
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights
on old problems are always welcomed by the problem editor.

37. [1991, 149] Proposed by Russell Euler, Northwest Missouri State University,
Maryville, Missouri.

Lines l1 and l2 are concurrent at O. Let {ai} be a sequence of points on l1 and {bi} be
a sequence of points on l2 such that

d(O, a1) = d(ai, ai+1) = d(O, b1) = d(bi, bi+1) > 0

for i = 1, 2, 3, . . .. If Mi is the midpoint of the line segment aibi, prove that the points Mi

are collinear.

Solution I by Andrea Rothbart, Webster University, St. Louis, Missouri. This solution
uses a vector approach. For simplicity, let −→x stand for the vector

−−→
Oa1 and −→y stand for the

vector
−−→
Ob1. Then,

−−→
Obn = n−→y and

−−→
Oan = n−→x . Also,

−−→
bnan =

−−→
bnO +

−−→
Oan = −n−→y + n−→x = n(−→x −−→y ) .

Thus,

−−−→
OMn =

−−→
Obn +

−−−→
bnMn = n−→y +

1

2
n(−→x −−→y ) =

n

2
(−→x +−→y ) = n

−−−→
OM1 .

Since each of the vectors
−−−→
OMn is a multiple of

−−−→
OM1, the points M1, M2, . . . are collinear.

Solution II by Seung-Jin Bang, Seoul, Republic of Korea. We may assume that the line
l1 is the x-axis, the lines l1 and l2 are concurrent at O = (0, 0), and d(O, a1) = a > 0. Then
we have ai = (ia, 0).

Case I. The lines l1 and l2 are perpendicular. Then bi = (0, ia). It follows that

Mi =
1

2
(ai + bi) =

ia

2
(1, 1)

and the points Mi lie on the line y = x.

Case II. The equation of the line l2 is y = kx, k = tan θ (0 < θ < π
2
, π

2
< θ < π). Then

bi = (ia cos θ, ia sin θ) .
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It follows that

Mi =
1

2
(ai + bi) =

ia

2
(1 + cos θ, sin θ)

and the points Mi lie on the line

y =
sin θ

1 + cos θ
x =

(

tan
θ

2

)

x .

From Case I and II, the points Mi lie on the bisector of the angle 6 a1Ob1. This completes
the proof.

Also solved by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin and the proposer.

Andrea Rothbart noted that it is not necessary to assume |−−→Ob1| = |−−→Oa1| as stated in the
problem.

38. [1991, 149] Proposed by Stanley Rabinowitz, Westford, Massachusetts.

Consider the equation:
√
x1 +

√
x2 +

√
x3 = 0. Bring the

√
x3 term to the right-hand

side and then square both sides. Then isolate the
√
x1x2 term on one side and square again.

The result is a polynomial and we say that we have rationalized the original equation.

Can the equation √
x1 +

√
x2 + · · ·+√

xn = 0

be rationalized in a similar manner, by successive transpositions and squarings?

Solution by the proposer. Yes.

At first sight, it seems like as you square you will get more and more terms each time
(when n > 3). However, proper grouping will in fact allow the equation to be rationalized.

First get rid of the radical containing xn by bringing it to one side and then squaring
both sides.

Now we will continue to get rid of the radical for each xi in succession. Remove any
square factors from within any radicals. Then find all radicals containing xi. Bring them
to the left-hand side and bring all the other terms to the right-hand side. The left-hand
side is now of the form

√
xi

(

∑

j

aj

√

∏

k

xjk

)

148



where no jk is i. Squaring both sides will now remove all the xi terms from inside radicals.
After at most n such operations, the equation will be rationalized.

One incorrect solution was received.

39. [1991, 150] Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri
State University, Warrensburg, Missouri.

Let n be a positive integer and L(i) denote the number of large digits (digits greater
than or equal to 5) in the base 10 representation of the non-negative integer i. Evaluate

1

10n

10
n−1
∑

i=0

L(i)4 .

Solution by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana,
Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin, and the pro-
posers (independently).

Since 0 ≤ L(i) ≤ n, for 0 ≤ i ≤ 10n − 1, we may rewrite the given expression as

1

10n

n
∑

m=0

λmm4 ,

where λm denotes the number of elements in the set {i : L(i) = m}.
We may identify each i, 0 ≤ i ≤ 10n−1, with an n-tuple in the set {0, 1, 2, . . . , 9}n. For

each of
(

n

m

)

choices of m positions, there are 5m ways of filling them with large digits. The
remaining n−m positions can be filled in 5n−m different ways with small digits. Hence,

λm =

(

n

m

)

5n .

Therefore, the given sum may be rewritten as

1

2n

n
∑

m=0

(

n

m

)

m4 .
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By differentitating both sides of

(1 + et)n =
n
∑

m=0

(

n

m

)

emt

four times (with respect to t), and then evaluating at t = 0, we have

n
∑

m=0

(

n

m

)

m4 = n(n+ 1)(n2 + 5n− 2)2n−4 .

Hence, the desired result is

1

16

(

n(n+ 1)(n2 + 5n− 2)
)

.

40. [1991, 150] Proposed by Stan Wagon, Macalester College, St. Paul, Minnesota.

A tetrahedron is a geometric solid with 4 vertices, 6 edges, and 4 triangular faces. A
Heron triangle is one whose sides and area are integers. A Heron tetrahedron is one having
Heron triangles as faces and whose volume is an integer.

(a) Show that if △ABC is acute, then a tetrahedron exists with each of its faces
congruent to △ABC.

(b)∗ John Leech has shown that a Heron tetrahedron exists: Let △ABC have sides
148, 195, and 203 and let T be the tetrahedron obtained from this triangle as in (a). Then
each face of T has integer area and T has integer volume. The following question is inspired
by Jim Buddenhagen’s investigation of Heron triangles whose area is a square. Question:
Is there a Heron tetrahedron whose volume is a perfect square or perfect cube?

Solution to (a) by the proposer. Place two copies of the triangle adjacent to each
other along AB, so that a parallelogram ACBC′ is formed. Because the triangle is acute,
CC′ > AB; thus we may lift C and C′ simultaneously, rotating the two triangles, until the
distance between C and C′ equals c. Connecting the moved points C and C′ completes the
tetrahedron. One can use integration of the cross-sections of the tetrahedron oriented this
way – they are similar parallelograms – to obtain the following formula for the area of a
tetrahedron having each face congruent to a triangle with side-lengths a, b, and c:

V =

√

(a2 + b2 − c2)(a2 + c2 − b2)(b2 + c2 − a2)

72
.
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Applying this formula to Leech’s example shows that the resulting tetrahedron has volume
611,520. Heron’s classical formula –

√

s(s− a)(s− b)(s− c), where s is the semiperimeter
of a triangle – shows that the faces have area 13,650.

No solutions were submitted to part (b) and it remains open.
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