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LINKS OF CERTAIN SINGULARITIES

Mathew Timm

Bradley University

Abstract. A brief introduction to the topology of complex singularities is given. Then,

it is shown how an elementary topological construction and some basic covering space theory

can be used to analyze the connectivity of the link of certain 1-dimensional singularities in

complex 3-space.

1. Introduction. It is the intent of this manuscript to provide a brief introduction to

the topology of complex algebraic singularities and to show how what is usually a relatively

complicated problem in this theory can be solved in certain cases by an easy topological

construction. To see why singular points of complex algebraic varieties are topologically

interesting we begin with two examples in knot theory and a third higher dimensional

example.

Consider the polynomial f(x, y) = x2 + y3 in the two complex variables x = x1 + ix2

and y = y1+iy2. Note that the origin, (0, 0) ∈ C
2, is a “singular point for f .” That is, (0, 0)

is a point on the variety V (f) = {(x, y) ∈ C2 | f(x, y) = 0} at which all partial derivatives

of f are simultaneously zero. For a point (x, y) ∈ C2, denote its modulus by

‖(x, y)‖ =
√

x2
1 + x2

2 + y21 + y22 .

Then the 3-sphere of radius ǫ > 0 and center at (0, 0) ∈ C
2 is given by S3

ǫ = {(x, y) |
‖(x, y)‖ = ǫ}. If one now looks at K(f) = S3

ǫ ∩ V (f) one obtains the trefoil knot. Now

let g(x, y) = xy. Again note that (0, 0) ∈ C
2 is a “singular point for g.” We have that

K(g) = S3
ǫ ∩ V (g) is the Hopf Link. The objects K(f) and K(g) are called “links of the

singularity at (0, 0).”

Note that if one chooses a nonsingular point p on V (f) (or on V (g)) and looks at

the intersection of a 3-sphere of sufficiently small radius centered at p with V (f) (or with

V (g)), standard differential topology implies that all one obtains is an unknotted circle in

the 3-sphere.
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Finally, consider the polynomial h(x) = x2 + y3 + z5 in three complex variables. It

has an isolated singularity at the origin. Its “link” is K(h) = V (h) ∩ S5 where V (h) =

{(x, y, z) ∈ C3 | h(x, y, z) = 0} and S5 is a 5-sphere of sufficiently small radius. It turns out

that K(h) is a famous 3-manifold. It is the Poincaré homology sphere. (See Milnor [4, §8].)
These three examples illustrate what is generally true: topologically interesting objects are

obtained as “links of singular points” on algebraic varieties.

Section 2 contains definitions and a description of the fundamental results governing

the topology of singular points of complex algebraic varieties and provides the motivation

for the situation where questions about the connectivity of the link are of interest. Section

3 gives the definition of 1-isolated singularity and a purely geometric/topological proof

that the link of a 1-isolated singularity with transverse A1 singularities away from the

origin is (essentially) never simply connected. Some additional corollaries of the basic

construction are also given. For more extensive bibliographies than are given here, the

reader is encouraged to consult the references at the end of the manuscript, especially

Milnor [4], Randell [13], Pellikaan [11], [12], and Siersma [18].

2. Basic Definitions and Theorems. Let C[z0, . . . , zn] denote the ring of polynomi-

als in n+1 complex variables. Think of n as being fixed in what follows. Note that n is actu-

ally one less than the number of complex variables in the polynomial. Let f ∈ C[z0, . . . , zn].

The variety of f is the set V (f) = {(z0, . . . , zn) ∈ C
n+1 | f(z0, . . . , zn) = 0}. We always

assume f(0) = 0. The singular set of f is defined to be

Σ(f) =

{

(z0, . . . , zn) ∈ f−1(0) | df

dzk
(z0, . . . , zn) = 0, k = 0, . . . , n

}

.

