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ON DIOPHANTINE EQUATIONS x2 − dy2 = AB
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1. Introduction. There are lots of examples like 132−94·12 = 52 ·3, 2232−94·232 = 3

and 442 − 67 · 52 = 32 · 29, 5732 − 67 · 702 = 29 which suggest that the Diophantine

equation x2 − dy2 = c is solvable whenever x2 − dy2 = p2c is solvable where p is a prime.

However, it will be shown in this paper that the equation x2 − 799y2 = 89 does not have

an integer solution (see Proposition 4.1), even though we have 402 − 799 · 12 = 32 · 89.
This counterexample motivates the need to find conditions that would assure solvability of

x2 − dy2 = p2c.

It is well known that there is an intimate relationship between the solvability of general

Diophantine equations x2 − dy2 = c (when |c| <
√
d) and the continued fraction represen-

tation of
√
d [5, p. 352]. But this result does not explain the correlation between the

solvabilities of x2 − dy2 = p2c and x2 − dy2 = c.

Most of the work (since 1940) referenced in Mathematical Reviews [see [6], [7]) on

general Diophantine equations x2 − dy2 = c have focused on the following: (1) methods of

finding solutions ([14], [19]); (2) the number of solution classes ([3], [9], [11], [16], [17], [18]);

(3) special cases like x2 − dy2 = ±4 ([2], [3], [4], [11]), x2 − dy2 = 4c ([11]), x2 − 2y2 = c

([15]), or x2−py2 = 2c ([1]). T. Nagell has also done some work that dealt with the solutions

of equations such as Ax2 ±By2 = ±1,±2,±4 ([10]), Ax2 ±By2 = p or 2p ([12], [13]) when

D = AB is fixed.

This paper will differ from the work mentioned above by attempting to treat the more

general case: x2 − dy2 = AB vs. x2 − dy2 = B for general d, A, and B. The main result is

Theorem 2.1 in section 2. We then discuss the special cases A = p and A = p2 in section

3. The main results are Propositions 3.1 and 3.2. In section 4 we give an example to

show that the condition required in Proposition 3.2 is necessary and therefore resolve the

question raised at the beginning. The author would like to thank Liang-Cheng Zhang’s

valuable suggestions related to this paper.
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For any integer c, the equation x2 − dy2 = c is said to be solvable if there are integers

m and n such that m2 − dn2 = c. The solution x = m, y = n is called primitive if m and

n are relatively prime. Technically speaking, we will allow both m = 1, n = 0 and m = 0,

n = 1 to be considered primitive solutions.

2. Main Theorem. We start with the general case: x2 − dy2 = AB. The goal is to

see how the solvability of x2−dy2 = B can be derived from the solvability of x2−dy2 = AB.

The following theorem provides an answer to this question. Note that d is not necessarily

assumed to be square-free.

Theorem 2.1. Let d, A, and B be nonzero integers. Assume that the congruence x2 ≡ d

(mod A) has at most two incongruent solutions.

(1) If both equations x2 − dy2 = AB and x2 − dy2 = A have primitive solutions, then the

equation x2 − dy2 = B is solvable.

(2) If we further assume in (1) that A and B are relatively prime, then the equation

x2 − dy2 = B has a primitive solution.

Proof of (1). Let m, n, h, k be integers such that (m,n) = 1 = (h, k) and

m2 − dn2 = AB, h2 − dk2 = A.

Without loss of generality we may assume that both n and k are nonzero because, otherwise,

m = 1 and/or h = 1 reduce both (1) and (2) to trivial cases. We then have m2 ≡ dn2,

h2 ≡ dk2 (mod A). If an integer q divides n and A, then q divides m. Hence, n and A

must be relatively prime. This implies that there exists an integer M such that

0 ≤ M < |A| and m ≡ Mn (mod A) (i.e. M ≡ n−1m).

From this we have dn2 ≡ m2 ≡ M2n2, d ≡ M2 (mod A). Similarly, there exists an integer

L such that

0 ≤ L < |A|, h ≡ Lk, d ≡ L2 (mod A).

