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Abstract. This paper is concerned with the selection of explanatory variables in

multivariate linear regression. The Akaike’s information criterion and the Cp cri-

terion cannot perform in high-dimensional situations such that the dimension of a vector

stacked with response variables exceeds the sample size. To overcome this, we con-

sider two variable selection criteria based on an L2 squared distance with a weighted

matrix, namely the scalar-type generalized Cp criterion and the ridge-type generalized

Cp criterion. We clarify conditions for their consistency under a hybrid-ultra-high-

dimensional asymptotic framework such that the sample size always goes to infinity but

the number of response variables may not go to infinity. Numerical experiments show

that the probabilities of selecting the true subset by criteria satisfying consistency

conditions are high even when the dimension is larger than the sample size. Finally, we

illuminate the practical utility of these criteria using empirical data.

1. Introduction

Multivariate linear regression is an important and very widely used infer-

ential statistical methodology. It is the cornerstone of many theoretical and

applied statistics textbooks (see, e.g., Srivastava, 2002, chap 9; Timm, 2002,

chap 4) and it has widespread applications in many fields. Let Y ¼ ðyð1Þ; . . . ;
yðnÞÞ

0 be an n� p observation matrix stacking individual p response variables,

and X ¼ ðxð1Þ; . . . ; xðnÞÞ0 be an n� k observation matrix stacking individual

non-stochastic k explanatory variables, where n is the sample size. Note that

X may include the intercept term that the column vector is 1n, where 1n is an

n-dimensional vector of ones. Assume that rankðXÞ ¼ k < n to ensure the

existence of variable selection criteria used in this paper. We consider linear

regression for n samples of a vector of individual p response variables and

k explanatory variables on fðy 0
ðiÞ; x

0
ðiÞÞ

0 j i ¼ 1; . . . ; ng. Then, the multivariate
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linear regression is written as

Y ¼ XY þ E;

where Y is a k � p unknown matrix of regression coe‰cients, and each row of

the n� p error matrix E is identically distributed with a mean vector 0p, which

is a p-dimensional vector of zeros, and a covariance matrix S.

In actual data analysis contexts, it is important to specify salient explan-

atory variables a¤ecting response variables. In multivariate linear regression,

this is regarded as the problem of selecting the best subset of explanatory

variables. Variable selection criteria are widely used in empirical contexts to

choose the best subset of explanatory variables. The Akaike’s information

criterion (AIC) (Akaike, 1973; 1974) and the Cp criterion (Sparks et al., 1983)

which is a multivariate version of Mallows’ Cp criterion (Mallows, 1973; 1995)

are well-known examples in this respect. The AIC and Cp criterion are

estimators of risk functions corresponding to the Kullback-Leibler loss function

and the mean squared prediction error standardized by the true covariance

matrix, respectively. Further, as extensions of the AIC and Cp criterion, the

generalized information criterion (GIC) and the generalized Cp ðGCpÞ criterion

were proposed by Nishii et al. (1988) and Nagai et al. (2012), respectively.

The GIC and GCp criterion were generalized from the AIC and Cp criterion

by replacing ‘‘2’’ (the penalty term for model complexity) with any positive

number. Note that the GIC includes the AIC, the Bayesian information

criterion (BIC) proposed by Schwarz (1978), a consistent AIC (CAIC) proposed

by Bozdogan (1987), and the Hannan-Quinn information criterion (HQC)

proposed by Hannan and Quinn (1979). Further, the GCp criterion includes

the Cp criterion and the modified Cp ðMCpÞ criterion proposed by Fujikoshi

and Satoh (1997).

Importantly, there are increasing demands in recent years vis-a-vis ana-

lyzing high-dimensional data such that p exceeds n (for an example, see Wille

et al., 2004). For high-dimensional cases, we need a variable selection cri-

terion which can be operationalized even when p > n. However, note that the

GIC consists of the logarithm of the determinant of the sample covariance

matrix, and the GCp criterion consists of the inverse matrix of the sample

covariance matrix. Therefore, since the sample covariance matrix becomes

singular when p is larger than n, more precisely n� k < p, the GIC always

gives �y and the GCp criterion cannot be defined when p > n. However,

criteria proposed by Fujikoshi et al. (2011), Yamamura et al. (2010), and

Kubokawa and Srivastava (2012) are calculable even when p > n. Fujikoshi

et al. (2011) proposed the prediction error (PE) criterion based on the mean

squared prediction error. Yamamura et al. (2010) and Kubokawa and

Srivastava (2012) proposed criteria using a ridge-type sample covariance matrix
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as an estimator of the true covariance matrix. Moreover, their criteria are

exact or asymptotically unbiased estimators of risk functions under some

conditions.

In this paper, we consider consistency as one of the asymptotic properties

of variable selection criteria. In a given variable selection context, the desired

outcome is to specify explanatory variables which substantively a¤ect the

response variable according to the nature and extent of available empirical

data. In other words, it is hoped that the true subset of variables is identified

as the best subset by variable selection. Since we do not know the true subset,

we use a variable selection criterion to maximize the probability of selecting

the true subset. When the probability that the subset chosen by the variable

selection criterion is the true subset approaches 1, we say a variable selection

criterion is consistent, i.e., the following equation holds:

Pð ĵj ¼ j�Þ ! 1;

where ĵj is the best subset according to the variable selection criterion and j�
is the true subset. It is expected that a consistent variable selection criterion

has a high probability of selecting the true subset when the amount of data

is su‰cient. Therefore, consistency is an important property of a variable

selection criterion. In the context of n > p, assuming that the true distribu-

tion of the error vector is the multivariate normal distribution, Fujikoshi

et al. (2014) and Yanagihara et al. (2015) obtained the consistency properties

of criteria such as the AIC and Cp criterion. They used a moderate-high-

dimensional asymptotic framework such that both n and p go to y but p does

not exceed n. Moreover, Yanagihara et al. (2015) also used an asymptotic

framework defined by adding k=n ! 0 to the moderate-high-dimensional

asymptotic framework. Relaxing the normality assumption, Yanagihara (2015)

dealt with conditions for consistency of the GIC under the moderate-high-

dimensional asymptotic framework. Under the normality assumption, Yana-

gihara (2016) obtained conditions for consistency of the GCp criterion under

a hybrid-moderate-high-dimensional asymptotic framework such that n goes

to y and p may go to y but p=n converges to some positive constant included

in ½0; 1Þ. Relaxing the normality assumption, Yanagihara (2019) focused on

conditions for consistency of the GIC and GCp criterion under the hybrid-

moderate-high-dimensional asymptotic framework. As such, therein, p does

not exceed n. On the other hand, in the context where p > n, Katayama

and Imori (2014) considered variable selection criteria based on a lasso-type

estimation for the inverse of the covariance matrix. Under the normality

assumption, they showed that the criteria are consistent in a restricted-ultra-

high-dimensional asymptotic framework such that both n and p go to infinity

but p may exceed n and log p=n ! 0 while k=n ! 0.
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The aim of this paper is to obtain conditions for consistency of variable

selection criteria (which are introduced in subsection 2.1) under non-normality

and a high-dimensional asymptotic framework such that n goes to infinity but

p may exceed n. To obtain conditions for consistency, the following hybrid-

ultra-high-dimensional (HUHD) asymptotic framework is mainly used:

HUHD : n ! y; p=n ! c A ½0;y�; k: fixed;

where c ¼ y means that p=n goes to y. The HUHD asymptotic framework

has two key characteristics. First, the divergence speed of p is not restricted,

hence this asymptotic framework incorporates an asymptotic framework such

that both n and p go to y but p may be larger than n, namely the ultra-high-

dimensional (UHD) asymptotic framework, which is written as

UHD : ðn; pÞ ! ðy;yÞ; p=n ! c A ½0;y�; k: fixed:

Second, the HUHD asymptotic framework also includes the large-sample

asymptotic framework such that only n tends to y. From this, it is expected

that consistent variable selection criteria under the HUHD asymptotic frame-

work select the true subset with high probability regardless of the size of p.

The remainder of the paper is organized as follows. In section 2, we

present the necessary notations and assumptions to clarify conditions for con-

sistency. In section 3, we obtain conditions for consistency. In section 4, for

the purposes of verification, we conduct numerical experiments and illuminate

the practical utility of consistent criteria by using real data examples. Tech-

nical details are provided in the Appendix.

2. Preliminaries

2.1. Models and criteria. Suppose that j denotes a subset of o ¼ f1; . . . ; kg
containing kj elements, and X j denotes an n� kj matrix consisting of columns

of X indexed by elements of j, where kA is the number of elements in a set A

denoted by kA ¼aðAÞ. For example, if j ¼ f1; 2; 4g, then X j consists of the

first, second, and fourth column vectors of X. Then, the candidate model Mj

with kj explanatory variables from subset j is expressed as follows:

Mj : Y ¼ X jYj þ Ej; ð1Þ

where Yj is a kj � p unknown matrix of regression coe‰cients, and each row

of Ej is identically distributed with a mean vector 0p and a covariance matrix

Sj. Let j� ð� oÞ be the true subset, and assume that the data are generated

from the following true model Mj� with kj� true explanatory variables:

Mj� : Y ¼ X j�Y� þ E�;
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where Y� is a kj� � p unknown matrix of the true regression coe‰cients and

E� ¼ ðe1; . . . ; enÞ0 is an n� p true error matrix. Assume that e1; . . . ; en are

identically distributed according to a distribution of e with

E½e� ¼ 0p; Cov½e� ¼ S�; E½kek4� < y;

where kek2 ¼ e 0e and S� is a p� p true unknown covariance matrix.

Although it is typical to assume independence of e1; . . . ; en, here we assume

a moment condition which relaxes independence; specifically, we assume that

for any i0 j, e1; . . . ; en are satisfied with the following moment condition:

E½eie 0j � ¼ E½ei�E½e 0j �; E½keik2kejk2� ¼ E½keik2�E½kejk2�;

E½eie 0i eje 0j � ¼ E½eie 0i �E½eje 0j �:

Note that the above moment condition is similar to assuming independence.

Without loss of generality, we sort column vectors of X as X ¼ ðX j� ;X j c� Þ,
where set Ac denotes the compliment of a set A. Moreover, for expository

purposes, we represent X j� , Xo, kj� and ko as X�, X, k�, and k, respectively.

