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1. Introduction. In this paper inequalities for positive operators acting on a Hilbert

space are considered. For positive operators A and B, the following conjecture [1] was

posed:

(1) If 0 ≤ B ≤ A, then (AB2A)1/2 ≤ A2.

This conjecture was answered affirmatively by Furuta [3]. Indeed, Furuta proved a more

general inequality which contains inequality (1) as a special case:

If 0 ≤ B ≤ A, then (ArBpAr)1/q ≤ A(p+2r)/q

for p, r ≥ 0, q ≥ 1 with p+ 2r ≤ (1 + 2r)q.

Setting p = q = 2 and r = 1, Furuta’s inequality becomes (1). More interestingly, if one

sets p = 2r and q = 2, Furuta’s inequality becomes a generalization of (1):

(2) If 0 ≤ B ≤ A, then (ArB2rAr)1/2 ≤ A2r for r ≥ 0.

If A and B are positive invertible operators with B ≤ A, then it is known that logB ≤

logA. In [2], a result of Ando was rephrased: For positive invertible operators A and B,

logB ≤ logA if and only if (ArB2rAr)1/2 ≤ A2r holds for all r ≥ 0. Thus, Ando’s result

also establishes (2) as a corollary.

In this paper we establish (2) directly by elementary means. Our approach is inspired

by the work of Pedersen and Takesaki [5].

2. Preliminary. We are interested in (bounded, linear) operators acting on a Hilbert

space H with inner product < ., . >. An operator A is said to be self-adjoint if A = A∗,

where A∗ is the adjoint of A. A self-adjoint operator A is said to be positive, in notation

A ≥ 0 (or 0 ≤ A), if < Ax, x >≥ 0 for every vector x ∈ H. For positive operators A and B
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we write A ≥ B (or B ≤ A) if A −B ≥ 0. The relation “≥” defines a partial order on the

set of positive operators. The following properties of positive operators are well known:

(a) If A ≥ 0, then Ar ≥ 0 for every real number r ≥ 0.

(b) If A ≥ 0 and A is invertible, then A−1 ≥ 0.

(c) If A,B ≥ 0, then ABA ≥ 0. Thus, if 0 ≤ B ≤ A, then CBC ≤ CAC for every C ≥ 0.

(d) If 0 ≤ B ≤ A, then Br ≤ Ar for 0 ≤ r ≤ 1. In particular, if 0 ≤ B ≤ A, then

B1/2 ≤ A1/2.

(e) In general, 0 ≤ B ≤ A does not necessarily imply B2 ≤ A2.

(f) If 0 ≤ T ≤ I, the identity operator, then T 2 ≤ I.

Properties (c), (d) and (e) led the authors of [1] to pose the conjecture (1). Now we state a

weakened version of a result of Pedersen and Takesaki [5] that is suitable for our purpose.

For the sake of completeness, a proof is given.

Theorem A. Suppose A and B are positive operators. Also, assume A is invertible.

Then, if (A1/2BA1/2)1/2 ≤ A, then there is a unique positive operator T satisfying 0 ≤ T ≤

I and TAT = B.

Proof. Let T = A−1/2(A1/2BA1/2)A−1/2. Since (A1/2BA1/2)1/2 ≤ A, multiplying

both sides of this inequality on the left and on the right by A−1/2 yields 0 ≤ T ≤ I. A

simple calculation shows that TAT = B. This establishes the existence of T . To prove the

uniqueness, assume S is a positive operator with the property SAS = B. Since SAS =

TAT , multiplying both sides of this equality on the left and on the right by A1/2 we obtain

(A1/2SA1/2)2 = (A1/2TA1/2)2. Now, taking square roots of both sides and then multiplying

both sides on the left and on the right by A−1/2 produces the desired S = T .

3. The Main Result. We are ready to present our proof of (2).

Lemma. If 0 ≤ B ≤ A, then (A2n−1

B2nA2n−1

)1/2 ≤ A2n for n = 0, 1, 2, . . . .

Proof. First note that if the inequality can be proven with the extra assumption that

the operator A is invertible, then the result follows. For if A is not invertible, then for any

ǫ > 0, the operator Aǫ = A + ǫI is a positive invertible operator. If the inequality in the

lemma is derived with Aǫ in place of A, taking limits as ǫ tends to 0 will produce the desired

inequality. Therefore, we may, without loss of generality, assume that A is invertible.

Since B ≤ A, (A1/2BA1/2)1/2 ≤ A. This proves the lemma for n = 0. Now, Theorem

A implies there is a positive operator T1 ≤ I such that T1AT1 = B. Thus,

AB2A = A(T1AT1)
2A = (AT1A)T

2
1 (AT1A) ≤ (AT1A)

2.
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Taking square roots, we have (AB2A)1/2 ≤ AT1A ≤ A2. This establishes the lemma

for n = 1. Again, Theorem A implies there is a positive operator T2 ≤ I such that

T2A
2T2 = B2. Similar arguments give (A2B4A2)1/2 ≤ A4. This establishes the lemma for

n = 2. It is now apparent that the lemma follows by induction.

Notice that for the case n = 1, the inequality of the Lemma is (1).

Theorem. If 0 ≤ B ≤ A, then (ArB2rAr)1/2 ≤ A2r for r ≥ 0.

Proof. For each r ≥ 0, there is a smallest nonnegative integer k such that r/2k ≤ 1.

Let A1 = Ar/2k and B1 = Br/2k . We have 0 ≤ B1 ≤ A1, A
2k

1 = Ar and B2k

1 = Br. The

result follows by applying the Lemma with n = k + 1 to the operators A1 and B1. This

completes the proof.

We now use the Theorem to amplify Theorem A when 0 ≤ B ≤ A.

Corollary. Suppose 0 ≤ B ≤ A with A invertible. Then, for each r ≥ 0 there is a

unique operator Tr satisfying 0 ≤ Tr ≤ I and TrA
rTr = Br.

Proof. Let Tr = A−r(ArB2rAr)1/2A−r. Clearly we have TrA
rTr = Br. Since B ≤ A,

the Theorem implies 0 ≤ Tr ≤ I. Arguments similar to those of Theorem A show that the

existence of Tr is unique. The proof is complete.

In conclusion, we note that a result of Hansen [4] may be applied to show that the

family {Tr}r≥0 in the Corollary is a decreasing family.
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