AN OPERATOR INEQUALITY

Derming Wang

California State University-Long Beach

1. Introduction. In this paper inequalities for positive operators acting on a Hilbert space are considered. For positive operators A and B, the following conjecture [1] was posed:

(1) If
$$0 \le B \le A$$
, then $(AB^2A)^{1/2} \le A^2$.

This conjecture was answered affirmatively by Furuta [3]. Indeed, Furuta proved a more general inequality which contains inequality (1) as a special case:

If
$$0 \le B \le A$$
, then $(A^r B^p A^r)^{1/q} \le A^{(p+2r)/q}$
for $p, r \ge 0, q \ge 1$ with $p + 2r \le (1+2r)q$.

Setting p = q = 2 and r = 1, Furuta's inequality becomes (1). More interestingly, if one sets p = 2r and q = 2, Furuta's inequality becomes a generalization of (1):

(2) If
$$0 \le B \le A$$
, then $(A^r B^{2r} A^r)^{1/2} \le A^{2r}$ for $r \ge 0$.

If A and B are positive invertible operators with $B \leq A$, then it is known that $\log B \leq \log A$. In [2], a result of Ando was rephrased: For positive invertible operators A and B, $\log B \leq \log A$ if and only if $(A^r B^{2r} A^r)^{1/2} \leq A^{2r}$ holds for all $r \geq 0$. Thus, Ando's result also establishes (2) as a corollary.

In this paper we establish (2) directly by elementary means. Our approach is inspired by the work of Pedersen and Takesaki [5].

2. Preliminary. We are interested in (bounded, linear) operators acting on a Hilbert space \mathbb{H} with inner product $\langle .,. \rangle$. An operator A is said to be self-adjoint if $A = A^*$, where A^* is the adjoint of A. A self-adjoint operator A is said to be positive, in notation $A \ge 0$ (or $0 \le A$), if $\langle Ax, x \rangle \ge 0$ for every vector $x \in \mathbb{H}$. For positive operators A and B

we write $A \ge B$ (or $B \le A$) if $A - B \ge 0$. The relation " \ge " defines a partial order on the set of positive operators. The following properties of positive operators are well known:

- (a) If $A \ge 0$, then $A^r \ge 0$ for every real number $r \ge 0$.
- (b) If $A \ge 0$ and A is invertible, then $A^{-1} \ge 0$.
- (c) If $A, B \ge 0$, then $ABA \ge 0$. Thus, if $0 \le B \le A$, then $CBC \le CAC$ for every $C \ge 0$.
- (d) If $0 \le B \le A$, then $B^r \le A^r$ for $0 \le r \le 1$. In particular, if $0 \le B \le A$, then $B^{1/2} \le A^{1/2}$.
- (e) In general, $0 \le B \le A$ does not necessarily imply $B^2 \le A^2$.
- (f) If $0 \le T \le I$, the identity operator, then $T^2 \le I$.

Properties (c), (d) and (e) led the authors of [1] to pose the conjecture (1). Now we state a weakened version of a result of Pedersen and Takesaki [5] that is suitable for our purpose. For the sake of completeness, a proof is given.

<u>Theorem A</u>. Suppose A and B are positive operators. Also, assume A is invertible. Then, if $(A^{1/2}BA^{1/2})^{1/2} \leq A$, then there is a unique positive operator T satisfying $0 \leq T \leq I$ and TAT = B.

<u>Proof.</u> Let $T = A^{-1/2}(A^{1/2}BA^{1/2})A^{-1/2}$. Since $(A^{1/2}BA^{1/2})^{1/2} \leq A$, multiplying both sides of this inequality on the left and on the right by $A^{-1/2}$ yields $0 \leq T \leq I$. A simple calculation shows that TAT = B. This establishes the existence of T. To prove the uniqueness, assume S is a positive operator with the property SAS = B. Since SAS =TAT, multiplying both sides of this equality on the left and on the right by $A^{1/2}$ we obtain $(A^{1/2}SA^{1/2})^2 = (A^{1/2}TA^{1/2})^2$. Now, taking square roots of both sides and then multiplying both sides on the left and on the right by $A^{-1/2}$ produces the desired S = T.

