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Let the probability of a subset of [0, 1] be given by its Lebesgue measure, i.e., the
uniform distribution. In this paper we relate independent random variables, which are
continuous functions, to space filling curves. In modern terminology, a random variable is
a real valued measurable function defined on a probability space. A collection V of random
variables is said to be an independent collection if, for any natural number n and for any
collection of functions {f1, f2, . . . , fn} ⊂ V and Borel subsets (equivalently, open intervals)
A1, A2, . . . , An of R, we have

(1) Pr

(

n
⋂

i=1

{x | fi(x) ∈ Ai}

)

=
n
∏

i=1

Pr ({x | fi(x) ∈ Ai}) .

We are interested in considering random variables defined on the probability space
consisting of the unit interval with the probability of a set given by its Lebesgue measure.
A classical example of a collection of independent random variables defined on [0, 1] is that
of the Rademacher functions {fn(x)}∞n=1

where

fn(x) = 1, if x ∈ [m/2n, (m+ 1)/2n)

with m even and
fn(x) = −1, if x ∈ [m/2n, (m+ 1)/2n)

with m odd.
Considerable work has been done studying general measurable functions which are

independent on [0, 1] and on the intervals [0,∞) and R = (−∞,∞).
Many references to early work on this subject as well as the papers themselves, may be

found in [4]. The possibility that such functions be continuous began with the observation
that the coordinate functions of the Peano curve, which maps [0, 1] continuously into the
unit square, are independent. (See [1] or [2] for recently discovered properties and a lucid
description of the Peano curve.) Sierpinski [3] showed that if x(t) and y(t) are the coordinate
functions of the Peano curve, then fn(t) = x(yn(t)), n = 0, 1, 2, . . . where y0(t) = t,
yn(t) = y(yn−1(t)) are independent and map [0, 1] onto [0, 1]ω.
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Most commonplace non-constant, continuous functions are not independent. In fact,
if f1 and f2 are defined on [0, 1] and if there are intervals [a, b] in the range of f1 and [c, d]
in the range of f2 so that f−1

1
([a, b]) ∩ f−1

2
([c, d]) = ∅, then f1 and f2 are not independent.

This is because
m({x | f1(x) ∈ [a, b]}) ·m({x | f2(x) ∈ [c, d]}) 6= 0

and
m({x | f1(x) ∈ [a, b] and f2(x) ∈ [c, d]}) = 0.

This suggests that, in order that two non-constant continuous functions be independent on
[0, 1], the functions must be somewhat unusual. This is borne out by the theorem below.

Theorem 1. If f1 and f2 are continuous, non-constant independent functions defined
on [0, 1] and if the range of f1 is [a, b] and the range of f2 is [c, d], then F (x) = (f1(x), f2(x))
is a continuous map from [0, 1] onto [a, b]× [c, d]; that is, F (x) is a “space-filling curve”.

Proof. Suppose f1 and f2 are given as in the statement of the theorem and that
(x0, y0) is any point in [a, b]× [c, d]. Let (a′, b′) and (c′, d′) be any two open intervals with
x0 ∈ (a′, b′) and y0 ∈ (c′, d′). Since f1 and f2 are continuous, f−1

1
((a′, b′)) and f−1

2
((c′, d′))

are non-empty open sets and, hence, are of positive Lebesgue measure. Since f1 and f2 are
independent,

m({x | f1(x) ∈ (a′, b′) and f2(x) ∈ (c′, d′)})

= m({x | f1(x) ∈ (a′, b′)}) ·m({x | f2(x) ∈ (c′, d′)}) > 0.

Since this is true, there is a point t such that F (t) = (f1(t), f2(t)) belongs to (a′, b′)×(c′, d′).
Since (a′, b′) and (c′, d′) are arbitrary intervals satisfying x0 ∈ (a′, b′) and y0 ∈ (c′, d′) and
since F (x) is continuous, it follows that there is t0 ∈ [0, 1] such that F (t0) = (x0, y0). Then,
(x0, y0) being an arbitrary point in [a, b]× [c, d], it follows that the range of F is [a, b]× [c, d]
and thus, F is a “space-filling curve”.

Clearly, the same result holds true if Lebesgue measure is replaced by any non-atomic
measure whose support is an interval [u, v]. Also it is clear that if {fn} are finite or infinite
sequence of independent random variables which are continuous on [a, b], then

F (x) = (f1(x), f2(x), . . . )

is a “space filling curve,” that is a continuous map from [a, b] to [u, v]n or [u, v]ω.
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