We always assume 0 ∈ Σ(f). Let S2n+1 = {(z0, . . . , zn) ∈ Cn+1 | ‖(z0, . . . , zn)‖ = ǫ}
denote the (2n+1)-sphere of radius ǫ > 0 centered at 0 ∈ Cn+1. The Cone Theorem states

that the piece of V (f) that is contained inside of S2n+1, that is the intersection of V (f)

with the closed (2n+ 2)-ball with center at the origin, is homeomorphic to the cone on the

link L with cone point at the origin. It is a consequence of the Cone Theorem and the

Milnor Fibration Theorem, (see Randell [13] or Milnor [4]), that the local topology of the

singularity at 0 is described by the objects

(∗) K = S2n+1 ∩ f−1(0),
f

‖f‖ :S
2n−1\K → S1,
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and F =

(

f

‖f‖

)

−1

(1) ⊆ S2n+1\K,

where S2n+1 is a sphere of sufficiently small radius, centered at 0 ∈ Cn+1. The main

corollary of the Cone Theorem and the Fibration Theorem is that the objects in (∗) are all
independent of the radius, ǫ, of S2n+1, provided ǫ is sufficiently small. Furthermore, the

Milnor Fibration Theorem and its corollaries state that the function

f

‖f‖ :S
2n+1\K → S1

is the projection of a locally trivial smooth fibre bundle with fibre

F =

(

f

‖f‖

)

−1

(1)

and that K is a compact (2n − 1)-dimensional simplicial complex. Two other important

results in Milnor [4] concern the connectivity of K and F . Milnor [4,5.2] shows that K is

(n − 2)-connected, that is πk(K) = 1 for 1 ≤ k ≤ n − 2. He shows in [4,6.5] that when

Σ(f) = {0}, the fibre F has the homotopy type of a bouquet of µ n-spheres. For the exact

statements of these results see [4] or [13].

Note that in the three examples in Section 1, the singularity at the origin is “isolated.”

That is, Σ(f) = {0}. This is the simplest case and, as expected, the most detailed results

available are for this case. By [4,6.1], K is a (2n− 1)-dimensional compact manifold when

the origin is an isolated singularity. The interested reader can consult Milnor [4, §6 – §10]
to see additional results. In terms of the exposition in Section 3, it is of particular interest

to note that by [4,8.2], for n 6= 2, the link K of an isolated singularity is a topological sphere

if and only if the reduced integral homology group H̃n−1(K) is trivial. (When n = 2, we

run into the Poincaré Conjecture.)

It is natural to wonder what happens to the topology of the link K and the Milnor fibre

F when Σ(f) is larger than a single point. Randell’s survey paper [13] contains some results

on the topology of non-isolated singularities. However, detailed results on the topology of

non-isolated singularities for the class of non-isolated singularities in general are hard to
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come by so one begins by placing restrictions on the type of singular sets allowed. One

such class of singularities, called k-isolated singularities with transverse A1 singularities on

Σ(f)\{0}, have been studied in some detail. The structure of the complement S2n+1\K
and the Milnor fibre has been studied by Siersma [15], [16], [17], [18] especially, but also

by Pellikaan [8], [9], [10], [11], [12], Schrauwen [14], and Van Straten [21]. The work by

De Jong [1] contains an extension of the Siersma’s techniques to other classes of non-isolated

singularities in Cn+1. The structure of the link K has received less study, but certain results

about the homotopy groups, π∗(K), and the integral homology groups H∗(K) follow from

Randell [13] and the Milnor Fibration Theorem. The work by Mumford [6] can be used to

obtain information about π1(K) for singularities in complex projective space. For the case

n = 2, Timm [20] provides a fairly detailed look at π1(K) and H∗(K).

As a corollary to the homology and fundamental group calculations of Timm [20]

one obtains that except for certain “trivial” cases, the link of a 1-isolated singularity with

transverse A1 singularities on Σ(f)\{0} in C[z0, z1, z2] is never simply connected. Note that

in this case n = 2. So, all that the Milnor Fibration Theorem implies is that K is connected.

In the light of this fact, it is natural to wonder if links of such non-isolated singularities

can ever be simply connected. In Section 3, the focus is on 1-isolated singularities in three

complex variables with transverse A1 singularities on Σ(f)\{0}. The basic definitions are

given and an alternate, elementary, topological proof of the non-simply connectivity of the

links of such singularities is given. The proof given here requires neither the differential

techniques of Milnor’s general result nor the algebraic techniques of Timm [20]. Instead, an

elementary construction and basic covering space theory are used.

3. 1-Isolated Singularities in Three Complex Variables. We being with two

examples. Consider first the polynomial f(x, y, z) = xy2 + z2 in three complex variables.

