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Definitions. A space M is abcohesive at a point p with respect to a point q if there exists

an open connected set U such that p is a point in U and U is a subset of M − {q}. The

space M is abcohesive at a point p if it is abcohesive at p with respect to q for each q in

M − {p}. The space M is abcohesive if it is abcohesive at p for each p in M .

Remarks. If p is a non-cut point of M , and M is T1 then M is abcohesive at each point

q in M −{p} with respect to p. Hence, if each point of M is a non-cut point of M , then M

is abcohesive. Also, if M is a locally connected T1 space, then M is abcohesive. Sierpinski

space is locally connected but not abcohesive. However, Sierpinski space is not T1. For the

remainder of this paper, we will assume the space M is Hausdorff. If M is a continuum,

then there exist two points p and q in M such that M is abcohesive at each x in M − {p}

with respect to p and at each x in M − {q} with respect to q.

Theorem 1. The space M is abcohesive at each point q in M − {p} with respect to p

if and only if each component of M − {p} is open.

Proof. Suppose M is abcohesive at each point q in M − {p} with respect to p. Let C

be a component of M − {p}, and let x be a point in C. Since M is abcohesive at x with

respect to p, there exists an open connected set K such that x ∈ K and K ⊂ M −{p}. But

K ⊂ C, and hence C is open.

If the components of M − {p} are open, then for each q in M − {p}, there exists a

component C such that q ∈ C and C ⊂ M − {p}. Therefore, M is abcohesive at q with

respect to p.

Theorem 2. If M is an abcohesive connected space and C is a component of M − {p},

then p is a limit point of C.

Proof. Let C be a component of M −{p}. If p is not a limit point of C, then C is both

open and closed in M . This involves a contradiction. Hence p is a limit point of C.

Theorem 3. If M is an abcohesive space, then the components of M are open.

Proof. If M is connected, then M is the only component of the space. If M is not

connected, then let C be a component of M and let p be a point in M − C. By Theorem
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1, the components of M −{p} are open. Since C is a subset of M −{p}, C is a component

of M − {p}, and hence C is open.

Definitions. A space M is aposyndetic at a point p with respect to a point q if there

exists a closed connected set H such that p is in the interior of H and H is a subset of

M −{q}. The space M is aposyndetic at a point p if it is aposyndetic at p with respect to q

for each q in M −{p}. The space M is aposyndetic if it is aposyndetic at p for each p in M .

A space M is semi-locally connected at a point p of M if each open set containing p contains

an open set V containing p such that M − V has at most a finite number of components.

The space M is semi-locally connected if it is semi-locally connected at each point p in M .

Theorem 4. If M is aposyndetic at each point q in M −{p} with respect to p, then M

is abcohesive at each point q in M − {p} with respect to p.

Proof. Let q be a point in M−{p} and let C be the component ofM−{p} containing q.

There exists a closed connected set H such that q is in the interior of H and H ⊂ M −{p}.

Now H ⊂ C, and hence C is open. Thus M is abcohesive at each point q in M − {p} with

respect to p.

Theorem 5. If M is an aposyndetic space, then M is an abcohesive space.

Jones [1] established Theorem 6.

Theorem 6. If the space M is semi-locally connected at p, then M is aposyndetic at

each point q of M − {p} with respect to p.

Theorem 7. If M is a semi-locally connected space, then M is an aposyndetic space.

Theorem 8 follows from Theorems 4 and 6.

Theorem 8. If the space M is semi-locally connected at p, then M is abcohesive at

each point q in M − {p} with respect to p.

Theorem 9. If M is a semi-locally connected space, then M is an abcohesive space.

Theorem 10. If M is an abcohesive connected space and M has two cut points, then

there exist disjoint closed sets H and K such that M −H and M −K are connected and

H and K have non-empty interiors.

Proof. Let p and q be cut points of M . Let E be the component of M −{p} containing

q and let F be the component of M − {q} containing p. Let A be the collection of all

components of M − {p} different from E and let B be the collection of all components of

M − {q} different from F . Since M is abcohesive, A and B are open for each A in A and

B in B. For each A in A, A ∪ {p} is a connected subset of M − {q}. Thus A ∪ {p} ⊂ F .

Also for each B in B, B ∪ {q} is a connected subset of M −{p}. Thus B ∪{q} ⊂ E. Hence

64



A ∪ {p} and B ∪ {q} are disjoint for each A in A and B in B. Let H = ∪A ∪ {p} and let

K = ∪B ∪ {q}. Now, H and K are disjoint, M −H = E, and M −K = F , and both H

and K have non-empty interiors.

It is well-known that every non-degenerate continuum has at least two non-cut points.

Theorem 11 is a generalization of this well-known theorem.

Theorem 11. If M is a non-degenerate abcohesive connected space, then there exist

two disjoint closed connected sets H and K such that H and K have degenerate boundaries

and M −H and M −K are connected.