We consider two variable selection criteria based on the following weighted

L2 squared distance:

dðA;BjGÞ ¼ trfðA� BÞG�1ðA� BÞ0g;

where G is a positive definite matrix. Let S j be an estimator of Sj in the

candidate model Mj, which is given by

S j ¼
1

n� kj
Y 0ðIn � PjÞY ;

where In is the n� n identity matrix, and Pj is the projection matrix to the

subspace spanned by the columns of X j, i.e., Pj ¼ X jðX 0
jX jÞ�1X 0

j . Then, the

minimum value of dðY ;X jYjjGÞ with respect to Yj is expressed as

min
Yj

dðY;X jYjjGÞ ¼ trfY 0ðIn � PjÞYG�1g ¼ ðn� kjÞ trðS jG
�1Þ: ð2Þ

The minimum value in (2) expresses a measurement about the goodness of fit

for model Mj. Using (2) in the candidate model Mj, the following class of

variable selection criteria is considered:

Lð jja;GÞ ¼ ðn� kjÞ trðS jG
�1Þ þ apkj; ð3Þ

where a is a positive constant which expresses the complexity of the model

Mj. It is straightforward that (3) with a ¼ 2 and G ¼ So is the Cp criterion

proposed by Sparks et al. (1983) when n > p. Moreover, (3) with G ¼ So is

the GCp criterion proposed by Nagai et al. (2012). However, the GCp criterion
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cannot be defined when p > n. Therefore, we consider two criteria obtained

by substituting one of two specific weighted matrices instead of So into G

in (3). By substituting the scalar matrix p�1 trðSoÞIp into G , we define the

scalar-type generalized Cp ðSGCpÞ criterion as follows:

SGCpð jjaÞ ¼ p�1Lð jja; p�1 trðSoÞIpÞ ¼ ðn� kjÞ
trðS jÞ
trðSoÞ

þ akj: ð4Þ

Note that the SGCpð jjaÞ criterion is obtained by dividing Lð jja; p�1 trðSoÞIpÞ
by p because the divided p is redundant for variable selection. The SGCp

criterion with a ¼ 2 is essentially the same as the PE criterion proposed by

Fujikoshi et al. (2011). Moreover, the value trðS jÞ=trðSoÞ in (4) corresponds

to the MANOVA test statistic in Fujikoshi et al. (2004). They applied the

Dempster trace criterion when p > n for tests about one and two sample mean

vectors in Dempster (1958; 1960). Note that there is no inverse of the sample

covariance matrix in the SGCp criterion. Thus, this criterion is calculable

even when p > n. Let Sl be the ridge-type sample covariance matrix, which

is defined by

Sl ¼ So þ trðSoÞ
l

Ip;

where l is a positive ridge parameter. Then, by substituting Sl into G , we

define the ridge-type generalized Cp ðRGCpÞ criterion as follows:

RGCpð jja; lÞ ¼ Lð jja;SlÞ ¼ ðn� kjÞ trðS jS
�1
l Þ þ apkj: ð5Þ

The first term in (5) is similar to that of the ridge-type Cp criterion used

by Kubokawa and Srivastava (2012). If So is invertible and l ¼ y, then (5)

coincides with the GCp criterion. However, So is singular when p > n. The

scalar matrix l�1 trðSoÞIp keeps Sl invertible even in such case. The best

subsets are given by minimizing the SGCp criterion and RGCp criterion, i.e.,

they are defined by

ĵjS ¼ arg min
j AJ

SGCpð jjaÞ; ĵjR ¼ arg min
j AJ

RGCpð jja; lÞ; ð6Þ

where J is a family of subsets of o denoted by J ¼ f j1; . . . ; jKg and K is the

number of candidate subsets.

2.2. Assumptions for consistency. We prepare assumptions for consistency.

To describe several classes of j that express the column indexes of X in the

candidate model (1), we separate J into two sets, one is the family of over-

specified subsets that includes the true subset, i.e., Jþ ¼ f j A J j j� � jg, and

the other is the family of underspecified subsets that are not overspecified
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subsets, i.e., J� ¼ Jc
þ \J. Let a p� p non-centrality matrix and parameter

be expressed by

Dj ¼ Y 0
�X

0
�ðI n � PjÞX�Y�; d2j ¼ trðDjÞ: ð7Þ

It should be noted that Dj ¼ Op;p and d2j ¼ 0 hold from properties of projection

matrices if and only if j A Jþ, where Op;p is the p� p zero matrix. Then, we

prepare the following assumptions for consistency:

A1. The true subset j� is included in J, i.e., j� A J.

A2. lim sup
p!y

1

p
trðS�Þ < y.

A3. lim sup
p!y

k4

trðS�Þ2
< y, where k4 ¼ E½kek4� � trðS�Þ2 � 2 trðS 2

�Þ.

A4. For every j A J�, there exists l A j� \ j c such that

lim inf
n!y

1

n
x 0
lðIn � Pol

Þxl > 0; lim inf
p!y

1

p
kylk2 > 0;

where ol ¼ flgc, and xl and yl are the l-th column vectors of X�
and Y 0

�, respectively.

Assumption A1 is needed to consider consistency. From the definition of

Jþ, the true subset j� can be regarded as the smallest overspecified subset.

Assumption A2 is a regularity assumption for the true covariance matrix S�.

If the number of response variables whose variances are OðpÞ is finite and

the variances of the other response variables are Oð1Þ, assumption A2 holds.

Assumption A3 is the restriction for the fourth moment of e. From properties

of the multivariate normal distribution (e.g., Magnus and Neudecker, 1979;

Himeno and Yamada, 2014), k4 ¼ 0 when e is distributed according to the

multivariate normal distribution. Moreover, some specific multivariate distri-

butions such as the multivariate t-distribution or the multivariate contaminated

normal distribution are satisfied with assumption A3. Assumption A4 con-

cerns explanatory variables and true regression coe‰cients. In terms of explan-

atory variables, this means that a sample covariance of residuals in the linear

regression of xl with the remaining Xol
does not converge to 0. It is straight-

forward to show that this is weaker than assuming lim infn!y n�1lminðX 0XÞ >
0, where lminðAÞ is the minimum eigenvalue of a symmetric matrix A. The

assumption for the true regression coe‰cients is essentially used in Katayama

and Imori (2014). For example, when all the elements of each yl are non-

zero constants not converging to 0, the assumption for the true regression

coe‰cients holds. Moreover, even when half of the elements of yl are zeros

and the remaining half are non-zero constants not converging to 0, the as-

sumption is satisfied. Hence, the assumption for the true regression coe‰cients
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will not be unrealistic. Further, if p diverges as fast as n, i.e., c A ½0;yÞ in

the HUHD asymptotic framework, the assumption for true regression coef-

ficients can become weaker such as lim infp!y q�1
p kylk2 > 0 for some qp ! y

ðp ! yÞ. Note that assumption A4 is not always required for every l A j�.

For example, if J is a set of nested subsets, i.e., J ¼ ff1g; . . . ; f1; . . . ; kgg,
then assumption A4 needs to hold only for l ¼ k�. If assumption A4 is

supported, for every j A J�, the following inequality holds (the proof is given

in Appendix A):

inf
n>k;pb1

1

np
lmaxðDjÞ > 0; ð8Þ

where lmaxðAÞ is the maximum eigenvalue of a symmetric matrix A.

Furthermore, we consider the following assumption that is regarded as a

special case of assumption A3:

A3 0. lim
p!y

x2

trðS�Þ2
¼ 0, where x2 ¼ maxfk4; trðS2

�Þg.

Assumption A3 0 is used under the UHD asymptotic framework, and this

assumption is stronger than assumption A3. For example, assumption A3 0 is

satisfied if the following conditions hold:

lim
p!y

trðS2
�Þ

trðS�Þ2
¼ 0; e ¼ S1=2

� u; u ¼ ðu1; . . . ; upÞ0;

E½ua� ¼ 0; E½u4a �a ru ða ¼ 1; . . . ; pÞ;

E½u2au2b � ¼ 1 ða0 bÞ; E½uaubucud � ¼ 0 ða0 b; c; dÞ;

ð9Þ

where ru is a positive constant not dependent on p. When e ¼ S1=2
� u, k4 is

calculated as follows:

k4 ¼
Xp
a¼1

fðS�Þaag
2ðE½u4a � � 3Þa jru � 3j trðS 2

�Þ;

where ðAÞab expresses the ða; bÞ-th element of a matrix A. The condition

about the true covariance matrix limp!y trðS 2
�Þ=trðS�Þ2 ¼ 0 is called the spher-

icity condition, and it is often used for pg n setting (e.g., Aoshima et al.,

2018).

3. Main results

3.1. Conditions for consistency of the SGCp criterion. We obtain conditions

for consistency of the SGCp criterion (4). Recall that the best subset chosen
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by minimizing the SGCp criterion is defined by (6). Then, the SGCp criterion

is consistent if Pð ĵjS ¼ j�Þ ! 1. The probability Pð ĵjS ¼ j�Þ can be expressed

as

Pð ĵjS ¼ j�Þ ¼ Pð\j AJ\f j�g cfSGCpð jjaÞ > SGCpð j�jaÞgÞ:

We separate J \ f j�gc into Jþ \ f j�gc and J� because the non-centrality

matrix Dj in (7) behaves di¤erently for each case of j A Jþ \ f j�gc and j A J�.

From this and the subadditivity of a measure, a lower bound of Pð ĵjS ¼ j�Þ is

written as

Pð ĵjS ¼ j�Þb 1� PS � PS;

where PS and PS are defined by

PS ¼ Pð[j AJþ\f j�g cfSGCpð jjaÞaSGCpð j�jaÞgÞ; ð10Þ

PS ¼ Pð[j AJ�fSGCpð jjaÞaSGCpð j�jaÞgÞ: ð11Þ

To obtain conditions for consistency of the SGCp criterion, we consider

conditions such that PS and PS converge to 0. First, we prepare the results

about the orders of several probabilities. For subsets j; h � o, let W , U j, and

Vj;h be random matrices defined by

W ¼ E 0
�ðIn � PoÞE�; U j ¼ Y 0

�X
0
�ðIn � PjÞE�; Vj;h ¼ E 0

�ðPj � PhÞE�: ð12Þ

Then, we derive the following lemma about the orders of the tail probabilities

for functions of (12) (the proof is given in Appendix B).

