
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights
on old problems are always welcomed by the problem editor.

47. [1992, 88; 1993, 94] Proposed by Russell Euler, Northwest Missouri State Univer-
sity, Maryville, Missouri.

Find all the solutions of

(x− 1)x(x+ 1)(x+ 2) = −1.

Comment by the editor.

Due to an error by the editor, a remark by the proposer was omitted from the solution
to the problem. At the time the problem was proposed, the proposer noted that if x is
an integer, the factorization provided in the solution indicates that the product of four
consecutive integers is one less than the square of an integer.

57. [1993, 90] Proposed by Mohammad K. Azarian, University of Evansville,
Evansville, Indiana.

Let s and k be positive integers. Evaluate

lim
n→∞

k∏
i=1

n∑
j=1

ji
(
s

n

)i+1

.

Solution I by Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas;
Seung-Jin Bang, Albany, California; and the proposer.

n∑
j=1

ji
(
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n

)i+1

=

n∑
j=1

(
js

n

)i
s

n

is an upper Riemann sum for ∫ s

0

xidx.
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Since the product of sums is finite and each sum has a limit,

lim
n→∞

k∏
i=1

k∑
j=1

ji
(
s

n

)i+1

=

k∏
i=1

lim
n→∞

n∑
j=1

(
js

n

)i
s

n

=

k∏
i=1

∫ s

0

xidx

=

k∏
i=1

si+1

i+ 1

=
sk(k+3)/2

(k + 1)!
.

Solution II by N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin
and Frank J. Flanigan, San Jose State University, San Jose, California.

It is known that

n∑
j=1

ji

can be represented as a polynomial in n of degree i + 1 with leading coefficient 1/(i + 1).

(See for example: R. S. Luthar, “A Simple Way of Evaluating
∑k

i=1 i
n”, Pi Mu Epsilon

Journal, 6 (1976), 282–284.) Using this fact we can represent
∑n

j=1 j
i in the form

n∑
j=1

ji =

(
1

i+ 1

)
ni+1 + P (n),

where P (n) is a polynomial of degree i. Since

P (n)

ni+1
→ 0 as n→∞,
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it follows that

n∑
j=1

ji

ni+1
→ 1

i+ 1
as n→∞.

Hence,

lim
n→∞

k∏
i=1

n∑
j=1

ji
(
s

n

)i+1

=

k∏
i=1

si+1

(
lim
n→∞

n∑
j=1

ji

ni+1

)

=

k∏
i=1

si+1

i+ 1
=
sk(k+3)/2

(k + 1)!
.

Also solved by Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh,
Wisconsin.

58. [1993, 90] Proposed by Kandasamy Muthuvel, University of Wisconsin-Oshkosh,
Oshkosh, Wisconsin.

Let G be a proper subgroup of R, the reals under addition. Prove that R and the
complement of G have the same cardinality.

Solution I by the proposer.

Let |Gc| denote the cardinality of the complement of G and H denote the set of all
finite linear combinations of elements from Gc with integer coefficients (that is, an element
of H is of the form

m∑
i=1

nixi,

where m is a positive integer, the ni’s are integers and the xi’s are elements from Gc). Then
Gc ⊆ H and H is a subgroup of R. Suppose |Gc| < |R|. Then G is not a subset of H,
because if G ⊆ H, then R = G∪Gc ⊆ H and consequently |H| = |R|, which contradicts the
fact that |Gc| < |R|. Since G is not a subset of H and H is not a subset of G, there exist
elements g ∈ G and h ∈ H such that g 6∈ H and h 6∈ G. If g+h ∈ G, then h = g+h−g ∈ G,
but h 6∈ G. Hence g + h 6∈ G. Similarly g + h 6∈ H. Hence g + h 6∈ G ∪H. But g + h ∈ R.
This contradicts the fact that R = G ∪H. Thus |Gc| = |R|.
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Solution II by Frank J. Flanigan, San Jose State University, San Jose, California.