The variety defined by f , V (f) = {(x, y, z) ∈ C3 | f(x, y, z) = 0} has complex dimension

dimC V (f) = 2. We have that Σ(f) = {(x, 0, 0) | x ∈ C}, that is Σ(f) is the x-axis in C3.

Observe that dimC Σ(f) = 1. The fact that Σ(f) has complex dimension 1 is what is meant

by a “1-isolated singularity.” Recall that a function is biholomorphic if and only if it is a

homeomorphism and both it and its inverse are analytic. Observe that, for each x 6= 0,

there is an open ball Ux about (x, 0, 0) ∈ C3, an open subset V ⊂ C3, and a biholomorphic

function φx:Ux → Vx such that for (x, y, z) ∈ U , (f ◦ φx)(x, y, z) = y2 + z2. (For example,

let
√

denote a fixed branch of the complex valued square root function that contains x

in its domain. Let Ux be a ball of fixed radius less than ‖x‖ that is contained entirely in
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the domain of
√

. Define φx:Ux → C3 by φx(x, y, z) = (x, y/
√
x, z).) The function φx is

called a “local analytic, or biholomorphic, coordinate system for C
3 about (x, 0, 0).” It is

the existence of such local coordinate systems, φx, for each x ∈ Σ(f)\{0} that says that f

has “transverse A1 singularities on Σ(f)\{0}.” Let K(f) = S5 ∩ V (f) be the link of the

singularity at 0 ∈ C3.

Now consider the function g(x, y, z) = yz. Let V (g) denote the variety defined by g.

We have that dimC V (g) = 2. Observe that Σ(g) = {(x, 0, 0) | x ∈ C} is again the x-axis

in C3. Finally, define the global biholomorphic (in fact, complex linear) coordinate change

φ:C3 → C3 by φ(x, y, z) = (x, y+ iz, y− iz) and note that (g ◦φ)(x, y, z) = y2+z2. Thus, g

is also a 1-isolated singularity with transverse A1 singularities on Σ(g)\{0}. We have K(g)

is the link of the singularity at the origin.

What are the topological consequences of the above observations? Begin with the

function g. Note that V (g) is the union of the xz-plane and xy-plane in complex 3-space

along the x-axis. So topologically, V (g) is the union of two copies of R4 = {(a1, a2, a3, a4) |
aj ∈ R} along the real two dimensional vector subspace R2 = {(a1, a2, 0, 0) | aj ∈ R}. Note
that this implies that at points in the singular set Σ(g), that is along the complex x-axis,

each point has a neighborhood in V (g) that is homeomorphic to two copies of the four ball

B4 =

{

(a1, a2, a3, a4) | aj ∈ R and

√

√

√

√

4
∑

j=1

aj ≤ 1

}

glued together along the two 2-disk

D2 =

{

(a1, a2, 0, 0) | aj ∈ R and

√

√

√

√

2
∑

j=1

aj ≤ 1

}

via the obvious identification. Finally, note that Σ(g) ∩K(g) is the circle S1 = {(x, 0, 0) ∈
C3 | ‖x‖ = 1}. The entire link K(g) = V (g) ∩ S5 is the union of two 3-spheres, S3, along
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an unknotted circle. Note that along the singular circle Σ = Σ(g) ∩K(g), each point in Σ

has neighborhoods homeomorphic to two three balls

B3 =

{

(b1, b2, b3) ∈ R
3 |

√

√

√

√

2
∑

j=1

bj ≤ 1

}

glued together along the interval I = {(b1, 0, 0) ∈ R3 | |b1| ≤ 1} via the obvious identifica-

tion. In particular, by the Milnor Fibration Theorem and the above observation it follows

that the link, K(g), is a 3-dimensional complex that is not a manifold. It is a manifold at

all points except those in Σ.

Now look at the singularity f(x, y, z) = xy2 + z2. Again V (f) has real dimension 4

and the singular set is a real 2-dimensional plane. Furthermore, since f has transverse A1

singularities on Σ(f)\{0}, all points in the singular set, except the origin, have neighbor-

hoods in V (f) that look like two four balls glued together along a two disk, just like the

case for g above. Again, note that Σ = Σ(g) ∩ K(g) is a circle and that each point in Σ

has a neighborhood in V (g) that is homeomorphic to two three balls glued together along

an interval. Again the Milnor Fibration Theorem and this observation imply that K(g) is

a manifold except along the singular circle Σ.