Lemma 1. Let W , U j , and Vj;h be given by (12), and let r1 > 0, r2 > 0,

r3 < 0, r4 > 0, r5 > 0, and r6 > 0. Then, under the HUHD asymptotic frame-

work, the following results hold:

( i ) If r1 > trðS�Þ and r2 < trðS�Þ, then we have

Pððn� kÞ�1 trðWÞb r1Þ ¼ Oðx2n�1fr1 � trðS�Þg�2Þ;

Pððn� kÞ�1 trðWÞa r2Þ ¼ Oðx2n�1ftrðS�Þ � r2g�2Þ;

where x2 is given in assumption A3 0.

( ii ) For j 6� j�, we have

PðtrðU jÞa r3Þ ¼ OðtrðS�DjÞjr3j�2Þ;

where Dj is defined by (7).

(iii) For j � h, if r4 > trðS�Þ, then we have

PðtrðVj;hÞb ðkj � khÞr4Þ ¼ Oðx2fr4 � trðS�Þg�2Þ:
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(iv) For j � h, if r6=r5 ! 0, then we have

PðtrðVj;hÞ � ðkj � khÞ trðS�Þ þ r5 a r6Þ ¼ Oðx2r�2
5 Þ:

By using Lemma 1, we give the orders of PS and PS (the proof is given in

Appendix C).

Lemma 2. Suppose that assumptions A1, A2, and A4 hold, and for some

constants tS satisfying 0 < tS < 1, the followings hold:

lim
n!y;p=n!c

atS > 1; lim
n!y;p=n!c

n�1a ¼ 0; ð13Þ

under the HUHD asymptotic framework. Then, the orders of PS and PS defined

in (10) and (11) are given by

PS ¼ Oðx2 trðS�Þ�2 maxfðatS � 1Þ�2; n�1ð1� tSÞ�2gÞ;

PS ¼ Oðx2 trðS�Þ�2 maxfðatS � 1Þ�2; n�1ð1� tSÞ�2gÞ

þOðmaxfx2n�2p�2; x2 trðS�Þ�2
n�1; lmaxðS�Þn�1p�1gÞ;

where x2 is defined in assumption A3 0.

Next, we obtain conditions for consistency of the SGCp criterion (4).

Note that the results in Lemma 2 are derived without assumptions A3 and

A3 0. We use assumption A3 or A3 0 to obtain consistency conditions, although

the UHD asymptotic framework is used when assumption A3 0 is supported.

It is straightforward that lim supp!y x trðS�Þ�1 < y holds under assumption

A3, but limp!y x trðS�Þ�1 ¼ 0 holds under assumption A3 0. By using this

fact and Lemma 2, we obtain consistency conditions about a (the proof is given

in Appendix D).

Theorem 1. Suppose that assumptions A1, A2, A3, and A4 hold. Then,

the SGCp criterion is consistent under the HUHD asymptotic framework if the

following conditions are satisfied:

lim
n!y;p=n!c

a ¼ y; lim
n!y;p=n!c

a

n
¼ 0: ð14Þ

Furthermore, when replacing assumption A3 with assumption A3 0, the SGCp cri-

terion is consistent under the UHD asymptotic framework if the following condi-

tions are satisfied:

lim
ðn;pÞ!ðy;yÞ;p=n!c

a > 1; lim
ðn;pÞ!ðy;yÞ;p=n!c

a

n
¼ 0: ð15Þ
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From Theorem 1, if assumption A3 0 is supported, the SGCp criterion is

consistent under the UHD asymptotic framework even when a is a constant

not dependent on n and p such as a ¼ 2. When assumption A3 0 is not sup-

ported but assumption A3 is, a should diverge to render the SGCp criterion

consistent. Moreover, if (14) holds, then (15) holds. It is di‰cult to verify

whether assumption A3 0 holds using empirical data. Hence, we recommend

that (14) be used to render the SGCp criterion consistent by deciding a. On

the other hand, we also obtain conditions for inconsistency (the proof is given

in Appendix E).

Theorem 2. Suppose that assumptions A1, A2, A3, and A4 hold. Let

conditions of a under the HUHD asymptotic framework be as follows:

C1. limn!y;p=n!c a < 1 and there exists j A Jþ \ f j�gc
such that

lim
n!y;p=n!c

k4Iðk4 > 0Þ þ 2 trðS2
�Þ

ð1� aÞ2 trðS�Þ2
< kj � k�; ð16Þ

where Iðk4 > 0Þ is an indicator function, i.e., if k4 > 0 then Iðk4 > 0Þ
¼ 1, otherwise Iðk4 > 0Þ ¼ 0.

C2. There exists j � j� such that

lim
n!y;p=n!c

a trðS�Þ
d2j

> ðk� � kjÞ�1:

Then, if either of the conditions C1 or C2 is satisfied, the SGCp criterion is

inconsistent, i.e., limn!y;p=n!c Pð ĵjS ¼ j�Þ < 1 holds under the HUHD asymptotic

framework. Furthermore, when replacing assumption A3 with assumption A3 0,

(16) and limðn;pÞ!ðy;yÞ;p=n!c Pð ĵjS ¼ j�Þ ¼ 0 always hold under the UHD asymp-

totic framework if limðn;pÞ!ðy;yÞ;p=n!c a < 1.

We observe that the SGCp criterion is inconsistent when a is too small

from condition C1 or too large from condition C2. Although we cannot cover

all the consistency or inconsistency conditions of a from only Theorems 1 and

2, these theorems nevertheless provide much information about the consistency

or inconsistency of the SGCp criterion.

3.2. Conditions for consistency of the RGCp criterion. We obtain conditions

for consistency of the RGCp criterion (5). In the same way as subsection 3.1, a

lower bound of Pð ĵjR ¼ j�Þ is written as

Pð ĵjR ¼ j�Þb 1� PR � PR;

where PR and PR are given by
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PR ¼ Pð[j AJþ\f j�g cfRGCpð jja; lÞaRGCpð j�ja; lÞgÞ; ð17Þ

PR ¼ Pð[j AJ�fRGCpð jja; lÞaRGCpð j�ja; lÞgÞ: ð18Þ

First, we obtain the orders of PR and PR. Then, we examine the orders by

using moments of a statistic. It is di‰cult to calculate the moments of a 0S�1
l a

because of the existence of the inverse matrix of Sl, where a is a p-dimensional

vector. Therefore, we do not evaluate a 0S�1
l a directly, but evaluate the

following lower and upper bounds:

kak2lminðS�1
l Þa a 0S�1

l aa kak2lmaxðS�1
l Þ: ð19Þ

By using (19) and Lemma 1, we give the orders of PR and PR (the proof is

given in Appendix F).

Lemma 3. Suppose that assumptions A1, A2, and A4 hold, and for some

constants tR satisfying 0 < tR < 1 the followings hold:

lim
n!y;p=n!c

l�1patR > 1; lim
n!y;p=n!c

n�1ð1þ l�1Þpa ¼ 0;

under the HUHD asymptotic framework. Then, the orders of PR and PR defined

in (17) and (18) are given by

PR ¼ Oðx2 trðS�Þ�2 maxfðl�1patR � 1Þ�2; n�1ð1� tRÞ�2gÞ;

PR ¼ Oðx2 trðS�Þ�2 maxfðl�1patR � 1Þ�2; n�1ð1� tRÞ�2gÞ

þOðmaxfx2n�2p�2; x2 trðS�Þ�2
n�1; lmaxðS�Þn�1p�1gÞ;

where x2 is defined in assumption A3 0.

By using Lemma 3, we obtain consistency conditions of the RGCp

criterion. Since the RGCp criterion has the two parameters a and l, the

conditions are connected with a and l.

Theorem 3. Suppose that assumptions A1, A2, A3, and A4 hold. Then,

the RGCp criterion is consistent under the HUHD asymptotic framework if the

following conditions are satisfied:

lim
n!y;p=n!c

pa

l
¼ y; lim

n!y;p=n!c

ð1þ l�1Þpa
n

¼ 0: ð20Þ

Furthermore, when replacing assumption A3 with assumption A3 0, the RGCp

criterion is consistent under the UHD asymptotic framework if the following
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conditions are satisfied:

lim
ðn;pÞ!ðy;yÞ;p=n!c

pa

l
> 1; lim

ðn;pÞ!ðy;yÞ;p=n!c

ð1þ l�1Þpa
n

¼ 0: ð21Þ

The proof of Theorem 3 is omitted because the theorem can be proved in

the same way as Theorem 1. From Theorem 3, if we set l ¼ 1 and a ¼ ~aa=p

ð~aa > 0Þ, conditions (20) and (21) are the same as (14) and (15), respectively.

Note that conditions (20) and (21) may be strong because they are derived

using inequality (19). From Theorem 3, we observe that the larger l be-

comes, the larger a should be, to satisfy conditions (20) and (21). Further-

more, we also obtain conditions for inconsistency (the proof is given in

Appendix G).

Theorem 4. Suppose that assumptions A1, A2, A3, and A4 hold. Let

conditions of a under the HUHD asymptotic framework be as follows:

C3. limn!y;p=n!cð1þ l�1Þpa < 1 and there exists j A Jþ \ f j�gc
such

that

lim
n!y;p=n!c

k4Iðk4 > 0Þ þ 2 trðS2
�Þ

f1� ð1þ l�1Þpag2 trðS�Þ2
< kj � k�: ð22Þ

C4. There exists j � j� such that

lim
n!y;p=n!c

pa trðS�Þ
ld2j

> ðk� � kjÞ�1:

Then, if either of the conditions C3 or C4 is satisfied, the RGCp criterion is

inconsistent, i.e., limn!y;p=n!c Pð ĵjR ¼ j�Þ < 1 holds under the HUHD asymptotic

framework. Furthermore, when replacing assumption A3 with assumption A3 0,

(22) and limðn;pÞ!ðy;yÞ;p=n!c Pð ĵjR ¼ j�Þ ¼ 0 always hold under the UHD asymp-

totic framework if limðn;pÞ!ðy;yÞ;p=n!cð1þ l�1Þpa < 1.

From Theorem 4, we observe that l should be large in order not to satisfy

conditions C3 and C4. However, if l is large, pal�1 in (20) and (21) is small

and then the condition of a to have consistency becomes restricted.

4. Numerical experiments

4.1. Criteria for numerical experiments. To conduct numerical experiments,

we use the following six criteria:

Criterion 1: the SGCp criterion with a ¼ 2.

Criterion 2: the SGCp criterion with a ¼ log n.

