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The investigation of plethysms (inner and outer) in the repre-
sentation theory of finite classical groups has been one of the im-
portant outstanding problems in the representation theory of the
symmetric group [5], [7] and [8]. The fundamental theorem of the
representation theory of the symmetric group has been more or less
known since the origins of the subject with Frobenius at the turn of
the century. This theorem states there is an isomorphism between
the representation ring of the symmetric groups S,, and the ring
of symmetric polynomials in an infinite number of variables. But
for various reasons this isomorphism in its pure form seems not
to have appeared until Atiyah [2] introduced the Steenrod power
operations in K-Theory around 1966. In [2] Atiyah described how

to use the complex representations of the symmetric group Sy, to
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define and investigate operations in K-Theory. Atiyah’s main tech-
nical tool is the notation of A-ring introduced by Grothendieck [3]
in 1956 in an algebraic-geometric context. The notation of A-ring
has been used by Knutson [6], to study the fundamental theorem of
the representation theory of the symmetric group which has been
translated into that of plethysms by Hoffman [4], Uehara and my-
self [1] and [9]. The main purpose of this paper is to define and
investigate the inner plethysm in the representation ring R(A,),
where A4,, = GL(n, K) in the nth general linear group over a finite
field K. In the case A, = S,, the symmetric group, Hoffman [4]
investigated the inner and outer plethysms in the frame work of
7-rings. The authors of [1] and [9] studied the outer plethysms for
A, = Sp, A, = GL(n,K) and A,, = [G]Sy, the wreath product of

a finite group G by the symmetric group S,.

Let A, = GL(n,K) be the nth general linear group over a
finite field K. The wreath product [A,]S, of A, by the symmetric
group Sy, (the usual notation for [A4,,]Sy is A,,1Sk) is the set AF x Sy,
with a multiplication defined by (ai,...,ar;0)(a},...,a);0") =

(ala;,l(l),...,aka;,l(k);aal) where a;,a; € A, for k > i > 1
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and 0,0’ € S;. For a representation M of A, and for k > 1,
the kth tensor product of M, M®* = M @ M @ ---® M (k fac-
tors) is a representation of [A,]S; with a group action given by
(a1,...,a1;0) (M1 @M2 @ - @My) = arMg-1(1) @ -+ @ AxMg—1(k)
for any (a1,...,ax;0) € [4,]Skr and m; € M. In what follows ®
means ®, and we interpret M®° as the A,-representation C, on
which A, acts trivially.

For any finite group G let R(G) be the Grothendieck represen-
tation group of G, R(G) is the free abelian group generated by the
isomorphism classes of irreducible complex representations of G.
It is a ring with respect to the tensor product. For every integer

k > 1 we have a map

®k : R(An) — R([A,]Sk)

defined by ®k([M]) = [M®¥], where [M] € R(A,,) is the class of
M.

First we are going to show ®Fk is well defined (compare Atiyah
[2], proposition 2.2). Let G be any finite group and consider the

semiring M (G) = {(M, N)|M, N are G—modules } with addition
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and multiplication defined by

(M,N)+ (M',N')=(M & M',N &N

and

(M,N)..M',NY=(MeM NN MaN &M @N) .

We define an equivalence relation ~ on M (G) by (M, N) ~ (M’, N")
if and only if M & N' ~ M’ & N. We denote by [(M,N)] the
equivalence class of (M, N) € M(G). Then R(G) = M(G)/ ~ is
a ring with 0 = [(D, D)] and —[(M,N)] = [(N,M)]. It is clear
from the construction that the map h : R(G) — R(G) defined
by h([(M,n)]) = [M] — [N] is a ring isomorphism. For each in-
teger k > 1, we define a map Ay : M(A,) — M([A,]Sk) by

Ap(M,N) = (M, N)*.

Lemma 1. The map A\ is compatible with the equivalence relation

~on M(A,).

Proof. We have to show that if D is any A,-module and
(M,N) € M(A,) then Ap(M,N) ~ Ax(M @ D,N & D). This
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can be proved by induction on k. If k =1,

A (M@®D,NeD) = (M®&D,NeD) = (M,N)+(D,D) = (M,N) .

Assume the hypothesis is true for k£ — 1, then

A(M@®D,N®D)=(MoD,N®D)*'.(M®D,N o D)

= (M, N)*""((M,N) + (D, D))

= (M,N)*"Y(M,N) = Ap(M,N) .

Now consider the diagram

where ®k is the map induced by Ay and P is the projection map.

hopo Ap(M,0) =hop(M,0)* = hop(M* 0)

— h([(M®*,0)] = [M®*] = @k[M] .
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Similarly ®k o h o p(M,0) = ®k[M]. Thus it follows that the
diagram commutes and ®k is also induced by Ag, and hence the

map Rk is well defined.
Before we state the next result we recall the following.

Definition. Let H be a subgroup of a finite group G and M is a
complex representation of H the representation of G induced by

M is given by Ind$ M = CG @cy M.