Observe that if p is a nonsingular point in V (f) (or V (g)) and we look at the intersection

of a sufficiently small 5-sphere, centered at p, with V (f) (or V (g)) standard differential

topology implies that what is obtained is an unknotted 3-sphere in the 5-sphere.

We give the formal definitions of the ideas introduced above and make a few additional

general comments about the topology of 1-isolated singularities with transverse A1 singu-

larities away from the origin. Since we are only concerned about 1-isolated singularities

that satisfy the indicated transverse condition we will abuse the notation as indicated in

Definition 3.1.

Definition 3.1. Let f(x, y, z) ∈ C[x, y, z]. Say that f is a 1-isolated singularity if and

only if dimC Σ(f) = 1 and for each point p ∈ Σ(f)\{0} there is a local biholomorphic

coordinate system φp:Up → Vp such that for all (x, y, z) ∈ Up, (f ◦ φp)(x, y, z) = y2 + z2.

It then follows that for 1-isolated singularities, Σ(f) is the union of a finite collection

of real 2-dimensional surfaces that only intersect at the origin of C3. This implies that

Σ = Σ(f)∩K(f) is a finite disjoint union of circles. (That is, Σ is a link of circles in K(f).)



82 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

Furthermore, K(f) is a 3-complex that is a manifold except at points along the singular link

Σ. Each point in Σ has a neighborhood in K(f) that is homeomorphic to the union of two

3-balls along an interval. Finally, as promised in the introduction, we avoid certain “trivial”

situations by assuming that the polynomial f is analytically irreducible, that is, if there are

two analytic functions g(x, y, z) and h(x, y, z) such that f(x, y, z) = g(x, y, z)h(x, y, z) then

either h is a unit or g is a unit in the ring of analytic functions.

The topological consequences of the definition of 1-isolated singularities mentioned

above, together with the assumption that f is irreducible, allow the use of an object intro-

duced by Orlik and Wagreich [7], called the covering manifold of a singufold, to construct

connected, nontrivial, covering spaces of the 1-isolated singularity, K(f). We have the fol-

lowing definitions. This idea is a further generalization of the notion of branched covering

given by Fox [2].

Definition 3.2. Let (θ,K,Σ,K,Σ) be a quintuple with (K,Σ) a connected, closed,

topological 3-manifold pair and Σ a link of circles inK. Let θ:K → K be a closed topological

immersion (that is, each point p ∈ K has an open ball, Bp, about it such that the restriction

θ:Bp → θ(Bp) is a one-to-one map of Bp onto its image) of K onto K with θ(Σ) = Σ and

θ:K\Σ → K\Σ a homeomorphism. Assume that θ: Σ → Σ is a double cover. The triple

(θ,K,Σ), or just K, is called the covering manifold of (K,Σ) and Σ is called the singular

set of K.

Theorem 3.3. K is a “singufold” and (K, θ) its covering manifold in the sense of Orlik

and Wagreich [7]. In particular, (K, θ) is the unique manifold such that if µ:L → K is any

closed topological immersion of a manifold L onto K such that µ−1(K\Σ) is dense in L

then there is a unique map µ:L → K such that µ = θ ◦ µ.
Proof. Observe that K\Σ is a 3-manifold and that each p ∈ Σ has a neighborhood

that looks like two 3-balls glued together along a diameter. Note that p is contained in this

common diameter. Thus, K is, by definition, a “singufold” and K its covering manifold.

Construction 3.4. Let K be a singufold and K its covering manifold as in 3.2 and 3.3.

We construct the double cover of K. Note that the assumption that the restriction that

θ: Σ → Σ be a double cover of Σ, which is a link of circles, implies that Σ is also a link

of circles and that the inverse image of each component of Σ is either two circles each of

which is mapped homeomorphically onto the given component in Σ or this inverse image is

a single circle that is a double cover of the given component of Σ. Define a map α: Σ → Σ

as follows: α(x) = y if and only if θ(x) = θ(y) and x 6= y. Note that α just swaps the two
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points of θ−1(θ(x)). The points x, y with θ(x) = θ(y) and x 6= y will be called antipodal

points of Σ. Since θ is continuous so is α. Also note that α ◦ α = id. Take two copies Kj ,