Criterion 3: the SGCp criterion with a ¼ ðlog n=log log pÞ1=2.
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Criterion 4: the RGCp criterion with a ¼ 2p�1 and l ¼ 1.

Criterion 5: the RGCp criterion with a ¼ p�1 log n and l ¼ 1.

Criterion 6: the RGCp criterion with a ¼ p�1ðn log n=log log pÞ1=2 and

l ¼ n1=2.

Table 1 shows the assumptions and asymptotic behaviors of n and p to ensure

the consistency of the above six criteria. We observe that to ensure consis-

tency, p has to diverge for criteria 1 and 4, but p does not have to diverge

for criteria 2, 3, 5, and 6. Further, criteria 3 and 6 are consistent when

log log p=log n ! 0. Since this slightly restricts the behavior of p, it may

not be suitable where p increases dramatically. However, such a case is un-

realistic, so this behavior is reasonable for empirical contexts. Note that the

penalty terms kja or kj pa in criteria 1, 2, 4, and 5 do not include p, but those

in criteria 3 and 6 do.

For comparison, we also consider criteria in Katayama and Imori (2014)

given by

HGICð jÞ ¼ pþ logjð1� kj=nÞDS j
j þ bpkj;

where DS j
¼ diagfðS jÞ11; . . . ; ðS jÞppg and diagfðAÞ11; . . . ; ðAÞppg is the diagonal

matrix with diagonal elements corresponding to those of a p� p matrix A.

Especially, we use the following three HGICs from their paper:

Criterion 7: the HGIC with b ¼ n�1ðlog pÞðlog log pÞ1=2.
Criterion 8: the HGIC with b ¼ n�1ðlog pÞðlog log pÞ.
Criterion 9: the HGIC with b ¼ n�1ðlog pÞðlog log pÞ3=2.

From Katayama and Imori (2014), criteria 7, 8, and 9 are consistent under

several assumptions such as normality when p ! y and log p=n ! 0 for our

numerical studies.

4.2. Simulations. We verify the foregoing exposition by simulations. The

probabilities of selecting the true subset j� were evaluated by Monte Carlo

simulations with 10; 000 iterations. Ten subsets jm ¼ f1; . . . ;mg ðm ¼ 1; . . . ;

Table 1. Assumptions and asymptotic behaviors of

n and p to ensure consistency of six criteria.

Criterion Assumptions Asymptotic behavior

1 A1, A2, A3 0, A4 p ! y

2 A1, A2, A3, A4 free

3 A1, A2, A3, A4 log log p=log n ! 0

4 A1, A2, A3 0, A4 p ! y

5 A1, A2, A3, A4 free

6 A1, A2, A3, A4 log log p=log n ! 0
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10Þ, with several di¤erent values of n and p, were prepared for these simu-

lations. We generated the explanatory matrix X as follows. We independ-

ently generated s1; . . . ; sn from Uð�1; 1Þ, where Uða; bÞ denotes a uniform

distribution on the range ða; bÞ. Using s1; . . . ; sn, we constructed an n� k

matrix of explanatory variables X , where the ða; bÞ-th element is defined by sb�1
a

ða ¼ 1; . . . ; n; b ¼ 1; . . . ; kÞ. The true subset was determined by j� ¼ f1; 2; 3;
4; 5g. The true coe‰cient matrix Y� adhered to the following structure:

Y� ¼ ðy1; . . . ; yk� Þ
0; ya ¼

ðað�1Þa�11 0
bp=2c; 0

0
dp=2eÞ

0 ða : oddÞ
ð0 0

bp=2c; að�1Þa�11 0
dp=2eÞ

0 ða : evenÞ

(
;

where b�c and d�e are the floor and ceiling functions, respectively. For these

numerical simulations, we expressed E� as Z�S
1=2
� , where Z� ¼ ðz1; . . . ; znÞ0 and

z1; . . . ; zn are independent and identically distributed from z ¼ ðz1; . . . ; zpÞ0 with
mean 0p and covariance matrix I p. Let n ¼ ðn1; . . . ; npÞ0, z ¼ ðz1; . . . ; zpÞ0 @
i:i:d: Npð0p; IpÞ, and t@ w2ð10Þ be mutually independent random vectors and

variable. Then, z is generated from the following four distributions:

(D1) multivariate normal distribution: z ¼ n:

(D2) multivariate t-distribution with 10 degrees of freedom: z ¼
ð8=tÞ1=2n:

(D3) independent skew-normal distribution with shape parameter 10:

za ¼ 1� 2

p
h2

� ��1=2
naffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 102
p þ hjzaj �

ffiffiffi
2

p

r
h

 !
ða ¼ 1; . . . ; pÞ;

where h ¼ 10=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 102

p
.

(D4) independent log-normal distribution:

za ¼
expðnaÞ �

ffiffiffi
e

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðe� 1Þ

p ða ¼ 1; . . . ; pÞ:

Note that distributions (D1)–(D4) are satisfied with k4 ¼ OðtrðS2
�ÞÞ. The true

covariance matrix S� was set as the following two structures:

(S1) exchangeable structure with correlation 0:8:

S� ¼ ð1� 0:8ÞIp þ 0:81p1
0
p:

(S2) autoregressive structure with correlation 0:8: ðS�Þab ¼ ð0:8Þja�bj.

Note that assumption A3 0 is not satisfied when the true covariance matrix S� is

(S1), but assumption A3 0 is satisfied when the true covariance matrix S� is (S2)

under distributions (D1)–(D4). Under these settings, we used the 8 combina-

tions of the four distributions and the two true covariance matrices (S1) and

(S2). Tables 2–9 show the probabilities of selecting the true subset j� using

353Consistent variable selection criteria in multivariate linear regression even when p > n



each of the nine criteria. In each table, the probabilities of selecting the true

subset j� were evaluated for distributions (D1)–(D4) and the two covariance

matrices (S1) and (S2). When the true covariance matrix S� has an exchange-

able structure, i.e., in Tables 2, 4, 6, and 8, it appears that criteria 2, 5, and

6 are consistent for both cases where only n is large and where n and p are

large, but criteria 1 and 4 are not consistent. This is because assumption A3

is satisfied for the cases of (S1) and distributions (D1)–(D4), but assumption

A3 0 is not satisfied for such cases. Moreover, although criterion 3 is consistent

from Table 1, it looks inconsistent in Tables 2, 4, 6, and 8. This is because the

penalty term in criterion 3 is smaller than that in criterion 1 for our numerical

simulations. On the other hand, when the true covariance matrix S� has an

autoregressive structure, i.e., in Tables 3, 5, 7, and 9, we observe that criteria 1

and 4 also are consistent except for the case that only n is large because (S2) is

satisfied with limp!y trðS2
�Þ=trðS�Þ2 ¼ 0, so assumption A3 0 is satisfied for the

cases of (S2) and distributions (D1)–(D4). This result accords with Theorem 1

and Theorem 3. In Tables 2–9, criteria 7, 8, and 9 are consistent when n and

p are large, but they are not consistent when only n is large. Further, we

observe that the probabilities by criteria 7, 8, and 9 are low when p=n ¼ 10

Table 2. True subset selection probabilities (%) for distribution (D1) and covariance matrix (S1).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 21.63 14.98 22.55 17.16 8.08 8.47 20.61 20.16 19.07

50 10 60.36 40.23 59.66 66.62 24.93 33.85 59.03 58.01 55.66

100 10 76.52 77.66 82.75 93.46 66.19 92.64 75.95 71.39 66.84

300 10 76.85 98.84 87.04 94.07 99.94 100.00 78.37 74.04 69.62

500 10 77.93 99.29 89.00 94.35 99.98 100.00 79.48 75.35 70.58

20 10 21.63 14.98 22.55 17.16 8.08 8.47 20.61 20.16 19.07

50 25 61.12 38.26 60.76 67.77 22.35 59.33 45.61 41.91 37.58

100 50 76.81 80.63 72.85 93.73 70.28 99.84 81.69 71.91 59.54

300 150 78.03 98.97 75.24 94.07 99.95 100.00 99.32 99.86 99.71

500 250 79.15 99.32 76.87 94.72 99.98 100.00 99.65 99.92 99.99

20 20 22.29 15.53 23.61 17.72 8.98 13.70 17.20 16.54 15.47

50 50 62.23 40.07 61.01 69.52 24.00 71.87 33.67 24.71 17.24

100 100 77.29 79.20 70.82 93.73 69.63 99.93 65.98 49.18 32.14

300 300 78.08 99.12 73.07 94.35 99.91 100.00 99.71 99.75 95.57

500 500 77.61 99.51 74.10 94.49 99.98 100.00 99.92 99.98 99.99

20 200 22.34 15.55 23.73 17.92 8.65 22.15 1.93 0.45 0.05

50 500 62.46 39.86 56.29 69.84 24.57 86.62 5.75 1.10 0.11

100 1000 78.29 79.10 64.59 94.62 69.38 100.00 23.71 6.37 0.71

300 3000 77.91 99.11 68.65 94.40 99.95 100.00 98.79 77.91 27.54

500 5000 78.15 99.37 70.10 94.78 99.96 100.00 100.00 99.97 88.23
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and na 100. In sum, the probabilities by criterion 6 are the highest across

Tables 2–9.