Proof. If M contains two non-cut points p and q, then let {p} = H and {q} = K. If M

does not contain two non-cut points, then M has two cut points and Theorem 11 follows

from Theorem 10.

Definition. Let M be a connected space. An A-set of M is a closed subset of M such

that M −A is the union of a collection of open sets each bounded by a single point of A.

Theorem 12. If M is an abcohesive connected space and A is a closed set in M , then

A is an A-set if and only if for each component C of M −A, C is open and there is a point

p of A such that ∂C = {p}.

Proof. Let A be an A-set ofM . let U be a collection of open sets such that M−A = ∪U

and ∂U is a degenerate subset of A for each U in U. Suppose C is a component of M −A.

There exists an element U in U such that C ⊂ U . Let ∂U = {p}, and let K be the

component of M − {p} containing C. Since M is abcohesive, K is open. K is connected,

and U is separated from (M − {p})− U , and so K ⊂ U . Now K is a connected subset of

M − A, which implies the component C of M − A must contain K. Hence K = C, and

each component of M −A is open and has a degenerate boundary in A.

The converse is easy.

The proof of Theorem 13 follows from the proof of Theorem 12.

Theorem 13. If M is an abcohesive connected space, A is an A-set of M , and C is a

component of M −A, then for some point p of A, C is a component of M − {p}.

Theorem 14. If M is an abcohesive connected space, p ∈ M , and C is a component of

M − {p}, then C ∪ {p} is an A-set of M .

Proof. The components of M − {p} are open and each has boundary {p}. Then

M − (C ∪ {p}) is the union of all components of M − {p} different from C, and hence

C ∪ {p} is an A-set of M .
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Theorem 15. If M is an abcohesive continuum, A is an A-set of M , and Z is a subcon-

tinuum of M , then Z ∩ A is a continuum.

Proof. Assume there exist non-empty separated sets H1 and H2 such that

Z ∩ A = H1 ∪H2 , Z ∩ A ∩H1 6= ∅ , and Z ∩A ∩H2 6= ∅.

Now each component of Z − A has a boundary point in Z ∩ A. Let C1 be the collection

of all components of Z − A with at least one boundary point in H1, and let C2 be the

collection of all components of Z−A with at least one boundary point in H2. Let K1 be the

collection of all components of M − A with at least one boundary point in H1, and let K2

be the collection of all components of M − A with at least one boundary point in H2. By

Theorem 13, for each component C of M −A, there exists a point x in A such that C is a

component of M −{x}. Since M is abcohesive, C is open. Now ∪K1 and ∪K2 are separated

sets. Since each member of C1 is in some member of K1 and each member of C2 is in some

member of K2, ∪C1 is separated from ∪C2. Let Z1 = ∪C1 ∪ H1, and let Z2 = ∪C2 ∪ H2.

Then Z = Z1 ∪ Z2.

Suppose ∪C2 is not separated from H1. Since H1 is closed, ∪C2 ∩H1 = ∅. Now there

must exist a net N in C2 and a point p in H1 such that p ∈ lim supN . Let N be the net

of closures of the elements of N . N is a net of continua and each element of N has a point

in H2. Since p ∈ lim supN , some subnet of N converges to a continuum K containing p.

N is a net in the compact space Z, and so K ⊂ Z. Since K ∩H1 6= ∅ and K ∩H2 6= ∅, it

follows that K ⊂ A. Now K ⊂ Z ∩ A = H1 ∪H2, and this is a contradiction. Hence ∪C2

is separated from H1, and similarly ∪C1 is separated from H2. Therefore Z1 is separated

from Z2, which contradicts the fact that Z is connected. Hence Z ∩A is connected.

The proof of the following theorem is similar to Whyburn’s proof of this theorem in

[2], and is omitted here.

Theorem 16. If M is a semi-locally connected continuum and A is an A-set of M , then

A is a semi-locally connected continuum.

The next theorem follows from Theorem 15.

Theorem 17. If M is an abcohesive continuum, then each A-set of M is a continuum.

Theorem 18. If M is an abcohesive continuum, A is an A-set of M , a and b are points

in A, and L is an irreducible continuum from a to b, then L ⊂ A.

Proof. By Theorem 17, A is a continuum. By Theorem 15, L ∩A is a continuum, and

hence L ∩A is a subcontinuum of A containing a and b. Therefore, L ∩A = L and L ⊂ A.
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Theorem 19. If M is an abcohesive connected space and A is a closed set in M , then

A is an A-set of M if and only if each component of M −A has a degenerate boundary.

Proof. If A is an A-set, then by Theorem 12, each component of M − A has exactly

one boundary point. Let C be a component of M − A, let ∂C = {p}, and let K be the

component of M − {p} containing C. Since M is abcohesive, K is open. Now

M − {p} = C ∪ [(M − {p})− C],

C is separated from (M −{p})−C, and K is a connected subset of M−{p}, and so K ⊂ C.

Hence K = C and M −A is the union of open sets, each with a degenerate boundary in A.

Therefore, A is an A-set.
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