j = 1, 2, of K and glue them together along Σ1 and Σ2 via α: Σ1 → Σ2. Call the resulting

space K̃. The common image of the Σj will be denoted by Σ̃. A set U ⊂ K̃ is open if

and only if U ∩ Kj is open in Kj for j = 1 and j = 2. Define a map p: K̃ → K in the

obvious manner, namely p(x) = θ(x). Then p is clearly continuous and 2-to-1. Since θ is a

local homeomorphism of Σ, so is p. By construction, p is a local homeomorphism at points

x ∈ Σ̃. Thus, p: K̃ → K is a connected double cover of K. Note that the closure of each

fundamental region of the projection is a copy of K. The process just described will be

referred to in what follows as “attaching K1 to K2 by identifying each point in Σ1 with its

antipodal point in Σ2.”

Some immediate corollaries of the construction follow. The first is on the simple con-

nectivity of links of irreducible 1-isolated singularity in three complex variables.

Corollary 3.5. Let K be the link of an analytically irreducible 1-isolated singularity

f ∈ C[x, y, z]. Then π1(K) is not trivial, that is, K is not simply connected.

Proof. By the remarks on the topology of K preceding Definition 3.2, K is a singufold.

Since f is analytically irreducible, it has, according to Orlik and Wagreich [7], a connected

covering manifold K. For the remainder of the proof we use the symbolism of Construction

3.4. We have K̃ = K1 ∪α K2. Define a map f : K̃ → K̃ by f(x) = y if and only if

p(x) = p(y) and x 6= y. It is an easy exercise to see that f is continuous, is a covering

translation, and f ◦ f = id. Therefore, (K̃, p) is a regular double cover. Thus, Aut (K̃) ∼=
Z/2Z ∼= π1(K)/p∗π1(K̃). So π1(K) always has a subgroup of index 2. So K is never simply

connected.

The reader may feel that the assumption of irreducibility of the 1-isolated singularity

f is a severe restriction. In practice it is not. If one inspects the lists of Mond [5] and

Timm [19], one discovers that the only polynomial that is eliminated from their lists by

the assumption of analytic irreducibility is the polynomial g(x, y, z) = yz (or equivalently,

g(x, y, z) = y2 + z2). This situation is easy to analyze. The link K(g) is two copies of S3

joined along an unknotted circle, the covering manifold is a disjoint union S3 ∪ S3, and so,

by Van Kampen’s Theorem, π1(K(g)) = 1.

Corollary 3.6. Let K be a link of an irreducible 1-isolated singularity with covering

manifold (K, θ) as in 2.4. Assume Σ is such that the lifting of each component of Σ to K

is a single circle. Let (K̃, p) be the double cover of 2.4 and let i:K → K̃ be the inclusion
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of K onto K1 ⊂ K̃. Then i∗:π1(K) → π1(K̃) is injective. Hence, θ∗:π1(K) → π1(K) is

injective.

Proof. Pick a base point x1 ∈ Σ̃. Connect it to every other component of Σ̃, if any, via

an arc in K1\Σ̃. Let Σ̃+ denote the union of Σ̃ and the arcs. It has the homotopy type of a

bouquet of circles. Let K̃2+ = K̃2∪Σ̃+. Write K̃ = K1∪K2+. ThenK1∩K2+ = Σ̃+. Apply

Van Kampen’s Theorem and standard results in combinatorial group theory, e.g. [4,4.3],

to obtain a presentation of π1(K̃) in terms of π1(K1) and π1(K2+) and the injectivity of

i∗. The injectivity of θ∗ then follows since K̃ is a covering space. (A different proof of the

injectivity of θ∗ is given in [21,3.7].)

Corollary 3.7. Let K be a link of an irreducible 1-isolated singularity and θ:K → K its

covering manifold. Assume that Σ is a single circle and its lifting Σ is also a single circle.

Then the following are equivalent: (1) π1(K) is abelian. (2) π1(K) is cyclic and is generated

by the homotopy class of Σ. (3) π1(K) is cyclic and is generated by the homotopy class of

Σ.

Corollary 3.8. Let (θ,K,Σ,K,Σ) be as in Definition 3.2. Write

Σ =
n
⋃

j=1

Σj ,

a disjoint union of circles. If n ≥ 2, then K has covering spaces of arbitrarily high finite

order.