4.3. Empirical examples. First, we verify the probabilities of selecting the

true subsets by using real data. The dataset pertains to 8 groups ðg ¼ 1; . . . ; 8Þ
of black cotton fibers dyed by Indigo and its derivative dyes. Each cotton

fiber has 55 samples, and each sample has 541 variables, which are the absor-

bances for wavelengths from 240 nm to 780 nm in steps of 1 nm. Let the

explanatory matrix be denoted as X ¼ ðT; 19Þn 125, where T ¼ ðe1; . . . ; e8Þ and
ea ða ¼ 1; . . . ; 8Þ is a 9-dimensional vector such that the a-th element is one

and the other elements are zeros, and the symbol n denotes the Kronecker

product (see, e.g., Harville, 1997). Here, the 9-th column vector of X expresses

the intercept term. Moreover, let the family of candidate subsets be all of the

subsets included in the intercept term, i.e., J ¼ f j A Pðf1; . . . ; 9gÞ j j \ f9g0
qg, where PðAÞ is the power set of a set A. Then, for each group b ¼ 1; . . . ;

8, we carried out the following two steps:

Step 1. Let Ug ðg ¼ 1; . . . ; 8Þ be the 25� 541 response matrices by ran-

dom sampling without replacement from group g. Further, let

Table 3. True subset selection probabilities (%) for distribution (D1) and covariance matrix (S2).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 30.50 14.80 32.68 28.33 10.36 22.29 30.09 28.72 25.72

50 10 82.05 52.56 83.80 91.24 45.42 89.56 78.53 73.66 67.77

100 10 83.71 98.18 89.67 94.43 98.45 99.99 83.28 78.35 72.95

300 10 84.68 99.73 93.09 94.52 99.96 100.00 85.88 82.02 76.97

500 10 84.49 99.85 94.33 95.03 100.00 100.00 86.26 82.18 77.18

20 10 30.50 14.80 32.68 28.33 10.36 22.29 30.09 28.72 25.72

50 25 90.56 52.56 87.53 94.82 47.00 98.20 75.27 65.29 53.06

100 50 97.02 99.78 95.13 98.42 99.74 99.98 99.86 98.53 91.47

300 150 99.84 100.00 99.71 99.88 100.00 100.00 100.00 100.00 100.00

500 250 99.99 100.00 99.96 100.00 100.00 100.00 100.00 100.00 100.00

20 20 36.12 11.95 43.92 32.64 8.51 39.09 19.76 16.49 13.49

50 50 96.34 60.40 91.27 97.75 56.98 99.25 37.88 11.56 1.64

100 100 99.44 99.81 97.78 99.74 99.80 99.98 97.21 74.30 14.13

300 300 99.99 100.00 99.98 99.99 100.00 100.00 100.00 100.00 100.00

500 500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

20 200 42.48 2.60 78.26 41.12 2.31 79.96 0.00 0.00 0.00

50 500 99.80 63.28 99.88 99.79 62.75 99.95 0.00 0.00 0.00

100 1000 100.00 99.87 100.00 100.00 99.87 100.00 0.77 0.00 0.00

300 3000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.91 1.98

500 5000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99
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U9;b be the 25� 541 response matrices by random sampling with-

out replacement from the remaining samples in group b. Then,

the response matrix is constructed as Yb ¼ ðU 0
1; . . . ;U

0
8;U

0
9;bÞ

0.

Step 2. Let the coe‰cient matrix Yb given by Yb ¼ ðy1;b; . . . ; y8;b; y9;bÞ0.
Then, apply multivariate linear regression with X and Yb to the

response matrix Yb, and choose the best subset by performing

variable selection from the explanatory variables excepting the

intercept, i.e., from the elements of J.

From steps 1 and 2, we have n ¼ 225, p ¼ 541, and k ¼ 9 in this example.

Note that yb;b should be 0p and the remainder should not be 0p, because

U9;b is extracted from the same group as Ub. Hence, we know that the

true subset is j�;b ¼ f1; . . . ; 9g \ fbgc when Yb is used as the response matrix.

Moreover, to increase calculation speed, instead of a variable selection method

such as (6), we used the best subset ~jj by the following method:

~jj ¼ fl A o j SCðolÞ > SCðoÞg; ð23Þ

where SCð jÞ expresses the value of a variable selection criterion (SC) for model

Mj, and ol is defined in assumption A4. The selection method as per (23) was

Table 4. True subset selection probabilities (%) for distribution (D2) and covariance matrix (S1).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 22.29 15.96 22.52 18.23 9.30 10.22 20.60 20.22 19.13

50 10 61.48 40.40 60.74 67.76 24.75 34.53 60.41 58.71 56.19

100 10 77.39 78.92 83.05 93.94 66.97 92.39 76.78 72.65 67.66

300 10 77.70 99.01 87.88 94.55 99.95 100.00 79.01 74.94 70.17

500 10 77.41 99.21 88.80 94.35 99.98 100.00 79.13 75.02 70.73

20 10 22.29 15.96 22.52 18.23 9.30 10.22 20.60 20.22 19.13

50 25 61.17 38.43 60.62 68.15 23.01 59.65 46.28 42.45 38.38

100 50 78.41 78.98 74.38 94.00 69.74 99.83 80.51 71.61 59.57

300 150 78.17 99.06 75.18 94.21 99.96 100.00 99.40 99.88 99.60

500 250 78.43 99.23 76.29 94.37 99.97 100.00 99.61 99.94 99.99

20 20 22.07 15.90 23.70 18.16 9.62 14.41 17.21 16.40 15.53

50 50 62.04 40.12 60.64 69.32 25.68 71.64 33.99 26.04 18.39

100 100 77.57 78.97 71.01 93.83 69.61 99.92 66.47 49.38 31.81

300 300 78.03 99.05 73.13 94.44 99.95 100.00 99.75 99.74 95.35

500 500 77.96 99.43 74.18 94.53 99.98 100.00 99.89 99.99 100.00

20 200 22.95 15.90 24.15 18.60 9.56 22.99 2.07 0.55 0.12

50 500 61.84 40.02 56.49 69.89 24.87 85.74 6.26 1.12 0.09

100 1000 78.47 79.00 64.86 94.29 69.99 99.97 24.41 6.80 0.67

300 3000 78.29 99.01 69.30 94.41 99.96 100.00 98.81 78.31 28.53

500 5000 78.13 99.35 70.35 94.28 99.95 100.00 99.99 99.89 87.79
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proposed by Zhao et al. (1986). From Nishii et al. (1988), it is known that

when k is fixed, a criterion under (23) is consistent if the criterion under the

selection method such as (6) is consistent. For these settings, we iterated

steps 1 and 2 10; 000 times for each group b ¼ 1; . . . ; 8. Table 10 shows the

probabilities of selecting the true subset by the nine criteria for each group

b ¼ 1; . . . ; 8. We observe that the probabilities by criterion 6 are highest

except where b ¼ 5; 6. However, all nine criteria have very low probabilities

where b ¼ 5; 6. This is because groups 5 and 6 are very similar. Actually,

letting yg be the sample mean vector of group g, we have ky5 � y6kJ 0:46

but kyg � yhkb 1:60 for the cases of g; h0 5; 6 ðg0 hÞ. Hence, groups 5 and

6 will be very similar on average. Moreover, criterion 6 selected f1; . . . ; 9g \
f5; 6gc as the best subset for many iterations when b ¼ 5; 6.

Next, we provide an example of variable selection using empirical data

from Wille et al. (2004) as well as Yamamura et al. (2010). There are 795

genes which may exhibit associations with 39 genes from two biosynthesis

pathways in Arabidopsis thaliana. All variables were logarithmically trans-

formed. We configured the former 795 genes to response variables ðp ¼ 795Þ
with the latter 39 genes and an intercept as explanatory variables ðk ¼ 40Þ.

Table 5. True subset selection probabilities (%) for distribution (D2) and covariance matrix (S2).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 30.11 15.39 31.54 28.33 10.83 23.41 29.59 28.25 26.02

50 10 81.60 52.82 83.98 91.25 45.54 88.72 78.12 73.27 67.12

100 10 83.97 97.60 90.35 94.57 98.05 100.00 83.64 79.17 73.61

300 10 84.61 99.66 93.46 95.28 99.98 100.00 86.06 81.78 77.19

500 10 84.91 99.84 94.50 95.22 100.00 100.00 86.49 82.24 77.50

20 10 30.11 15.39 31.54 28.33 10.83 23.41 29.59 28.25 26.02

50 25 89.73 52.59 86.55 93.67 47.28 97.34 75.13 65.57 53.62

100 50 96.64 99.66 94.42 98.42 99.62 99.97 99.74 98.30 90.77

300 150 99.83 100.00 99.68 99.90 100.00 100.00 100.00 100.00 100.00

500 250 99.99 100.00 99.96 99.99 100.00 100.00 100.00 100.00 100.00

20 20 34.99 12.91 42.79 32.77 9.68 38.90 20.75 17.61 14.52

50 50 95.85 58.85 90.59 97.68 55.56 99.28 40.15 14.80 2.26

100 100 99.14 99.77 97.23 99.53 99.73 99.95 97.24 74.44 18.24

300 300 100.00 100.00 99.96 100.00 100.00 100.00 100.00 100.00 100.00

500 500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

20 200 43.38 4.80 69.97 41.56 4.42 73.24 0.00 0.00 0.00

50 500 99.67 62.22 98.37 99.66 61.48 99.37 0.00 0.00 0.00

100 1000 100.00 99.78 99.77 100.00 99.78 99.87 2.37 0.00 0.00

300 3000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.76 3.27

500 5000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99
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The sample size is n ¼ 118. We searched for the best subset of these models

by using the selection method (23). Table 11 shows the explanatory variables

selected by each criterion and the number of elements of the best subsets.

From Table 11, we observe that criteria 7, 8, and 9 selected zero explanatory

variables, and criteria 2 and 5 selected few variables. On the other hand,

criteria 3 and 6 selected about half of the variables.

5. Conclusions and discussions

We obtained the conditions for consistency of the SGCp criterion and

RGCp criterion under the HUHD and UHD asymptotic frameworks. Impor-

tantly, consistency is established under non-normality and does not rely on the

divergence speed of the dimension of the vector stacked with response vari-

ables p. Numerical studies suggest that criterion 6 has the highest probabilities

of selecting the true subset, although consistency of criterion 6 holds when

log log p=log n ! 0.

