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A topological space M is almost locally connected(SO) at a

point p iff for any open subset U of M containing p and the com-

ponent C of U containing p, C ∩ ∂U 6= ∅ and C is nonclosed [1].

In this paper, we discuss the structure and properties of almost

locally connected(SO) spaces and some applications. Throughout

this paper, we assume all the spaces are topological and Hausdorff.

Definition. A space M is almost locally connected(SO) if M is

almost locally connected(SO) at every point.

Theorem 1. The following conditions are equivalent in the

space M.

(1) M is almost locally connected(SO) at p.

(2) If U is an open subset of M containing p, there exists a

nonclosed connected subset V of U containing p such that

V ∩ ∂U 6= ∅.
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(3) C ∩ U 6= ∅.

(4) ∂C ∩ ∂U 6= ∅ where U is an open subset containing p, C is

the component of p in U and C is nonclosed.

Proof .

(1) ⇒ (2) Let V be the component of U containing p. Then V

is nonclosed and V ∩ ∂U 6= ∅.

(2) ⇒ (3) If C is closed then C ∩ ∂U = ∅ and hence

V ∩ ∂U = ∅ for every nonclosed connected subset V of U

containing p, a contradiction.

(3) ⇒ (4) C ∩ U 6= ∅ and C ⊂ U imply ∂C ∩ ∂U 6= ∅.

(4) ⇒ (1) This follows immediately from the definition.

Theorem 2. If M is almost locally connected(SO) at p and U is

an open subset of M containing p, then U is almost locally con-

nected(SO) at p.

Proof . If V is an open subset of U containing p, then V is open in

M. Consequently, there exists a nonclosed connected subset G of

V containing p such that G ∩ ∂V 6= ∅, and the theorem follows.
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Theorem 3. M is almost locally connected(SO) iff for every subset

A of M and every component C of M −A, C ∩ ∂A 6= ∅.

P roof . “⇒” Suppose C ∩ ∂A = ∅. Since C is a subset of

M −A, C ∩ A = ∅. Hence, C ⊂ M −A. Now, M is almost

locally connected(SO), so according to Theorem 2 there exists a

nonclosed component K of M −A such that K ∩ ∂(M −A) 6= ∅.

By the definition of component, C ⊂ K. On the other hand,

C is a component of M −A and M −A ⊂ M −A. Therefore,

K ⊂ C and hence C = K. It follows that K ⊂ M −A and

K ∩ ∂(M −A) 6= ∅, a contradiction. Therefore, C ∩ ∂A 6= ∅.

“⇐” Suppose M is not almost locally connected(SO). Then

there exists an open subset U of M and a nonclosed component

C of M such that C ∩ ∂U = ∅. If A = M − U, then C is a

component of M −A and C ∩ ∂A = ∅, a contradiction.

Theorem 4. Let M be almost locally connected(SO) at p and let

h be a homeomorphism from M to the space N. Then N is almost

locally connected(SO) at h(p).

Proof . Let U be an open subset of N containing h(p). Then
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there exists an open set O in M such that p ǫ O and h(O) = U.

Since M is almost locally connected(SO) at p, there is a nonclosed

connected subset G of O such that p ǫ G and G ∩ ∂O 6= ∅. Since

h is a homeomorphism, h(G) is nonclosed and connected.

Suppose h(G) ∩ ∂U = ∅. Then h(G) = h(G) ⊂ U = h(O).

This implies G ⊂ O, which contradictsG ∩ ∂O 6= ∅. Therefore,

h(G) ∩ ∂U 6= ∅ and N is almost locally connected(SO) at h(p).

Theorem 5. If M is connected and locally connected at p, then M

is almost locally connected(SO) at p.

Proof . Theorem 5 follows from the fact that M is locally connected

at p and no proper subset of M is both open and closed.

The following example shows that connectedness is necessary in

Theorem 5.

Example 1. Let M be a nonempty finite set with the discrete

topology. Then M is locally connected but M is not almost locally

connected(SO) at any point in M.

Theorem 6. If M is almost locally connected(SO) and U is an open

subset of M such that ∂U is connected, then U is connected.

10



Proof . Since

U =
⋃

{C | C is a component of U and C ∩ ∂U 6= ∅},

U is connected.

The following theorem is well known.

Theorem 7. If C is a component of the compact set X in a topo-

logical space, then each open set containing C contains an open set

containing C whose boundary does not intersect X.

Theorem 8. If M is connected and locally compact at p, then M

is almost locally connected(SO) at p.