Since there are at most two incongruent solutions for the equation x2 ≡ d (mod A), we

must have M ≡ L (mod A) or M ≡ −L (mod A). If M ≡ −L (mod A), then h ≡ M(−k)

and x = h, y = −k is still a solution of x2 − dy2 = A. Without loss of generality we may

therefore assume that M ≡ L (mod A).
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Let z = (m + n
√
d)/(h + k

√
d) in Q[

√
d] and apply the norm function N(a+ b

√
d) =

a2 − db2 in Q[
√
d] to z, we see that

N(z) = N(m+ n
√
d)/N(h+ k

√
d) = AB/A = B

and

z = [(mh− nkd) + (nh−mk)
√
d]/(h2 − dk2)

= [(mh− nkd) + (nh−mk)
√
d]/A.

However,

mh ≡ M2nk ≡ nkd, and mk ≡ Mnk ≡ nh (mod A).

Therefore, z ∈ Z[
√
d] and x = (mh − nkd)/A and y = (nh −mk)/A is an integer solution

of the equation x2 − dy2 = B.

Proof of (2). In (1), if a prime q divides both (mh− nkd)/A and (nh−mk)/A then q

divides mh− nkd, nh−mk, and B. Furthermore, q will divide mh2 −nhkd, nhkd−mk2d,

mhk−nk2d, and nh2−mhk, which implies that both m(h2−dk2) = mA and n(h2−dk2) =

nA are divisible by q. Since A and B are relatively prime, q must divide both m and n,

a contradiction. Therefore, (mh− nkd)/A and (nh−mk)/A are relatively prime, giving a

primitive solution x = (mh− nkd)/A, y = (nh−mk)/A to the equation x2 − dy2 = B.

3. Special Cases. First, we consider the case when A = p is a prime.

Proposition 3.1. Let d and B be nonzero integers and p be a prime integer. Assume

that the equation x2 − dy2 = p is solvable.

(1) If B is not divisible by p and the equation x2 − dy2 = pB is solvable, so is the equation

x2 − dy2 = B.

(2) If the equation x2−dy2 = pB has a primitive solution, then the equation x2−dy2 = B

is solvable.

(3) If the equation x2 − dy2 = pB has and primitive solution and B is not divisible by p,

then the equation x2 − dy2 = B has a primitive solution.

Proof. Note that all solutions x2−dy2 = p are primitive. If a2 ≡ d ≡ b2 (mod p), then

a ≡ b or a ≡ −b. This means that x2 ≡ d has at most two incongruent solutions modulo p.

So (2) and (3) hold by Theorem 2.1.
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As for (1), if B is not divisible by p, then the solvability of x2 − dy2 = pB guarantees

a primitive solution for the equation x2 − dy2 = p(B/C2) for some integer C. Therefore,

x2 − dy2 = (B/C2) is solvable by (2), so is x2 − dy2 = B.

Next, we consider the case A = p2, where p is a prime. By observing the example:

92 − 18 · 22 = 32 where 02 ≡ 32 ≡ 62 ≡ 18 (mod 32),

we know it is possible for x2 − dy2 = p2 to have a primitive solution and, at the same

time, there are more than two incongruent solutions to x2 ≡ d (mod p2). This of course

has something to do with the fact that p2|d. However, it is easy to see that, whenever the

equation x2 − dy2 = p2 has a primitive solution, then p2|d if and only if p|d. We therefore

require the additional condition that p/|d in the following proposition.

Proposition 3.2. Let d and B be nonzero integers, and p a prime integer that does not

divide d when p is odd.

(1) If the equation x2 − dy2 = p2B is solvable and the equation x2 − dy2 = p2 has a

primitive solution, then the equation x2 − dy2 = B is solvable.

(2) If we further assume in (1) thatB is not divisible by p and the solution of x2−dy2 = p2B

is primitive, then the equation x2 − dy2 = B has a primitive solution.

Proof. Obviously, x2 ≡ d (mod 22) has at most two incongruent solutions for any d. We

may therefore only consider odd primes p. If d ≡ x2 ≡ y2 (mod p2), then p2|(x− y)(x+ y).

If p|(x − y) and p|(x + y), then p|2x and hence, p|x. This implies that d is divisible by p,

a contradiction. So, p2|(x − y) or p2|(x + y). That is, x ≡ −y or x ≡ y (mod p2), and the

congruence equation x2 ≡ d (mod p2) has at most two incongruent solutions modulo p2.

If we know that m2 − dn2 = p2B with some prime q dividing both m and n, then

q2|p2B. One possibility is q = p, which makes

(

m

p

)2

− d

(

n

p

)2

= B

and we are done. The other possibility is q2|B, which implies

(

m

q

)2

− d

(

n

q

)2

= p2(B/q2).
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Repeating this process if necessary, we may eventually obtain an integer C such that C2|B
and either x2 − dy2 = B/C2 is solvable or x2 − dy2 = p2(B/C2) has a primitive solution.