Herein, the scalar matrix p�1 trðSoÞIp and the ridge-type sample cova-

riance matrix Sl were used as G in the weighted L2 squared distance

Table 6. True subset selection probabilities (%) for distribution (D3) and covariance matrix (S1).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 21.90 15.89 22.29 17.83 9.05 9.33 21.26 20.80 19.72

50 10 59.15 39.59 58.61 66.40 23.76 33.31 57.89 56.95 54.66

100 10 76.84 79.04 83.15 93.42 67.42 92.36 76.28 71.56 66.69

300 10 78.27 99.16 88.31 94.67 99.95 100.00 79.67 75.24 70.73

500 10 78.11 99.27 89.12 94.63 100.00 100.00 79.95 75.28 70.45

20 10 21.90 15.89 22.29 17.83 9.05 9.33 21.26 20.80 19.72

50 25 60.47 37.59 60.24 66.81 22.21 57.71 44.78 41.00 36.97

100 50 77.58 78.89 73.17 93.82 69.48 99.93 80.24 70.42 58.81

300 150 78.13 99.02 75.21 94.14 99.95 100.00 99.42 99.76 99.73

500 250 78.48 99.29 76.27 94.25 99.98 100.00 99.70 99.88 99.98

20 20 22.79 15.79 24.12 18.15 9.16 13.64 17.69 16.80 15.85

50 50 61.81 39.58 60.21 68.69 24.81 71.49 33.74 25.24 17.51

100 100 76.79 79.34 69.97 93.52 69.42 99.98 65.84 49.07 31.76

300 300 78.34 99.08 73.58 94.53 99.98 100.00 99.84 99.85 95.62

500 500 78.19 99.26 74.54 94.53 99.96 100.00 99.83 99.97 99.99

20 200 21.35 15.30 23.11 17.62 8.74 21.52 1.90 0.37 0.05

50 500 62.10 39.74 56.75 69.79 24.51 86.52 5.73 0.94 0.10

100 1000 77.68 79.05 64.83 93.55 69.59 99.98 23.94 6.41 0.62

300 3000 79.06 99.06 69.29 94.59 99.99 100.00 98.83 77.64 27.51

500 5000 78.27 99.33 70.53 94.64 99.97 100.00 99.98 99.94 88.55
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dðA;BjGÞ. The SGCp criterion and RGCp criterion are invariant under trans-

formations by a scalar times orthogonal matrices of Y , i.e., Y : Y ! aYF ,

where F satisfies FF 0 ¼ F 0F ¼ Ip and a A R. However, they are not invariant

under transformations by nonsingular matrices of Y, so their consistency is

a¤ected by the elements of S� even for overspecified subsets. This is often

the case in high-dimensional contexts such that p > n. On the other hand,

using diagfðSoÞ11; . . . ; ðSoÞppg or So þ l�1 diagfðSoÞ11; . . . ; ðSoÞppg as G may

eradicate the influence of the diagonal elements of S�. Hence, it is also

important to examine consistency in such cases. To do so would require

assuming normality of the error vector and this represents fruitful terrain for

future research.

Finally, we consider the influence of increasing p on consistency. To do

so, another expression of multivariate linear regression is given by

vecðYÞ ¼ ðIp nXÞ vecðYÞ þ vecðEÞ;

where vecðAÞ is the np-dimensional vector consisting of the columns of an

n� p matrix A ¼ ða1; . . . ; anÞ and is defined by vecðAÞ ¼ ða 0
1; . . . ; a

0
nÞ

0 (see, e.g.,

Harville, 1997). From the above expression, multivariate linear regression is

Table 7. True subset selection probabilities (%) for distribution (D3) and covariance matrix (S2).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 30.45 14.76 32.27 28.07 10.16 23.14 30.34 29.17 26.12

50 10 81.52 52.70 83.44 90.82 45.01 90.16 78.40 73.37 67.27

100 10 84.10 98.11 90.46 94.78 98.23 100.00 83.70 78.96 73.43

300 10 84.42 99.71 93.04 94.73 99.99 100.00 85.64 81.46 76.40

500 10 84.96 99.88 94.16 95.04 100.00 100.00 86.56 82.52 77.86

20 10 30.45 14.76 32.27 28.07 10.16 23.14 30.34 29.17 26.12

50 25 91.01 52.23 87.82 95.06 46.94 98.17 76.08 65.60 53.29

100 50 96.60 99.71 94.45 98.18 99.68 99.99 99.79 98.55 91.70

300 150 99.89 100.00 99.69 99.92 100.00 100.00 100.00 100.00 100.00

500 250 100.00 100.00 99.99 100.00 100.00 100.00 100.00 100.00 100.00

20 20 34.51 11.45 42.51 31.57 7.84 37.78 19.87 16.62 13.61

50 50 95.68 60.97 91.13 97.35 57.68 99.19 39.87 12.94 2.02

100 100 99.37 99.71 97.79 99.63 99.69 99.96 97.49 75.85 14.72

300 300 99.99 100.00 99.97 99.99 100.00 100.00 100.00 100.00 100.00

500 500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

20 200 42.35 2.47 78.67 40.77 2.29 79.88 0.00 0.00 0.00

50 500 99.78 63.15 99.81 99.77 62.60 99.93 0.00 0.00 0.00

100 1000 100.00 99.84 100.00 100.00 99.84 100.00 0.97 0.00 0.00

300 3000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90 1.69

500 5000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99

359Consistent variable selection criteria in multivariate linear regression even when p > n



regarded as univariate linear regression with the np-dimensional response vector

vecðYÞ and the explanatory matrix Ip nX formally. From this, at first glance

it seems that the dimension p has a role in increasing the sample size. How-

ever, from the results in Lemma 2 and Lemma 3, the probabilities of selecting

j� by the consistent criteria in this paper always approach 1 by diverging n,

but do not always approach 1 by diverging only p. Moreover, increasing p

leads to fast convergence of the probability of selecting the true subset under

assumption A3 0, but this is not always the case under assumption A3. This

di¤erence depends on the assumption about S� and k4 since x trðS�Þ�1 ¼ oð1Þ
holds under assumption A3 0 not A3. This may also be verified from our

simulations. Hence, to ensure fast convergence of the probability of selecting

the true subset, a small sample size may be su‰cient under assumption A3 0

when p is large. As per subsection 2.2, assumption A3 0 holds when (9) is

supported. Since the sphericity condition limp!y trðS 2
�Þ=trðS�Þ2 ¼ 0 is equiv-

alent to limp!y lmaxðS�Þ=trðS�Þ ¼ 0, note that this condition implies that the

maximum eigenvalue of S� is not particularly large in the sense that lmaxðS�Þ
¼ oðpÞ under assumption A2. However, in general lmaxðS�Þ tends to be very

large for high-dimensional cases. Thus, it may not be suitable to assume

Table 8. True subset selection probabilities (%) for distribution (D4) and covariance matrix (S1).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 24.34 18.28 24.92 21.26 12.14 14.48 23.71 22.97 21.98

50 10 60.32 43.80 60.30 67.20 30.36 43.29 60.05 58.69 55.96

100 10 75.85 77.48 81.35 92.46 67.97 88.79 75.24 71.37 66.70

300 10 78.01 98.91 87.99 94.37 99.80 100.00 79.23 74.98 70.45

500 10 77.40 99.47 89.01 94.43 99.95 100.00 79.05 75.17 70.67

20 10 24.34 18.28 24.92 21.26 12.14 14.48 23.71 22.97 21.98

50 25 59.68 40.15 58.88 67.84 26.31 61.64 50.03 46.20 42.21

100 50 76.63 78.70 73.07 93.02 69.83 99.55 81.24 73.02 61.75

300 150 79.18 98.99 76.09 94.54 99.97 100.00 99.32 99.82 99.72

500 250 78.87 99.47 76.67 94.77 99.97 100.00 99.71 99.95 99.98

20 20 23.65 17.89 24.85 20.57 11.35 17.57 20.81 19.84 19.00

50 50 61.52 40.95 60.03 69.55 26.75 71.89 36.77 28.51 20.89

100 100 77.85 77.94 71.18 93.93 68.29 99.85 67.17 51.20 33.10

300 300 78.72 98.95 74.09 94.34 99.99 100.00 99.64 99.82 95.78

500 500 77.95 99.16 74.17 94.37 99.97 100.00 99.82 99.99 100.00

20 200 21.99 16.18 23.77 18.22 9.37 22.62 2.48 0.52 0.09

50 500 62.30 39.45 57.04 69.65 24.20 85.51 6.97 1.42 0.10

100 1000 77.91 79.46 64.73 94.00 70.21 99.98 25.04 6.58 0.55

300 3000 78.44 99.15 68.10 94.53 99.94 100.00 98.87 79.62 29.35

500 5000 79.02 99.36 70.49 94.82 99.96 100.00 99.99 99.91 88.51
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the sphericity condition for high-dimensional cases. Aoshima and Yata (2018;

2019) considered methods to translate statistics under the strongly spiked model

lim infp!y lmaxðS�Þ2=trðS2
�Þ > 0 into those under the non-strongly spiked

model limp!y lmaxðS�Þ2=trðS 2
�Þ ¼ 0. By applying their idea to criteria for

Table 9. True subset selection probabilities (%) for distribution (D4) and covariance matrix (S2).

Criterion

n p 1 2 3 4 5 6 7 8 9

20 10 32.63 20.03 33.69 32.97 16.82 30.72 34.48 32.00 28.36

50 10 77.75 57.62 79.44 87.20 52.67 85.82 76.31 71.51 65.27

100 10 83.87 94.52 89.47 94.32 93.98 99.53 83.45 78.79 73.54

300 10 84.60 99.66 92.98 94.95 99.98 100.00 85.69 81.74 76.93

500 10 83.69 99.82 93.65 94.73 100.00 100.00 85.08 81.05 76.19

20 10 32.63 20.03 33.69 32.97 16.82 30.72 34.48 32.00 28.36

50 25 87.57 55.58 85.15 92.23 51.24 95.57 84.33 78.54 70.73

100 50 96.08 99.33 93.67 97.82 99.18 99.89 99.92 99.33 95.79

300 150 99.77 100.00 99.58 99.88 100.00 100.00 100.00 100.00 100.00

500 250 99.98 100.00 99.98 99.99 100.00 100.00 100.00 100.00 100.00

20 20 35.49 16.77 39.99 34.43 13.66 40.56 33.45 30.82 27.57

50 50 94.34 60.21 88.51 96.00 57.19 98.38 64.54 38.32 15.21

100 100 98.78 99.60 96.46 99.32 99.56 99.89 99.13 89.61 46.20

300 300 99.98 100.00 99.95 99.99 100.00 100.00 100.00 100.00 100.00

500 500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

20 200 43.46 4.89 69.53 41.61 4.55 73.07 0.00 0.00 0.00

50 500 99.67 62.63 99.05 99.69 62.00 99.67 0.00 0.00 0.00

100 1000 100.00 99.90 99.97 100.00 99.90 99.98 14.76 0.00 0.00

300 3000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.98 14.35

500 5000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 10. True subset selection probabilities (%) for each group b ¼ 1; . . . ; 8 in the black

cotton fibers dataset

Criterion

b 1 2 3 4 5 6 7 8 9

1 79.96 97.09 76.19 90.82 99.55 99.98 56.07 4.63 0.04

2 84.12 98.33 80.43 94.15 99.84 100.00 99.88 99.96 99.29

3 97.94 100.00 96.79 99.80 100.00 100.00 92.85 16.50 0.47

4 86.62 98.75 83.16 95.37 99.86 100.00 32.92 3.48 0.03

5 5.65 0.11 8.41 1.66 0.00 0.00 0.00 0.00 0.00

6 12.14 0.42 16.45 4.31 0.01 0.00 0.00 0.00 0.00

7 72.52 92.94 68.48 85.56 91.70 98.86 90.40 60.48 21.15

8 99.57 100.00 98.98 99.96 100.00 100.00 100.00 100.00 100.00
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Table 11. Selected explanatory variables based on the Arabidopsis thaliana dataset

