AN OPERATOR INEQUALITY

Derming Wang
California State University-Long Beach

1. Introduction. In this paper inequalities for positive operators acting on a Hilbert space are considered. For positive operators A and B, the following conjecture [1] was posed:

$$
\begin{equation*}
\text { If } 0 \leq B \leq A \text {, then }\left(A B^{2} A\right)^{1 / 2} \leq A^{2} \tag{1}
\end{equation*}
$$

This conjecture was answered affirmatively by Furuta [3]. Indeed, Furuta proved a more general inequality which contains inequality (1) as a special case:

$$
\begin{aligned}
& \text { If } 0 \leq B \leq A \text {, then }\left(A^{r} B^{p} A^{r}\right)^{1 / q} \leq A^{(p+2 r) / q} \\
& \text { for } p, r \geq 0, q \geq 1 \text { with } p+2 r \leq(1+2 r) q
\end{aligned}
$$

Setting $p=q=2$ and $r=1$, Furuta's inequality becomes (1). More interestingly, if one sets $p=2 r$ and $q=2$, Furuta's inequality becomes a generalization of (1):

$$
\begin{equation*}
\text { If } 0 \leq B \leq A \text {, then }\left(A^{r} B^{2 r} A^{r}\right)^{1 / 2} \leq A^{2 r} \text { for } r \geq 0 \tag{2}
\end{equation*}
$$

If A and B are positive invertible operators with $B \leq A$, then it is known that $\log B \leq$ $\log A$. In [2], a result of Ando was rephrased: For positive invertible operators A and B, $\log B \leq \log A$ if and only if $\left(A^{r} B^{2 r} A^{r}\right)^{1 / 2} \leq A^{2 r}$ holds for all $r \geq 0$. Thus, Ando's result also establishes (2) as a corollary.

In this paper we establish (2) directly by elementary means. Our approach is inspired by the work of Pedersen and Takesaki [5].
2. Preliminary. We are interested in (bounded, linear) operators acting on a Hilbert space \mathbb{H} with inner product $<., .>$. An operator A is said to be self-adjoint if $A=A^{*}$, where A^{*} is the adjoint of A. A self-adjoint operator A is said to be positive, in notation $A \geq 0($ or $0 \leq A)$, if $<A x, x>\geq 0$ for every vector $x \in \mathbb{H}$. For positive operators A and B
we write $A \geq B$ (or $B \leq A$) if $A-B \geq 0$. The relation " \geq " defines a partial order on the set of positive operators. The following properties of positive operators are well known:
(a) If $A \geq 0$, then $A^{r} \geq 0$ for every real number $r \geq 0$.
(b) If $A \geq 0$ and A is invertible, then $A^{-1} \geq 0$.
(c) If $A, B \geq 0$, then $A B A \geq 0$. Thus, if $0 \leq B \leq A$, then $C B C \leq C A C$ for every $C \geq 0$.
(d) If $0 \leq B \leq A$, then $B^{r} \leq A^{r}$ for $0 \leq r \leq 1$. In particular, if $0 \leq B \leq A$, then $B^{1 / 2} \leq A^{1 / 2}$
(e) In general, $0 \leq B \leq A$ does not necessarily imply $B^{2} \leq A^{2}$.
(f) If $0 \leq T \leq I$, the identity operator, then $T^{2} \leq I$.

Properties (c), (d) and (e) led the authors of [1] to pose the conjecture (1). Now we state a weakened version of a result of Pedersen and Takesaki [5] that is suitable for our purpose. For the sake of completeness, a proof is given.

Theorem A. Suppose A and B are positive operators. Also, assume A is invertible. Then, if $\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2} \leq A$, then there is a unique positive operator T satisfying $0 \leq T \leq$ I and $T A T=B$.

Proof. Let $T=A^{-1 / 2}\left(A^{1 / 2} B A^{1 / 2}\right) A^{-1 / 2}$. Since $\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2} \leq A$, multiplying both sides of this inequality on the left and on the right by $A^{-1 / 2}$ yields $0 \leq T \leq I$. A simple calculation shows that $T A T=B$. This establishes the existence of T. To prove the uniqueness, assume S is a positive operator with the property $S A S=B$. Since $S A S=$ $T A T$, multiplying both sides of this equality on the left and on the right by $A^{1 / 2}$ we obtain $\left(A^{1 / 2} S A^{1 / 2}\right)^{2}=\left(A^{1 / 2} T A^{1 / 2}\right)^{2}$. Now, taking square roots of both sides and then multiplying both sides on the left and on the right by $A^{-1 / 2}$ produces the desired $S=T$.
3. The Main Result. We are ready to present our proof of (2).

