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1. Introduction. In several recent papers Gilder [1] and Planitz [2] considered the

problem of purchasing postage stamps of various denominations so as to meet a fixed budget.

If there are n types of stamps this requires the solution of the equation

(1.1) a1x1 + a2x2 + · · ·+ anxn = c

where ai is the cost of the ith type of stamp, xi is the number of stamps and c is the budget,

where xi and ai are non-negative integers. In [1] Gilder discusses the solution in integers of

the equation

(1.2) 12x1 + 17x2 = 100z ,

where x1 is the number of second class stamps (at the old rate of 12p), x2 the number of

first class stamps (at 17p), and z the total cost in pounds. Planitz extends the problem by

shopping for three types of stamps giving the equation

(1.3) 13x1 + 18x2 + 22x3 = c .

Solving (1.2) is a classical problem in diophantine equations provided that the xi are

unrestricted. The novelty of the postage stamp problem lies in the fact that the solution xi

must be non-negative.

To solve (1.2) Gilder [1] and Planitz [2] use the known continued fraction solution for

(1.1) for n = 2 to generate all integer solutions. The non-negative ones are then obtained
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from a simple inequality. Planitz reduces the three variable case to a pair of equivalent two

variable equations in order to use continued fractions. He again is able to find solutions

in terms of inequalities obtained from the parametric representation given by continued

fractions. If we purchase a fourth type of stamp and this becomes a problem with four

unknowns, this method will not work out directly, because the linear transformation is not

easily found.

In this note we extend the approach of Planitz by giving an algorithm which yields all

the solutions of (1.1). Our method does not depend on continued fractions, thus it may

be applied in direct fashion to equations with any number of variables and may be easily

programmed for computer solution.

The proof of the algorithm is given in section 2. Following this we show how Gilder’s

solution of (1.2) and Planitz’s solution of (1.3) may be found from (1.1).

2. Matrix Solution of (1.1). In this section we will present an algorithm for finding

the general solution of the linear diophantine equation,

(2.1) a1x1 + a2x2 + · · ·+ anxn = b

where a1, a2, . . . , an, b are integers.

Throughout, Ai will denote the ith row vector of matrix A. det(A) and At will denote

the determinant of and the transpose of A, respectively. The following two integral row

operations are well known:

(1) E(i, j): Interchange the ith and jth row.

(2) E(i(k), j): Add an integral multiple of k times the ith row to the jth row.

If (2.1) has an integral solution, then the greatest common divisor (g.c.d.) of

a1, a2, . . . , an must divide b. Therefore, without loss of generality we may assume that

the g.c.d. of a1, a2, . . ., an is 1.

Let A denote the row matrix of the coefficients of (2.1) and let X = [x1, x2, . . . , xn].

Then equation (2.1) is of the form AXt = b.

The main result of the paper is the following theorem.

Theorem 1. Let

C = [At, In] =









a1 1 0 · · · 0
a2 0 1 · · · 0
...

...
...

. . .
...

an 0 0 · · · 1









.
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We apply integral row operations on C until we have a matrix of the form









1 p11 p12 · · · p1n
0 p21 p22 · · · p2n
...

...
...

. . .
...

0 pn1 pn2 · · · pnn









.

Let

P =









p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn









.

Then bP1 is an integral solution of (2.1) and all integral solutions of (2.1) are of the form

X = bP1 + λ2P2 + · · ·+ λnPn

for all integers λ2, . . ., λn.

Proof. Since the g.c.d. of a1, a2, . . . , an is 1, applying the operations E(i, j) and

E(i(k), j) on C will give us a matrix of the form









1 p11 p12 · · · p1n
0 p21 p22 · · · p2n
...

...
...

. . .
...

0 pn1 pn2 · · · pnn









.

Then the matrix

P =









p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn









is a finite product of elementary matrices.
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Therefore every entry pij of P is an integer and det(P ) = ±1. Hence P1, P2, . . ., Pn

are linearly independent and form a basis of the real n-dimensional factor space Rn. Since

P1 · A = 1 and Pi · A = 0 for all 2 ≤ i ≤ n where dot is the inner product of vectors, we

have that bP1 is an integral solution of (2.1) and every Pi is perpendicular to A for i ≥ 2.

Therefore,

X = bP1 + k2P2 + · · ·+ knPn

for arbitrary real numbers k2, . . ., kn is a solution of (2.1).

We now claim that any integral solution of (2.1) must be of the form

X = bP1 + λ2P2 + · · ·+ λnPn

where λ2, . . ., λn are integers.