Criterion

Name 1 2 3 4 5 6 7 8 9

Intercept 1 1 1 1 1 1 0 0 0

AACT1 1 0 1 1 0 1 0 0 0

AACT2 0 0 1 0 0 1 0 0 0

CMK 0 0 1 0 0 0 0 0 0

DPPS1 0 0 0 0 0 0 0 0 0

DPPS2 1 0 1 1 0 1 0 0 0

DPPS3 0 0 0 0 0 0 0 0 0

DXPS1 0 0 0 0 0 0 0 0 0

DXPS2(cla1) 1 0 1 1 0 1 0 0 0

DXPS3 0 0 1 0 0 0 0 0 0

DXR 1 0 1 1 0 1 0 0 0

FPPS1 0 0 0 0 0 0 0 0 0

FPPS2 0 0 0 0 0 0 0 0 0

GGPPS1mt 0 0 0 0 0 0 0 0 0

GGPPS2 0 0 0 0 0 0 0 0 0

GGPPS3 0 0 0 0 0 0 0 0 0

GGPPS4 0 0 0 0 0 0 0 0 0

GGPPS5 0 0 0 0 0 0 0 0 0

GGPPS6 1 0 1 1 0 1 0 0 0

GGPPS8 0 0 0 0 0 0 0 0 0

GGPPS9 0 0 0 0 0 0 0 0 0

GGPPS10 0 0 0 0 0 0 0 0 0

GGPPS11 0 0 1 0 0 0 0 0 0

GGPPS12 1 0 1 1 0 1 0 0 0

GPPS 1 0 1 1 0 1 0 0 0

HDR 1 0 1 1 0 1 0 0 0

HDS 1 0 1 1 0 1 0 0 0

HMGR1 1 0 1 1 0 1 0 0 0

HMGR2 0 0 1 0 0 1 0 0 0

HMGS 0 0 1 0 0 0 0 0 0

IPPI1 1 0 1 1 0 1 0 0 0

IPPI2 0 0 1 0 0 1 0 0 0

MCT 0 0 1 0 0 0 0 0 0

MECPS 0 0 1 0 0 1 0 0 0

MK 0 0 0 0 0 0 0 0 0

MPDC1 0 0 0 0 0 0 0 0 0

MPDC2 0 0 1 0 0 0 0 0 0

PPDS1 0 0 0 0 0 0 0 0 0

PPDS2mt 0 0 0 0 0 0 0 0 0

UPPS1 1 0 1 1 0 1 0 0 0

að ~jj Þ 13 1 23 13 1 17 0 0 0

(1: selected variable, 0: non-selected variable.)
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multivariate linear regression used in this paper, fast convergence of the

probability of selecting the true subset can be ensured even under assumption

A3, and, again, this should be explored in future research.

Appendix

A. Proof of equation (8). Let j A J�. From properties of projection ma-

trices, for any l A j� \ j c, we have the following equation:

ðIn � Pol
Þxl1

¼ 0n ðl1 A j� \ flgcÞ
0 0n ðl1 A j� \ flgÞ

�
:

Using the above equation, Y 0
�X

0
�ðI n � Pol

ÞX�Y� can be expressed as follows:

Y 0
�X

0
�ðIn � Pol

ÞX�Y� ¼
X
l A j�

ylx
0
l

 !
ðIn � Pol

Þ
X
l A j�

xly
0
l

 !

¼ ylx
0
lðIn � Pol

Þxly 0
l

¼ x 0
lðIn � Pol

Þxlyly 0
l:

Since we have

X 0
�ðIn � PjÞX� � X 0

�ðIn � Pol
ÞX� ¼ X 0

�ðPol
� PjÞX�;

and X 0
�ðPol

� PjÞX� is positive-semidefinite, the following equation can be

derived:

lmaxðDjÞb lmaxðY 0
�X

0
�ðIn � Pol

ÞX�Y�Þ ¼ x 0
lðI n � Pol

Þxly 0
lyl:

Hence, equation (8) can be derived from assumption A4. r

B. Proof of Lemma 1. We need a lemma to prove Lemma 1. To derive the

upper bounds of probabilities, we use the variances of ðn� kÞ�1 trðWÞ, trðU jÞ,
and trðVj;hÞ. The results for the variances are as follows (the proof is given

in Appendix H):

Lemma B.1. Let A be an n� n symmetric matrix and B be a p� n

matrix. Then, the following results hold:

( i ) E½trðE 0
�AE�Þ� ¼ trðAÞ trðS�Þ.

( ii ) E½trðBE�Þ2� ¼ trðS�BB
0Þ.

(iii) E½trðE 0
�AE�Þ2� ¼ ð

Pn
i¼1fðAÞiig

2Þk4 þ trðAÞ2 trðS�Þ2 þ 2 trðA2Þ trðS2
�Þ,

where k4 ¼ E½kek4� � trðS�Þ2 � 2 trðS2
�Þ, which is defined in assump-

tion A3.
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Let j � h. Since In � Po and Pj � Ph are symmetric idempotent matrices,

we can identify that

Xn
i¼1

fðI n � PoÞiig
2
a
Xn
i¼1

ðI n � PoÞii ¼ trðIn � PoÞ ¼ n� k;

Xn
i¼1

fðPj � PhÞiig
2
a
Xn
i¼1

ðPj � PhÞii ¼ trðPj � PhÞ ¼ kj � kh:

From the above equations and Lemma B.1, we can evaluate the expectations

and variances of ðn� kÞ�1 trðWÞ, trðU jÞ, and trðVj;hÞ as follows:

E½ðn� kÞ�1 trðWÞ� ¼ trðS�Þ; Var½ðn� kÞ�1 trðWÞ�a 3ðn� kÞ�1x2;

E½trðU jÞ2� ¼ trðS�DjÞ;

E½trðVj;hÞ� ¼ ðkj � khÞ trðS�Þ; Var½trðVj;hÞ�a 3ðkj � khÞx2:

Then, we obtain the results of Lemma 1 by using Chebyshev’s inequality.

First, we derive the results of (i), (ii), and (iii) as follows:

Pððn� kÞ�1 trðWÞb r1Þ

¼ Pððn� kÞ�1 trðWÞ � trðS�Þb r1 � trðS�ÞÞ

aPðjðn� kÞ�1 trðWÞ � trðS�Þjb r1 � trðS�ÞÞ

aVar½ðn� kÞ�1 trðWÞ�fr1 � trðS�Þg�2 ¼ Oðx2n�1fr1 � trðS�Þg�2Þ;

Pððn� kÞ�1 trðWÞa r2Þ

¼ Pððn� kÞ�1 trðWÞ � trðS�Þa r2 � trðS�ÞÞ

aPðjðn� kÞ�1 trðWÞ � trðS�Þjb trðS�Þ � r2Þ

aVar½ðn� kÞ�1 trðWÞ�ftrðS�Þ � r2g�2 ¼ Oðx2n�1ftrðS�Þ � r2g�2Þ;

PðtrðU jÞa r3Þ

aPðjtrðU jÞjb jr3jÞ

aE½trðU jÞ2�jr3j�2 ¼ OðtrðS�DjÞjr3j�2Þ;

PðtrðVj;hÞb ðkj � khÞr4Þ

¼ PðtrðVj;hÞ � ðkj � khÞ trðS�Þb ðkj � khÞfr4 � trðS�ÞgÞ

aVar½trðVj;hÞ�ðkj � khÞ�2fr4 � trðS�Þg�2 ¼ Oðx2fr4 � trðS�Þg�2Þ:
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Next, we obtain result (iv). When n is su‰ciently large or both n and p

are su‰ciently large, we have

�r5 þ r6 < 0; ðr5 � r6Þ�1 ¼ Oðr�1
5 Þ:

Hence, result (iii) can be derived as follows:

PðtrðVj;hÞ � ðkj � k ~jjÞ trðS�Þ þ r5 a r6Þ

aPðjtrðVj;hÞ � ðkj � khÞ trðS�Þjb r5 � r6Þ

aVar½trðVj;hÞ�ðr5 � r6Þ�2 ¼ Oðx2r�2
5 Þ: r

C. Proof of Lemma 2. First, we obtain the order of PS. For j A
Jþ \ f j�gc, let W ¼ E 0

�ðI n � PoÞE� and Vj; j� ¼ E 0
�ðPj � Pj� ÞE� defined by (12).