Lemma 2. If (M, N) € M(A,,), then for any k > 1,

k
_ [An]S k—1 7
Ap(MN) = (3 Indiyer cpans,(MEFT) @ N9,
1=0

1 even

[A,]8 e _
S omalls s e @ NEA)

Proof. The proof is by induction on k. If £ = 1, this is evident.
Assume that the hypothesis is true for all integers m < k. Then

we have
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Apy1 (M,N) = (MvN)k(MvN)

[A S k—i %

k
AnlS —j j
3 Ind{An}S:ﬁX[An]Sj(M®<k D @ N®7))(M,N))
odd
Z In d Sk XA, (ME*=) @ N @ Ma
b AnlS, 1 j
D WdRS s, (M @ NF) @ N,
Foda
k . .
3 Indﬁz}gzﬂxmn]si (M®*=) @ N®) @ N @ M®
=0
k
n]S
3 Ind% n}s’; s, (MEE) @ N©I))
Foda
k+1 . .
Z In " g:ii X[AW]S .(M®(k+171) ®N®z),
k+1

Z Ind%A"]Sk“ S, (M®(k+1fj) ®N®j)) )

An]Sky1-;5X[A

j=
j odd
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Corollary 3. For any [M] — [N] € R(4,) and k > 1,

k

i AnlS —i i
@k([M] = [N]) = > (=1)'[Ind{3"18 a5, (MEF) @ N
=0

Proof. Since Ay induces ®k, apply hop to A (M, N) as given

in the Lemma and we are done.

By construction [A,]S) is the semi-direct product A* x4 Sk,

where 0 : S, — Aut (AF) is a group homomorphism given by
O(a)((a1,...,ax)) = (@o—1(1)s -+ Ag—1(k))
for o € Sk, a; € A,,. In other words, the short exact sequence
1= AF 5 [A4,]8 — Sk — 1

is split by the obvious maps « : Sy — [A;]Sk where a(o) =
(1,1,...,1;0). Also the image of A, in [A,]S; as the diagonal
subgroup

{(a,a,...,;a)|la € A}

of Ak commutes elementwise with the image of Sy thus we get an
embedding ¥ : A, X S, — [A,]Sk. Hereafter, A,, x S is considered

as a subgroup of [4,]Sk.
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Definition. By the inner plethysm Tj associated with an element
¢ € R*(Sk) = Hom .(R(Sk),C), we mean the map

Ty, R(4,) —5(4,)®C ~ R(A,)

[

R(An) ® R(Sk)
defined by Ty = (1 ® ¢) o (®k). In the sequel for any [M] € R(A,,)
we denote Ty ([M]) by ¢([M]), if no confusion arises. For a par-
tition m = {17,272 ... k™} of k (in notation m F k ), let
Sy = ST! x §32 x --- x SF*. Then a trivial representation and

a sign representation of S are denoted by 1g_ and Alt S, respec-

tively. Let pr = [Indg’jr 1g.] and n, = [Indg’jr Alt S,].

Lemma 3.
{pr|m b k} and {n.|m F k} are bases for R(S%) .

This fact is known, for example, see Knutson [6]. Let us consider
the elements A, and o, in R*(Sk) defined by

1, if M = Alt S;;
An([M]) = {0, otherwise.

and

o ((M]) = { 1, if M =1g_;

0, otherwise.
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Define a map p : R(Sk) — R*(Sk) by p([M])([N]) =< M, N > for
[M],[N] € R(Sk) where <, > is the Schur inner product in R(S).
Then it is known that p is a ring isomorphism and p(p,) = o and
w(nz) = Ar, where 7 = k. If E is an A,-representation and V is
an Sy-representation, then Homg, (V, E®*) can be considered as an
A,-representation when a group action is defined by ae f = a®¥o f
for all f € Homg, (V, E®*) and a € A,. It is well known that if
{Vx|m F k} is a complete set of irreducible Sg-representations then

there exists an A,, X Sg-isomorphism.

6:> Homg, (Ve, E® k) ® Vr — E®F
7wk

defined by 0(f ® z) = f(z) for f € Homg, (Vy, E®¥) and x € V.

Theorem 5. For any A, € R*(Sg) with 7 &k and for any A,-

module M, we have

Ar([M])[Homsg, (Indg* Alt Sy, MEF)]

Proof. First consider the A, x S decomposition

M@k ~ ZHomSk(VW,M®k) Q@ Ve .
Tk
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Then by definition
Ar([M]) = (1@ Ar).(@F)([M])
= (1@ A-)([M®H])

= Z Homg, (Vie, MEF)A\, ([Vz])
wHk

= [HomSk (Z )‘T([Vﬂ])vm M®k)]

However,

S M (Va)Ve =3 b () (Ve Vi

Tk Tk

= <IndgAlt Sp, Ve > Vg
-k

=IndJ*Alt S, .

Hence we obtain A, ([M]) = [Homg, (Indg Alt S, M®k)].