Lemma. If $0 \leq B \leq A$, then $\left(A^{2^{n-1}} B^{2^{n}} A^{2^{n-1}}\right)^{1 / 2} \leq A^{2^{n}}$ for $n=0,1,2, \ldots$
Proof. First note that if the inequality can be proven with the extra assumption that the operator A is invertible, then the result follows. For if A is not invertible, then for any $\epsilon>0$, the operator $A_{\epsilon}=A+\epsilon I$ is a positive invertible operator. If the inequality in the lemma is derived with A_{ϵ} in place of A, taking limits as ϵ tends to 0 will produce the desired inequality. Therefore, we may, without loss of generality, assume that A is invertible.

Since $B \leq A,\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2} \leq A$. This proves the lemma for $n=0$. Now, Theorem A implies there is a positive operator $T_{1} \leq I$ such that $T_{1} A T_{1}=B$. Thus,

$$
A B^{2} A=A\left(T_{1} A T_{1}\right)^{2} A=\left(A T_{1} A\right) T_{1}^{2}\left(A T_{1} A\right) \leq\left(A T_{1} A\right)^{2}
$$

Taking square roots, we have $\left(A B^{2} A\right)^{1 / 2} \leq A T_{1} A \leq A^{2}$. This establishes the lemma for $n=1$. Again, Theorem A implies there is a positive operator $T_{2} \leq I$ such that $T_{2} A^{2} T_{2}=B^{2}$. Similar arguments give $\left(A^{2} B^{4} A^{2}\right)^{1 / 2} \leq A^{4}$. This establishes the lemma for $n=2$. It is now apparent that the lemma follows by induction.

Notice that for the case $n=1$, the inequality of the Lemma is (1).
Theorem. If $0 \leq B \leq A$, then $\left(A^{r} B^{2 r} A^{r}\right)^{1 / 2} \leq A^{2 r}$ for $r \geq 0$.
Proof. For each $r \geq 0$, there is a smallest nonnegative integer k such that $r / 2^{k} \leq 1$. Let $A_{1}=A^{r / 2^{k}}$ and $B_{1}=B^{r / 2^{k}}$. We have $0 \leq B_{1} \leq A_{1}, A_{1}^{2^{k}}=A^{r}$ and $B_{1}^{2^{k}}=B^{r}$. The result follows by applying the Lemma with $n=k+1$ to the operators A_{1} and B_{1}. This completes the proof.

We now use the Theorem to amplify Theorem A when $0 \leq B \leq A$.
Corollary. Suppose $0 \leq B \leq A$ with A invertible. Then, for each $r \geq 0$ there is a unique operator T_{r} satisfying $0 \leq T_{r} \leq I$ and $T_{r} A^{r} T_{r}=B^{r}$.

Proof. Let $T_{r}=A^{-r}\left(A^{r} B^{2 r} A^{r}\right)^{1 / 2} A^{-r}$. Clearly we have $T_{r} A^{r} T_{r}=B^{r}$. Since $B \leq A$, the Theorem implies $0 \leq T_{r} \leq I$. Arguments similar to those of Theorem A show that the existence of T_{r} is unique. The proof is complete.

In conclusion, we note that a result of Hansen [4] may be applied to show that the family $\left\{T_{r}\right\}_{r \geq 0}$ in the Corollary is a decreasing family.

References

1. N. N. Chan and M. K. Kwong, "Hermitian Matrix Inequalities and a Conjecture," American Mathematical Monthly, 92 (1985), 533-541.
2. M. Fujii and E. Kamei, "Furuta's Inequality for Chaotic Order," Mathematica Japonica, 36 (1991), 603-606.
3. T. Furuta, " $A \geq B \geq 0$ Assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r, "$ Proceedings of the American Mathematical Society, 101 (1987), 85-88.
4. F. Hansen, "An Operator Inequality," Mathematische Annalen, 246 (1980), 249-250.
5. G. K. Pedersen and M. Takesaki, "The Operator Equation $T H T=K$," Proceedings of the American Mathematical Society, 36 (1972), 311-312.