Let S be an integral solution of (2.1). Then every component of the vector S − bP1 is

an integer and the vector S − bP1 belongs to the subspace of Rn spanned by P2, . . ., Pn.

Hence, there are rational numbers y2, . . ., yn such that

S − bP1 = y2P2 + · · ·+ ynPn .

The equation

y2P2 + · · ·+ ynPn = S − bP1

forms a system of linear diophantine equations

(2.2)

p21y2 + p31y3 + · · ·+ pn1yn = c1

p22y2 + p32y3 + · · ·+ pn2yn = c2

...
...

p2ny2 + p3ny3 + · · ·+ pnnyn = cn

where c1, c2, . . ., cn are integers. Therefore, Y = [y2, . . . , yn] is the unique solution of (2.2).

Suppose that there is one yi (say y2) that is not an integer. Then there are integers k and

s with (k, s) = 1 and k ≥ 2 such that y2 = s
k
. Hence, there is a prime number p dividing k.

Since

±1 = det(P ) =

n
∑

j=1

(−1)j+1p1j det(P1j) ,
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the g.c.d. of det(P11), det(P12), . . ., det(P1n) is 1. Then there are integers j1 and j2, such

that p does not divide det(P1j1 ) or det(P1j2). By Cramer’s rule for the system (2.2), we

have
d1

det(P1j1)
= y2 =

s

k
=

d2

det(P1j2)
,

where d1 and d2 are integers. This is impossible. Therefore, y2, . . ., yn are integers and the

theorem is proven.

3. Postage Stamp Problems. We now apply the method given in section 2 to

solving (1.2) and (1.3). For (1.2)

C =

[

12 1 0
17 0 1

]

elementary row (1) and (2) operations gives

[

12 1 0
17 0 1

]

→

[

12 1 0
5 −1 1

]

→

[

2 3 −2
5 −1 1

]

→

[

2 3 −2
1 −7 5

]

→

[

0 17 −12
1 −7 5

]

→

[

1 −7 5
0 17 −12

]

.

Thus all solutions of (1.2) are given by

(3.1) [x1, x2] = 100z[−7, 5]+ λ[17,−12] .

If z = 2, the case considered by Planitz [2], x1 = −1400 + 17λ and x2 = 1000− 12λ. Since

x1 and x2 must be non-negative, 17λ ≥ 1400 and 12λ ≤ 1000 which implies λ = 83. Thus

x1 = 11 and x2 = 4.
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For the extended postage stamp problem described by Eq. (1.3), row reduction on the

matrix

(3.2)





13 1 0 0
18 0 1 0
22 0 0 1





gives the matrix

(3.3)





1 −1 2 −1
0 14 −26 13
0 4 −9 5



 .

Thus all integral non-negative solutions may be found by solving

(3.4)

−c+ 14λ1 + 4λ2 ≥ 0

2c− 26λ1 − 9λ2 ≥ 0

−c+ 13λ1 + 5λ2 ≥ 0 .

For example, if c = 200, (3.4) has only 3 pairs of solutions, [λ1, λ2] = [10, 15], [11, 12], and

[12, 9], and so [x1, x2, x3] = [0, 5, 5], [2, 6, 3], [4, 7, 1].

If we further extend the problem to four types of stamps, this time using United States

prices we get the following equation

(3.5) 15x1 + 25x2 + 39x3 + 45x4 = c .

Fifteen cents for postcards, twenty-five cents for letters, thirty- nine cents for air gram and

forty-five cents for airmail. We then have the matrix

(3.6)







15 1 0 0 0
25 0 1 0 0
39 0 0 1 0
45 0 0 0 1






.
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This gives

(3.7)







1 1 1 −1 0
0 −14 −15 15 0
0 −11 −9 10 0
0 −45 −45 45 1






.

For a given c the solution can be found by solving

(3.8)

c− 14λ1−11λ2 − 45λ3 ≥ 0

c− 15λ1−9λ2 − 45λ3 ≥ 0

−c+ 15λ1 + 10λ2 + 45λ3 ≥ 0

λ3 ≥ 0 .

For instance, whenever c = 200, (3.8) has only solutions [λ1, λ2, λ3] = [3, 2, 3], [6, 2, 2],

[7, 5, 1], [8, 8, 0], [9, 2, 1], [10, 5, 0] and [12, 2, 0], and so the only possible combinations for

x1, x2, x3 and x4 are [x1, x2, x3, x4] = [1, 2, 0, 3], [4, 2, 0, 2], [2, 5, 0, 1], [0, 8, 0, 0], [7, 2, 0, 1],

[5, 5, 0, 0] and [10, 2, 0, 0].
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