Theorem 6. For any partition 7 = {171,272 ... k7*} I~ k and for

any A,-representation M, we have

Ar([M]) = M ([M]) T Ao ([M])72 - A ([M])TF

Proof. By the Frobenius reciprocity law we have
Homg, (Ind Alt S,, M®*) ~ Hom(Alt S, Resg’: M©Ek)

since

Alt S, ~ (Alt $1)®™' @ - @ (Alt Sg)®™F
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and
Resg, (MM @ (M®?)97? @ - @ (M®M)@rk |
we obtain
Hom,_(Alt ST,ResSSfM®k) ~ @k (Homg, (Alt S;, M®?))E™i

By Theorem 5 we have

Ar([M]) = Homg, (Indg*Alt S, M®¥))]

k
= [ [[Homs, ((Alt S;, M®*))]™

M (M) A ([M])72 - N (M)

This completes the proof.

Theorem 7. For any o, € R*(Sg) where 7 = {1™},... k™*} and
any A,-representation M, we have
o-([M]) = [Homs, (pr, M®¥)]
= o1 ([M]) o (M2 - ow (M)
The proof is similar to that of Theorem 5 and Theorem 6.
To compute the inner plethysm associated with Ay and oy for a

general element [M]—[N] € R(A,), we need the following lemmas:
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Lemma 8. Let H C G C S, be groups and let N be a representa-
tion of H. Then Homg(Alt G,Ind$ N) and Hompy (Alt H, N) are
isomorphic.

Proof. We construct a linear map

p : Homg(Alt G,Ind$N) — Homp (Alt H, N)

and its inverse o. Let {e = ro,71,...7¢} be a complete set of coset

representatives for G/H. Then
AN ~N &+ N®---&rN .

If U € Homg(Alt G,Ind%N) then there are n; € N; such that
Ul)=no+riny+ - +rmne .

We let p be the linear map from C to N defined by p(U)(1) = nyp.

p is an H-homomorphism because if h € H, then

hp(U)(1) = hno = sgn(h)no = p(u)(sgn(h)) = p(f)(h1) .

We now construct o. If w € Hompg (Alt H, N) and w(1) = ng, let

o be the linear map from C' to N @r1N @ --- @& r N defined by

o(w)(1) = ngn(ri)mno )
i=0

127



o is a G-homomorphism because if g € G, then

go(w)(1) = ngn(ri)rino .
i=0

Furthermore, since {gro, gr1,...gr:} is a set of coset representa-
tives for G/ H, there exist elements hg,...,h; € H and there is a

permutation 7 of {0,...,t} such that gr; = r-(i)h;. Hence,

t ¢
Z sgn(r;)gring = Z sgn(r;)r. (1) hing

1=0 =0

= Z sgn(r;)sgn(h;)r-(i)ng
i=0

— Z sgn(g)sgn(r-(3))r-(i)n,
i=0

t
= sgn(g)sgn(ri)rin,
1=0

= sgn(g)o(w)(1) = o(w)(sgn(g)) = o(w)(g e 1) .

We now show that o o p is the identity. Consider

U(l) = Zrini
i=1
and
cop(U)(1) = Z sgn(r;)ring .
i=0
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It suffices to show that sgn(ry)ng = ny for all k. Since U is a

G-homomorphism,

t

rU(1) = U(rgl) = U(sgn(rx)) = sgn(rx) Zmni .

On the other hand,

t

reU(1) = Zrkrini .

i=0

Hence sgn(rg)ring = rpno and sgn(rg)ng = 0. The proof is com-

plete, since it is obvious that P o ¢ is the identity.

Lemma 9. Let H C G C S, be groups and let N be a repre-
sentation of H. Then Homg(1g,Ind%N) and Homy (1, N) are

isomorphic.
Proof. Similar to the proof of Lemma 8.

Theorem 10. For any [M] — [N] € R(A,,), where M is assumed to

have even grading and N to have odd grading, we have:

k
(i) Ae([M] = [N]) = D (= 1) N ([M])ri ([N])
=0
k .
(it) o ([M]) = [N]) = > _(=1) o [MDA:([N]) -
=0

Proof. (i) By definition and since N have odd grading,
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Ae([M] = [N]) = (1@ Ax) o (k)([M] — [N])

k

i AnlS —i i
= (1M D IdS: a5, (M @ N9
1=0

I
'M”

-
Il
=)

i AplS —i i
(~1)' (1@ M) IdyrISE o (M) @ NB)

|
-M”

-
Il
=]

i An]S —i i
(—1)'[Homs, (Alt Sg,Tnd[y"j5F ) 1o (M=) @ N®T))]

(=1)'[Homsg, _,xs, (Alt (Sk—; x S;), MEF=) @ N®)

|
-M”

-
Il
=]

(—=1)'[Homs, ,xs, (Alt Sp_; ® S;, M®E=) @ N@1)]

I
'M”

-
Il
=)

(—=1){[Homg, ,(Alt S,_;M®* V) @ Homg, (Alt S;, N®)]

|
-M”

-
Il
=]

(—=1)'[Homsg, _, (Alt Si_; M®*=D)][Hom,, (Alt S;, N¥)]

I
'M”

-
Il
=)

(—=1)"[Homsg, ,(Alt Sy_;M®* =9)][Homg, (1g,, N®)]

|
-M”

-
Il
=]

(=1)" M= (([M]os([N]) -

|
-M”

-
Il
=]
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The proof of (ii) is similar to (i). Hence, the proof is complete.
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