$$

Note that in this last formula, d was replaced by n / d and $\tau(d)=2$ if and only if d is prime.
For (19), note that $\sigma * U=E * U * U=E * \tau$, and therefore,

$$
\sum_{d \mid n} \sigma(d)=\sum_{d \mid n} d \cdot \tau(n / d)
$$

or

$$
\sigma(n)+\sum_{d<n} \sigma(d)=n+\sum_{d<n} d \cdot \tau(n / d)
$$

Thus, $\sigma(n)=2 n$ if and only if (19) holds.
The remaining formulas (20)-(28) all have derivations similar to those of (18) and (19). Each results from a corresponding functional identity involving Dirichlet multiplication. The "necessities" are obtained by substituting $2 n$ for $\sigma(n)$ in the identity. The "sufficiencies" are straight-forward to check. Note that in (25), $\sum_{p \mid n}$ denotes the sum over all prime factors of $n, \sum_{p, q \mid n}$ is the sum over all pairs of distinct prime factors of n, etc.

These functional identities and their derivations are: for (20), $h * \sigma=(E \sigma) * U$ (where $h(n)=n^{2}$ and $(E \sigma)(n)$ means $\left.E(n) \cdot \sigma(n)\right)$, since

$$
(h * E)(n)=\sum_{d \mid n} d^{2} \cdot(n / d)=n \sum_{d \mid n} d=(E \sigma)(n)
$$

and hence, $h * \sigma=h * E * U=(E \sigma) * U$; for (21), $E * \sigma=(E \tau) * U$, since

$$
(E * E)(n)=\sum_{d \mid n} d \cdot(n / d)=n \cdot \sum_{d \mid n} 1=(E \tau)(n)
$$

and hence, $E * \sigma=E * E * U=(E \tau) * U$; for (22), $\phi * \sigma=E \tau$, since $\phi * \sigma=\phi * U * E=$ $E * E=E \tau$; for (23), $\sigma * \sigma=(E \tau) * \tau$, since $\sigma * \sigma=U * E * U * E=E * E * U * U=(E \tau) * \tau$; for $(24), r * \sigma=(r \sigma) * E$, since

$$
(r * U)(n)=\sum_{d \mid n} \frac{1}{d}=\frac{\sigma(n)}{n}=(r \sigma)(n)
$$

and hence, $r * \sigma=r * U * E=(r \sigma) * E$; for (25), $\sigma * \mu=E$, since $E=E * i=E * U * \mu=\sigma * \mu$; for $(26), \sigma^{2}=E * f\left(\right.$ where $\left.f(n)=\sigma\left(n^{2}\right)\right)$, since σ^{2} and $E * f$ are both multiplicative and it is straightforward to check that they agree on prime powers; for (27), $\sigma^{2} * U=\sigma * f$, since (from (26) above) $\sigma^{2} * U=E * f * U=E * U * f=\sigma * f$; for (28), $\sigma^{2} * E=(E \tau) * f$ since $\sigma^{2} * E=E * f * E=E * E * f=(E \tau) * f$.

References

1. T. Apostol, Mathematical Analysis, (second edition), Addison-Wesley, Reading, MA, 1975.
2. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, (fourth edition), John Wiley \& Sons, New York, 1980.