The first case makes x2 − dy2 = B solvable automatically, while applying Theorem 2.1 to

the second case allows x2 − dy2 = B/C2 to be solvable, which in turn shows that, again

x2 − dy2 = B is solvable. This proves (1). As for (2), it is an immediate result of Theorem

2.1.

Remark. It is a fact that the equation x2 ≡ d (mod qn) can have more than two

incongruent solutions if q|d and n > 1. By using the Chinese Remainder Theorem we can

show that the condition x2 ≡ d (mod A) has at most two incongruent solutions, is satisfied

when A = 2epkq1 · · · qt (where e = 0, 1, k ≥ 0, p and qi are distinct odd primes such that p/|d
and qi|d) or A = 4q1 · · · qt (where qi are distinct odd primes that qi|d). Analogous results

to Proposition 3.1 and 3.2 can be obtained similarly.

The following is a direct result of Theorem 2.1 and has an “if and only if” situation.

Corollary 3.3. Let d be a nonzero integer and A, B be relatively prime (nonzero)

integers. If each of the congruences x2 ≡ d (mod A) and x2 ≡ d (mod B) has at most two

incongruent solutions and the equation x2 − dy2 = AB has a primitive solution, then the

equation x2 − dy2 = A has a primitive solution if and only if the equation x2 − dy2 = B

has a primitive solution.

If we concentrate on the cases of only two distinct primes p and q, we have the following.

Corollary 3.4. Let d be a nonzero integer and let p, q be distinct prime integers. Let

e = 1 or 2 and f = 1 or 2. Assume that the equation x2 − dy2 = peqf has a primitive

solution. Then the equation x2 − dy2 = pe, with p|d when e = 2, has a primitive solution if

and only if the equation x2 − dy2 = qf , with q|d when f = 2, has a primitive solution.

4. An Example.

Proposition 4.1. x2 − 799y2 = 89 is not solvable. However, x2 − 799y2 = 32 · 89 is

solvable, since 402 − 799 · 12 = 32 · 89.
Proof. By Proposition 3.2 we only have to show that

(1) x2 − 799y2 = 32 does not have primitive solutions. Because 322− 799 · 12 = 32 · 52, this
is equivalent, by Corollary 3.4, to showing

(2) x2 − 799y2 = 52 does not have primitive solutions. In order to verify (2), we will use

the following two special observations.

(3) Each of x2 − 799y2 = ±10 and x2 − 799y2 = ±5 is not solvable.

(4) Each of 47x2 − 17y2 = ±10 and 47x2 − 17y2 = ±5 is not solvable.
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It is easy to see that (3) is true because the only squares modulo 17 are

0, 1, 4, 9, 16, 8, 2, 15, and 13, and none of these is congruent to ±10 and ±5 (mod 17). A

similar argument can be used for (4).

Now, let us verify (2). Let m2 − 799n2 = 52. It suffices to assume that both m and n

are positive. Then m2 ≡ 8 (mod 17) implies that m ≡ ±5 (mod 17), and so m = ±5+ 17k

for some integer k > 1. Therefore,

25±170k+ 172k2 − 799n2 = 25

±10k + 17k2 − 47n2 = 0

k(17k ± 10) = 47n2.

If 47|k, say k = 47t for some t ∈ N, then

t(799t± 10) = n2

n2 − 799t2 = ±10.

This contradicts the fact that the equation x2 − 799y2 = ±10 is not solvable. Thus, k is

not divisible by 47.

If k and 17k± 10 are relatively prime, then k is a square factor of n2, say, k = r2, and

r2(17r2 ± 10) = 47r2s2 for some r, s ∈ N.

This implies 47s2 − 17r2 = ±10, a contradiction. Hence, there exists a prime factor q of n

that divides both k and 17k ± 10. This implies that q|10. Note that if q = 5, then both m

and n are divisible by 5, and if q = 2, we have that

k

2

(

17 · k
2
± 5

)

= 47
(n

2

)2

.

If necessary, repeat the same process as above. Hence, we can find a prime factor p of n/2

such that p divides both k/2 and 17k/2± 5. This forces p = 5. Again, both m and n are

divisible by 5. So, (2) is true.
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