3. The Main Result. We are ready to present our proof of (2).

<u>Lemma</u>. If $0 \le B \le A$, then $(A^{2^{n-1}}B^{2^n}A^{2^{n-1}})^{1/2} \le A^{2^n}$ for $n = 0, 1, 2, \dots$

<u>Proof.</u> First note that if the inequality can be proven with the extra assumption that the operator A is invertible, then the result follows. For if A is not invertible, then for any $\epsilon > 0$, the operator $A_{\epsilon} = A + \epsilon I$ is a positive invertible operator. If the inequality in the lemma is derived with A_{ϵ} in place of A, taking limits as ϵ tends to 0 will produce the desired inequality. Therefore, we may, without loss of generality, assume that A is invertible.

Since $B \leq A$, $(A^{1/2}BA^{1/2})^{1/2} \leq A$. This proves the lemma for n = 0. Now, Theorem A implies there is a positive operator $T_1 \leq I$ such that $T_1AT_1 = B$. Thus,

$$AB^{2}A = A(T_{1}AT_{1})^{2}A = (AT_{1}A)T_{1}^{2}(AT_{1}A) \le (AT_{1}A)^{2}.$$

Taking square roots, we have $(AB^2A)^{1/2} \leq AT_1A \leq A^2$. This establishes the lemma for n = 1. Again, Theorem A implies there is a positive operator $T_2 \leq I$ such that $T_2A^2T_2 = B^2$. Similar arguments give $(A^2B^4A^2)^{1/2} \leq A^4$. This establishes the lemma for n = 2. It is now apparent that the lemma follows by induction.

Notice that for the case n = 1, the inequality of the Lemma is (1).

<u>Theorem</u>. If $0 \le B \le A$, then $(A^r B^{2r} A^r)^{1/2} \le A^{2r}$ for $r \ge 0$.

<u>Proof.</u> For each $r \ge 0$, there is a smallest nonnegative integer k such that $r/2^k \le 1$. Let $A_1 = A^{r/2^k}$ and $B_1 = B^{r/2^k}$. We have $0 \le B_1 \le A_1$, $A_1^{2^k} = A^r$ and $B_1^{2^k} = B^r$. The result follows by applying the Lemma with n = k + 1 to the operators A_1 and B_1 . This completes the proof.

We now use the Theorem to amplify Theorem A when $0 \le B \le A$.

<u>Corollary</u>. Suppose $0 \le B \le A$ with A invertible. Then, for each $r \ge 0$ there is a unique operator T_r satisfying $0 \le T_r \le I$ and $T_r A^r T_r = B^r$.

<u>Proof.</u> Let $T_r = A^{-r} (A^r B^{2r} A^r)^{1/2} A^{-r}$. Clearly we have $T_r A^r T_r = B^r$. Since $B \leq A$, the Theorem implies $0 \leq T_r \leq I$. Arguments similar to those of Theorem A show that the existence of T_r is unique. The proof is complete.

In conclusion, we note that a result of Hansen [4] may be applied to show that the family $\{T_r\}_{r\geq 0}$ in the Corollary is a decreasing family.

References

- N. N. Chan and M. K. Kwong, "Hermitian Matrix Inequalities and a Conjecture," American Mathematical Monthly, 92 (1985), 533–541.
- M. Fujii and E. Kamei, "Furuta's Inequality for Chaotic Order," *Mathematica Japonica*, 36 (1991), 603–606.
- 3. T. Furuta, " $A \ge B \ge 0$ Assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$," Proceedings of the American Mathematical Society, 101 (1987), 85–88.
- 4. F. Hansen, "An Operator Inequality," Mathematische Annalen, 246 (1980), 249–250.
- G. K. Pedersen and M. Takesaki, "The Operator Equation THT = K," Proceedings of the American Mathematical Society, 36 (1972), 311–312.