We will deduce the above assertion after establishing the following theorem.
Theorem. Let G be a subset of an infinite set S whose complement Gc = S−G satisfies

|Gc| ≥ |G|. Then |Gc| = |S|.
Proof. The theorem follows from

|S| = |G ∪Gc| = |G|+ |Gc| = |Gc|,

since |Gc| is necessarily infinite. (The second equality follows since the sets G and Gc are
disjoint.)

Now if G is a proper subgroup of R, then the standard Lagrange decomposition of R
as a union of cosets x+G shows that the complement Gc contains at least one such coset
x+G. Thus

|Gc| ≥ |x+G| = |G|,

so the theorem applies.
Comment. This approach does not involve uncountability, intermediate cardinalities,

the continuum hypothesis, Hamel bases, etc. The assertion holds for any proper subgroup
of any infinite group.

59. [1993, 91] Proposed by Ollie Nanyes, Bradley University, Peoria, Illinois.

Find a topology τ1 for the real line R1 such that:
1) (R1, τ1) is a second countable, metrizable space and
2) there is a homeomorphism

f : (R1, τ1)→ (R2, τ2),

where τ2 is the product topology τ1 × τ1.

Solution by the proposer.

Let τ1 be the topology generated by [q, x) where q and x are rational. Notice that these
basis elements are closed and open. Clearly (R1, τ1), denoted by Rq, is Hausdorff, regular
and second countable. Therefore, Rq is metrizable by the Urysohn metrization theorem.

However, we can find a basis B for Rq,

B =

∞⋃
i=1

Bi,

where:
1) for all i, Bi is a disjoint, countable cover of R1 by non-empty closed-open sets,
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2) for all i, if B ∈ Bi, there is a countable, disjoint cover B(B) of B such that

B =
⋃

B′∈B(B)

B′

and
Bi+1 =

⋃
B∈Bi

{B(B)}

and
3) for every collection {Bi} where, for all i, Bi ∈ Bi and Bi+1 ⊂ Bi, then ∩iBi is a single

point set. Then, Rq is homeomorphic to ZZ in the product (Tychonoff) topology by
the map g:Rq → ZZ by

g(x) = (n1, n2, . . . , nk, . . . )

where
x ∈

⋂
j=nk, k∈Z+

Bj
i

(with Bk
i ∈ Bi for all i).

So, let τ2 be the product topology for Rq ×Rq; since ZZ is homeomorphic to ZZ × ZZ,
Rq is homeomorphic to Rq × Rq.

We can show that the necessary basis B exists by induction: let C = {[a, b) |
a, b are rational } and enumerate the rationals by qi. Our induction hypothesis is that
Bn ∈ C. If we let:

B1 =
⋃
i

[i, i+ 1),

then our hypothesis is satisfied for i = 1. Now assume that Bn ∈ C. We will describe the
construction of Bn+1. If B ∈ Bn, then B = [a, b) by hypothesis. Let B′(B) = {[c, d) ∈ C |
a ≤ c < d < b with |d − c| < 1/n}. Certainly if qn ∈ [a, b) there is a rational dn such that
[qn, dn) ∈ B′(B). Choose a countably infinite family of disjoint members of B′(B) whose
union covers B such that [qn, dn) ∈ B(B) if qn ∈ B. Call this collection B(B). Define

Bn+1 =
⋃

B∈Bn

{B(B)}.
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It is now easy to check that

B =

∞⋃
i=1

Bi

is our basis which meets requirements 1, 2, and 3. (It turns out that Rq is homeomor-
phic to the irrationals in the normal Euclidean subspace topology since the irrationals are
homeomorphic to ZZ. (See F. Willard, General Topology, Addison-Wesley, 1970, Reading,
Massachusetts, exercise 24K.)

Acknowledgement by the proposer. I would like to thank an anonymous referee and
John Duncan who explained the solution to me.

One incorrect solution was also received.

