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AN OPERATOR INEQUALITY

Derming Wang
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1. Introduction. In this paper inequalities for positive operators acting on a Hilbert
space are considered. For positive operators A and B, the following conjecture [1] was

posed:
(1) If 0 < B < A, then (AB%A)Y/? < A2,

This conjecture was answered affirmatively by Furuta [3]. Indeed, Furuta proved a more

general inequality which contains inequality (1) as a special case:

If0 < B <A, then (ATBPAT)l/‘I < Alp+2r)/q
for p,r > 0,qg > 1 with p+ 2r < (1 + 2r)q.

Setting p = ¢ = 2 and r = 1, Furuta’s inequality becomes (1). More interestingly, if one

sets p = 2r and g = 2, Furuta’s inequality becomes a generalization of (1):
(2) If 0 < B < A, then (A"B* A")Y/2 < A% for r > 0.

If A and B are positive invertible operators with B < A, then it is known that log B <
log A. In [2], a result of Ando was rephrased: For positive invertible operators A and B,
log B < log A if and only if (ATBQ’“AT)U2 < A?" holds for all » > 0. Thus, Ando’s result
also establishes (2) as a corollary.

In this paper we establish (2) directly by elementary means. Our approach is inspired
by the work of Pedersen and Takesaki [5].

2. Preliminary. We are interested in (bounded, linear) operators acting on a Hilbert
space H with inner product < .,. >. An operator A is said to be self-adjoint if A = A*,
where A* is the adjoint of A. A self-adjoint operator A is said to be positive, in notation
A>0(or 0<A),if < Az, >> 0 for every vector z € H. For positive operators A and B
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we write A > B (or B < A) if A— B > 0. The relation “>” defines a partial order on the

set of positive operators. The following properties of positive operators are well known:

(a) If A >0, then A" > 0 for every real number r > 0.

(b) If A >0 and A is invertible, then A= > 0.

(c) If A,B >0, then ABA > 0. Thus, if 0 < B < A, then CBC < CAC for every C > 0.

(d) If 0 < B < A, then B" < A" for 0 < r < 1. In particular, if 0 < B < A, then
BY/2 < AL/2,

(e) In general, 0 < B < A does not necessarily imply B? < A2.

(f) If 0 < T < I, the identity operator, then T2 < I.

Properties (c), (d) and (e) led the authors of [1] to pose the conjecture (1). Now we state a

)
)
)
)

weakened version of a result of Pedersen and Takesaki [5] that is suitable for our purpose.
For the sake of completeness, a proof is given.

Theorem A. Suppose A and B are positive operators. Also, assume A is invertible.
Then, if (A/2BA'Y/?)'/2 < A, then there is a unique positive operator 1" satisfying 0 < T’ <
I and TAT = B.

Proof. Let T = A~Y2(AY2BAY2)A=1/2, Since (A/2BAY?)1/2 < A, multiplying
both sides of this inequality on the left and on the right by A=%/2 yields 0 < T < I. A
simple calculation shows that TAT = B. This establishes the existence of T. To prove the
uniqueness, assume S is a positive operator with the property SAS = B. Since SAS =
T AT, multiplying both sides of this equality on the left and on the right by A'/2 we obtain
(A28 A1/2)2 = (AY/2T A'/?)2. Now, taking square roots of both sides and then multiplying
both sides on the left and on the right by A='/2 produces the desired S = T.

3. The Main Result. We are ready to present our proof of (2).

Lemma. If 0 < B < A, then (1412%132”142”71)1/2 <A forn=0,1,2,....

Proof. First note that if the inequality can be proven with the extra assumption that
the operator A is invertible, then the result follows. For if A is not invertible, then for any
€ > 0, the operator Ac. = A + €l is a positive invertible operator. If the inequality in the
lemma is derived with A, in place of A, taking limits as € tends to 0 will produce the desired
inequality. Therefore, we may, without loss of generality, assume that A is invertible.

Since B < A, (AY/2BA'Y/?)1/2 < A. This proves the lemma for n = 0. Now, Theorem
A implies there is a positive operator 77 < I such that T3 ATy} = B. Thus,

AB%A = A(TVAT)?A = (ATy A)T? (AT A) < (AT, A)>.
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Taking square roots, we have (AB2A)1/ 2 < ATYA < A2?. This establishes the lemma
for n = 1. Again, Theorem A implies there is a positive operator To < I such that
Ty A?T, = B?. Similar arguments give (A2B*A2)'/2 < A*. This establishes the lemma for
n = 2. It is now apparent that the lemma follows by induction.

Notice that for the case n = 1, the inequality of the Lemma is (1).

Theorem. If 0 < B < A, then (A" B> A")'/2 < A" for r > 0.

Proof. For each 7 > 0, there is a smallest nonnegative integer & such that /2% < 1.
Let Ay = A™/2" and B; = B"/?". We have 0 < By < Ay, A2 = A" and B?' = B". The
result follows by applying the Lemma with n = k + 1 to the operators A; and B;. This
completes the proof.

We now use the Theorem to amplify Theorem A when 0 < B < A.

Corollary. Suppose 0 < B < A with A invertible. Then, for each r > 0 there is a
unique operator T, satisfying 0 < T, <[ and T, A"T, = B".

Proof. Let T, = A~"(A"B*" A")}/2A~". Clearly we have T, AT, = B". Since B < A,
the Theorem implies 0 < T;. < I. Arguments similar to those of Theorem A show that the
existence of T;. is unique. The proof is complete.

In conclusion, we note that a result of Hansen [4] may be applied to show that the

family {7 },>0 in the Corollary is a decreasing family.
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