Proof. Let K̃ be the regular double cover of K constructed in Construction 3.4 above.

We have

Σ̃ = Σ̃1 ∪ Σ̃2 ∪ · · · .

Observe that the Σ̃j are the components of Σ̃ and that Σ̃1 has an open neighborhood N

that is the union of two solid 3-tori glued together along their center circles via α. Σ̃1 is

closed in K̃ and separates N but does not separate K̃. That is Σ̃1 is a closed subset that

separates K̃ locally but not globally. So by [3,7.2], K̃ has regular k-fold covering spaces for

all positive integers k. So K has 2k-fold covering spaces for all positive integers k.

Remark 3.9. Actually more can be said in most instances. If some component Σj of Σ

lifts to two circles in K, then Σj is a subset of K that separates K locally but not globally.
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So in this situation, by Jungck [3,7.2], K not just K, has regular k-fold covering spaces for

all positive integers k.

References

1. T. De Jong, “Some Classes of Line Singularities,” Math. Zeit., 198 (1988), 493–517.

2. R. H. Fox, “Covering Spaces with Singularities,” Algebraic Geometry and Topology, A

Symposium in Honor of S. Lefschetz, Fox, Spencer, & Tucker (ed.), Princeton, 1957,
243–257.

3. G. F. Jungck, “Local Homeomorphisms,” Dissertationes Mathematicae, Pol. Acad. Sci.,
1983.

4. J. Milnor, Singular Points of Complex Hypersurfaces, Princeton University Press, 1968.

5. D. Mond, “Some Remarks on the Geometry and Classification of Germs of Maps from
Surfaces to 3-Space,” Topology, 26 (1987), 361–383.

6. D. Mumford, “The Topology of Normal Singularities of an Algebraic Surface and a
Criterion for Simplicity,” Publ. Math. No. 9, L’Inst. des Hautes Etu. des Sci., Paris,
1961, 229–246.

7. P. Orlik and P. Wagreich, “Singularities of Algebraic Surfaces with C∗-Action,” Math.

Annal., 193 (1971), 121–135.

8. G. R. Pellikaan, “On Hypersurface Singularities Which Are Stems,” Comp. Math., 71
(1989), 229–240.

9. G. R. Pellikaan, “Series of Singularities, Singularities,” Contemporary Math., (AMS)
90 (1989), 241–259.

10. G. R. Pellikaan, “Finite Determinacy of Functions With Nonisolated Singularities,”
Proc. London Math. Soc., 3 (1988), 357–382.

11. G. R. Pellikaan, “Deformations of Hypersurfaces With a One Dimensional Singular
Locus,” Journal of Pure and Applied Algebra (to appear).

12. G. R. Pellikaan, “Hypersurface Singularities and Resolutions of Jacobi Modules,” Dis-
sertation, Utrecht, 1985.

13. R. Randell, “On the Topology of Nonisolated Singularities,” Geometric Topology, J. C.
Cantrel (ed.), Academic, 1979, 445–473.

14. R. Schrauwen, “Deformations and the Milnor Number of Nonisolated Plane Curve
Singularities,” Proceedings of the Warwick Symposium on Singularities 1988, Springer
Lecture Notes, (to appear).

15. D. Siersma, “Isolated Line Singularities,” Proc. Sym. Pure Math., 40 (1983), 485–497.



86 MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

16. D. Siersma, “Quasihomogeneous Singularities With Transversal Type A1, Singulari-
ties,” R. Randell (ed.), Contemporary Math., (AMS) 90 (1989), 261–294.

17. D. Siersma, “Singularities With Critical Locus a 1-Dimensional Complete Intersection
and Transversal Type A1,” Topology and Its Applications, 27 (1987), 51–73.

18. D. Siersma, “Variation Mappings on Singularities With 1-Dimensional Critical Locus,”
Topology, 30, 445–470.

19. M. Timm, “The Local Topology of Some Nonisolated Singularities,” Dissertation, Uni-
versity of Iowa, 1989.

20. M. Timm, “The Simple Connectivity of Links of Singularities With One-Dimensional
Critical Locus,” Topology and Its Applications, 42 (1991), 127–136.

21. D. Van Straten, “On the Betti Numbers of the Milnor Fibre of a Certain Class of
Hypersurface Singularities,” Proc. Sym. in Lambrecht 1985, Springer, 1987.