60. [1993, 91] Proposed by Alvin Tinsley, Central Missouri State University, Warrens-
burg, Missouri.

Suppose a unit square has its left-hand corner at the origin and its sides along the x-
& y-axes. Initially, place the base of an equilateral triangle with unit sides on the x-axis
between 0 and 1. Slide the triangle to the left and up, always keeping the two vertices of
the base in contact with the x- & y-axes until the base of the equilateral triangle is on the
y-axis between 0 and 1. What is the equation of the locus of points determined by the third
vertex of the triangle?

Solution I by N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin;
Leon Hall, University of Missouri-Rolla, Rolla, Missouri; and Rhonda McKee, Central
Missouri State University, Warrensburg, Missouri.

Let t be the y-coordinate of the vertex A on the y-axis. Then
√

1− t2 is the x-
coordinate of the vertex B on the x-axis. For 0 < t < 1, the slope of the line through A
and B is −t/

√
1− t2, the slope of the perpendicular bisector of side AB is

√
1− t2/t, and

the coordinates of the midpoint M of side AB are (
√

1− t2/2, t/2). (See figure 1.)

Now the third vertex C lies on the perpendicular bisector of side AB at a distance of
√

3/2
units from M . So if (x, y) are the coordinates of vertex C we have

(1) y − t

2
=

√
1− t2
t

(
x−
√

1− t2
2

)

and

(2)
(
y − t

2

)2
+

(
x−
√

1− t2
2

)2

=
3

4
.
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Substituting the right hand side of (1) for (y − t/2) in (2) and simplifying yields

(3)

(
x−
√

1− t2
2

)2

=
3t2

4
.

Suppose the initial position for vertex C was quadrant I. Then from equations (3) and (1)
we get the following parametric equations:

x =

√
3

2
t+

√
1− t2

2

and

y =
t

2
+

√
3

2

√
1− t2, 0 ≤ t ≤ 1.

(See figure 2.)

Using these equations we can eliminate the radical and solve for t,

t =
√

3x− y.

Substituting
√

3x− y for t in the parametric equation for y and simplifying yields,

√
3y − x =

√
1− (

√
3x− y)2.

Squaring both sides and simplifying yields

4x2 − 4
√

3xy + 4y2 = 1

where 1/2 ≤ x ≤ 1 and 1/2 ≤ y ≤ 1.

Next suppose the initial position for vertex C was quadrant IV. Then from equations (3)
and (1) we get the following parametric equations:

x = −
√

3

2
t+

√
1− t2

2
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and

y =
t

2
−
√

3

2

√
1− t2, 0 ≤ t ≤ 1.

(See figure 3.)

Using the same technique as in the previous case we get
√

3x+ y = −t

and
4x2 + 4

√
3xy + 4y2 = 1

where −
√

3/2 ≤ x ≤ 1/2, −
√

3/2 ≤ y ≤ 1/2, and (x < 0 or y < 0).
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Solution II by the proposer; Joseph E. Chance, University of Texas-Pan American, Ed-
inburg, Texas; and J. Sriskandarajah, University of Wisconsin Center-Richland, Richland
Center, Wisconsin.

Consider the figure

The triangle slides as θ moves from 0 to 1. The equations of the non-base sides of the
triangle are

y = tan

(
2π

3
− π

2
θ

)(
x− cos

π

2
θ
)

and

y − sin
π

2
θ = tan

(
π

3
− π

2
θ

)
x.

Solving both equations simulataneously (and using some trig identities), the locus of the
third vertex of the triangle is

(x, y) =

(
cos
(π

3
− π

2
θ
)
, sin

(π
3

+
π

2
θ
))
.

Finding θ in terms of x, we have

π

2
θ =

π

3
− arccosx.
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Thus

y = sin
(2π

3
− arccosx

)
=

√
3

2
x+

1

2

√
1− x2.

Hence
2y −

√
3x =

√
1− x2

so
4x2 − 4

√
3xy + 4y2 − 1 = 0.
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