Proof . Let U be an open set containing p such that U is com-

pact. Let C be the component of U containing p. Suppose

C ∩ ∂U = ∅. Then C is closed in U. Since C and ∂U are com-

pact, there exist disjoint sets A and B relatively open in U such that

C ⊂ A and ∂U ⊂ B. It follows that C ⊂ A and ∂U ∩ A = ∅

so A ⊂ U. Applying Theorem 7 to A, there exists an open set V

such that C ⊂ V ⊂ A and ∂V ∩ A = ∅. Hence ∂V = ∅. Con-

sequently, V is both open and closed in M, which contradicts the

fact that M is connected.
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Definition. A set K in a Hausdorff, topological space M is called

a continuum if K is compact and connected. A set K is called a

generalized continuum if it is locally compact and connected.

Corollary. Every generalized continuum and thus every contin-

uum is almost locally connected(SO).

Example 2. Let

M = {(0, 0)} ∪ {(x, y) | 0 < x ≤ 1 and y = sin (1/x)}.

M is connected, but M is neither locally compact nor almost locally

connected(SO) at (0,0).

Examples 1 and 2 illustrate that both connectedness and local

compactness are necessary for Theorem 8. The following example

illustrates that the converses of both Theorems 5 and 8 are not

true even if the space is connected.

Example 3. Let

M = {(0, y) | 0 ≤ y ≤ 1} ∪ {(x, y) | 0 < x ≤ 1, y = sin(1/x)}.

M is connected and almost locally connected(SO) at (0,0), but M

is neither locally compact nor locally connected at (0,0).

The following definition can be found in [2].
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Definition. The connected set M is semilocally connected at a

point p if each open set containing p contains an open set V

containing p such that M − V has at most a finite number of

components.

Example 1 shows that semilocal connectedness does not imply al-

most local connectedness(SO).

Jones [3] established the following definitions and theorem.

Definition. A space M is aposyndetic at a point p with respect

to a point q if there is a closed connected set H such that p is in

the interior of H and H is a subset of M − {q}.

Definition. The space M is aposyndetic at a point p if it is

aposyndetic at p with respect to q for each q in M − {p}.

Definition. The space M is aposyndetic if it is aposyndetic at

every point.

Theorem 9. If M is semilocally connected, then M is aposyndetic.

Example 4. Let

M = {(x, y) | y = sin(1/x), x 6= 0}

∪ {(0, y) | 0 ≤ y ≤ 1} ∪ {(−1/n, 0) | n = 1, 2, 3, . . .} .
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M is almost locally connected(SO), but not aposyndetic at (0,0).

Definition. A cut point of a connected set M is a point p of M

such that M − {p} is disconnected.

Definition. p is an end point of a connected set M if each open

set containing p contains an open set containing p whose boundary

is degenerate.

Definition. A point r of a connected set M separates points p

and q in M if M − {r} is the union of two separated sets, one

containing p and the other containing q.

Definition. Two points p and q of a connected set M are said to

be conjugate in M if no point of M separates p and q in M.

Whyburn [2] first established the following decomposition theorem

in cyclic element theory.

Theorem 10. If M is a connected, locally compact metric space

and p is neither a cut point nor an end point of M, then there

exists a point of M other than p which is conjugate to p.

Theorems 11 and 12 are similar results obtained by B. Lehman [4]

and D. John [5] respectively.

Theorem 11. If M is a connected, locally compact, locally con-
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nected topological space and p is neither a cut point nor an end

point of M, then there exists a point of M other than p which is

conjugate to p.

Theorem 12. If M is a connected, locally compact topological

space and p is neither a cut point nor an end point of M, then

there exists a point of M other than p which is conjugate to p.

The statements in Theorems 10, 11 and 12 seem to suggest that

local compactness plays a crucial part in the conclusion of these

theorems. However, Theorem 14 below shows that the result still

holds even without local compactness.

John [5] established the following theorem.

Theorem 13. If p is a non-cut point of a connected topological

space M and M is semilocally connected at p, then for every open

set U containing p there exists an open subset V of U containing

p such that M − V is connected.

Theorem 14. If M is a connected, almost locally connected(SO),

semilocally connected topological space and p is neither a cut point

nor an end point of M, then there exists a point of M other than

p which is conjugate to p in M.
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Proof . Suppose there is no point q in M − {p} such that q is

conjugate to p in M. Let U be an open set containing p. Then

according to Theorem 13 there exists an open subset V of U con-

taining p such that M − V is connected. Let C be the component

of V containing p. Since M is almost locally connected(SO), we

have ∂V ∩ C 6= ∅. Let z ǫ ∂V ∩ C. Since z is not conjugate

to p in M, there exists y in M such that M − {y} = H ∪ K,

where H and K are separated and p is in H and z is in K. If y is not

in C, then C is connected in M − {y}, which implies C ∪ {z}

is a connected subset of M − {y}. It follows that C ∪ {z} ⊂ H

or C ∪ {z} ⊂ K, which implies z ǫ H or p ǫ K. Either case is

impossible.

Therefore, y ǫ C. That is M − V ⊂ K. This implies H ⊂ V.

Since H is open and ∂H = {y}, p is an end point and this con-

tradicts the assumption.
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