It is straightforward that the equation ðIn � PoÞX� ¼ ðPj � Pj� ÞX� ¼ On;k�

holds. Then, we have

trfY 0ðIn � PoÞYg ¼ trðWÞ; trfY 0ðPj � Pj� ÞYg ¼ trðVj; j� Þ:

Using the above equations, SGCpð jjaÞ � SGCpð j�jaÞ is calculated as

SGCpð jjaÞ � SGCpð j�jaÞ ¼ �ðn� kÞ trfY
0ðPj � Pj� ÞYg
trðWÞ þ ðkj � k�Þa

¼ �ðn� kÞ trðVj; j� Þ
trðWÞ þ ðkj � k�Þa: ðC:1Þ

Let ES be an event defined by

ES ¼ fðn� kÞ�1 trðWÞb tS trðS�Þg: ðC:2Þ

Then, by using (C.1) and (C.2), we have

PS ¼ Pð[j AJþ\f j�g cftrðVj; j� Þb ðn� kÞ�1 trðWÞðkj � k�ÞagÞ

¼ Pðf[j AJþ\f j�g cftrðVj; j� Þb ðn� kÞ�1 trðWÞðkj � k�Þagg \ ðES [ Ec
SÞÞ

aPð[j AJþ\f j�g cftrðVj; j� Þb ðkj � k�Þ trðS�ÞatSgÞ þ PðEc
SÞ

a
X

j AJþ\f j�g
c

PðtrðVj; j� Þb ðkj � k�Þ trðS�ÞatSÞ þ PðEc
SÞ: ðC:3Þ

From (i) and (iii) of Lemma 1, the orders of two terms in (C.3) are as

follows:
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X
j AJþ\f j�g c

PðtrðVj; j� Þb ðkj � k�Þ trðS�ÞatSÞ

¼ Oðx2 trðS�Þ�2ðatS � 1Þ�2Þ;

PðEc
SÞ ¼ Oðx2 trðS�Þ�2

n�1ð1� tSÞ�2Þ:

From the above equations and (C.3), we have

PS ¼ Oðx2 trðS�Þ�2 maxfðatS � 1Þ�2; n�1ð1� tSÞ�2gÞ: ðC:4Þ

Next, we obtain the order of PS. For j A J�, let

jþ ¼ j [ j�; ES; j ¼ fSGCpð jþjaÞ � SGCpð j�jaÞb 0g:

Using jþ and ES; j, we have

PS ¼ Pð[j AJ�fSGCpð jjaÞ � SGCpð jþjaÞ þ SGCpð jþjaÞ � SGCpð j�jaÞa 0gÞ

¼ Pð[j AJ�fSGCpð jjaÞ � SGCpð jþjaÞ þ SGCpð jþjaÞ � SGCpð j�jaÞa 0g

\ ðES; j [ Ec
S; jÞÞ

aPð[j AJ�fSGCpð jjaÞ � SGCpð jþjaÞa 0gÞ þ Pð[j AJ� E
c
S; jÞ: ðC:5Þ

Since jþ A Jþ, the order of Pð[j AJ� E
c
S; jÞ is the same as that of (C.4):

Pð[j AJ� E
c
S; jÞ ¼ Oðx2 trðS�Þ�2 maxfðatS � 1Þ�2; n�1ð1� tSÞ�2gÞ: ðC:6Þ

Notice that

trfY 0ðPjþ � PjÞYg ¼ trðVjþ; jÞ þ 2 trðU jÞ þ d2j ;

where d2j and U j ¼ Y 0
�X

0
�ðIn � PjÞE� are defined by (7) and (12), respectively.

From this, SGCpð jjaÞ � SGCpð jþjaÞ is calculated as

SGCpð jjaÞ � SGCpð jþjaÞ

¼ ðn� kÞ trfY
0ðPjþ � PjÞYg
trðWÞ � ðkjþ � kjÞa

¼ ðn� kÞ trðWÞ�1ftrðVjþ; jÞ þ 2 trðU jÞ þ d2j g � ðkjþ � kjÞa: ðC:7Þ

Let E1 and E2; j be events defined by

E1 ¼ ðn� kÞ�1 trðWÞa 3

2
trðS�Þ

� �
; E2; j ¼ trðU jÞb� 1

4
d2j

� �
: ðC:8Þ

Then, by using (C.7) and (C.8), we have
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Pð[j AJ�fSGCpð jjaÞ � SGCpð jþjaÞa 0gÞ

¼ Pð[j AJ�ftrðVjþ; jÞ þ 2 trðU jÞ þ d2j a ðn� kÞ�1 trðWÞðkjþ � kjÞagÞ

¼ Pð[j AJ�ftrðVjþ; jÞ þ 2 trðU jÞ þ d2j a ðn� kÞ�1 trðWÞðkjþ � kjÞag

\ ðE1 [ Ec
1 ÞÞ

aP
[
j AJ�

trðVjþ; jÞ þ 2 trðU jÞ þ d2j a
3

2
ðkjþ � kjÞ trðS�Þa

� � !
þ PðEc

1 Þ

¼ P
[
j AJ�

trðVjþ; jÞ þ 2 trðU jÞ þ d2j a
3

2
ðkjþ � kjÞ trðS�Þa

� �
\ ðE2; j [ Ec

2; jÞ
 !

þ PðEc
1 Þ

a
X
j AJ�

P trðVjþ; jÞ þ
1

2
d2j a

3

2
ðkjþ � kjÞ trðS�Þa

� �

þ PðEc
1 Þ þ

X
j AJ�

PðEc
2; jÞ: ðC:9Þ

Notice that

trðS�Þ
np

3

2
a� 1

� �
! 0; trðS�DjÞa lmaxðS�Þd2j :

Hence, by using (8) and (i), (ii), and (iii) of Lemma 1, the orders of three terms

in (C.9) can be derived as follows:

X
j AJ�

P trðVjþ; jÞ þ
1

2
d2j a

3

2
ðkjþ � kjÞ trðS�Þa

� �

¼
X
j AJ�

P trðVjþ; jÞ � ðkjþ � kjÞ trðS�Þ þ
1

2
d2j a ðkjþ � kjÞ trðS�Þ

3

2
a� 1

� �� �

a
X
j AJ�

P
trðVjþ; jÞ � ðkjþ � kjÞ trðS�Þ

np
þ 1

2
~dda ðkjþ � kjÞ

trðS�Þ
np

3

2
a� 1

� �� �

¼ Oðx2n�2p�2Þ; ðC:10Þ

PðEc
1 Þ ¼ Oðx2 trðS�Þ�2

n�1Þ; ðC:11ÞX
j AJ�

PðEc
2; jÞ ¼

X
j AJ�

OðtrðS�DjÞd�4
j Þ ¼ OðlmaxðS�Þn�1p�1Þ; ðC:12Þ
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where ~dd is a positive constant satisfying 0 < ~dd < minj AJ� infn>k;pb1ðnpÞ�1d2j .

From (C.5), (C.6), (C.9), (C.10), (C.11), and (C.12), we have

PS ¼ Oðx2 trðS�Þ�2 maxfðatS � 1Þ�2; n�1ð1� tSÞ�2gÞ

þOðmaxfx2n�2p�2; x2 trðS�Þ�2
n�1; lmaxðS�Þn�1p�1gÞ: ðC:13Þ

(C.4) and (C.13) complete the proof of Lemma 2. r

D. Proof of Theorem 1. First, we obtain the consistency conditions under

assumptions A1, A2, A3, and A4. Note that under assumptions A2 and A3,

the following equations hold:

x

trðS�Þ
¼ Oð1Þ; x

p
¼ Oð1Þ; lmaxðS�Þ

p
¼ Oð1Þ:

Let us take tS ¼ 1=2 in Lemma 2. By using Lemma 2 and the above equa-

tions, the orders of PS and PS are as follows:

PS ¼ Oðmaxfða=2� 1Þ�2; n�1gÞ;

PS ¼ Oðmaxfða=2� 1Þ�2; n�1gÞ þOðn�1Þ:

The above equations and (13) give the consistency conditions in (14).

Next, we obtain the consistency conditions under assumptions A1, A2,

A3 0, and A4. Let us take tS ¼ 1� n�1=2 in Lemma 2. Then, using (13),

we have

ðatS � 1Þ�2 ¼ ða� 1Þ�2 1� affiffiffi
n

p
ða� 1Þ

� ��2

¼ Oðða� 1Þ�2Þ;

n�1ð1� tSÞ�2 ¼ 1:

Note that under assumptions A2 and A3 0, the following equations hold:

x

trðS�Þ
¼ oð1Þ; x

p
¼ oð1Þ; lmaxðS�Þ

p
¼ oð1Þ:

Hence, the orders of PS and PS are as follows:

PS ¼ oðða� 1Þ�2Þ þ oð1Þ; PS ¼ oðða� 1Þ�2Þ þ oð1Þ:

The above equations and (13) give the consistency conditions in (15). r

E. Proof of Theorem 2. First, we show the inconsistency under condition

C1. Let W and Vj; j� be defined by (12) and let E3 ¼ fðn� kÞ�1 trðWÞa
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ð1þ n�1=4Þ trðS�Þg. For any j A Jþ \ f j�gc, we have

Pð ĵjS ¼ j�Þ ¼ Pð\h AJ\f j�g cfSGCpðhjaÞ > SGCpð j�jaÞgÞ

aPðSGCpð jjaÞ > SGCpð j�jaÞÞ

¼ PðtrðVj; j� Þ < aðkj � k�Þðn� kÞ�1 trðWÞÞ

aPðtrðVj; j� Þ � ðkj � k�Þ trðS�Þ < ðkj � k�Þ trðS�Þfð1þ n�1=4Þa� 1gÞ

þ PðEc
3 Þ: ðE:1Þ

Moreover, when n is su‰ciently large or n and p are su‰ciently large, we

have

PðtrðVj; j� Þ � ðkj � k�Þ trðS�Þ < ðkj � k�Þ trðS�Þfð1þ n�1=4Þa� 1gÞ

aPðjtrðVj; j� Þ � ðkj � k�Þ trðS�Þjb ðkj � k�Þ trðS�Þf1� ð1þ n�1=4ÞagÞ

a
Var½trðVj; j� Þ�

ðkj � k�Þ2 trðS�Þ2f1� ð1þ n�1=4Þag2

a
k4Iðk4 > 0Þ þ 2 trðS 2

�Þ
ðkj � k�Þ trðS�Þ2f1� ð1þ n�1=4Þag2

¼ ðkj � k�Þ�1ð1� aÞ�2 1� n�1=4a

1� a

� ��2
k4Iðk4 > 0Þ þ 2 trðS 2

�Þ
trðS�Þ2

( )
: ðE:2Þ

Further, by using (i) in Lemma 1, the order of PðEc
3 Þ is as follows:

PðEc
3 Þ ¼ Oðx2 trðS�Þ�2

n�1=2Þ: ðE:3Þ

From (E.1), (E.2), and (E.3), condition C1 gives the following inequality:

lim
n!y;p=n!c

Pð ĵjS ¼ j�Þ

a ðkj � k�Þ�1 lim
n!y;p=n!c

k4Iðk4 > 0Þ þ 2 trðS2
�Þ

ð1� aÞ2 trðS�Þ2

( )
< 1:

Next, we show the inconsistency under condition C2. For j � j�,

let E4 ¼ fðn� kÞ�1 trðWÞb ð1� n�1=4Þ trðS�Þg and E5; j ¼ ftrðU jÞa n�1=4d2j g,
where U j is defined by (12). Then, we have

Pð ĵjS ¼ j�ÞaPðSGCpð jjaÞ > SGCpð j�jaÞÞ

¼ PðtrðVj�; jÞ þ 2 trðU jÞ þ d2j > aðk� � kjÞðn� kÞ�1 trðWÞÞ
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aPðtrðVj�; jÞ > ðk� � kjÞ trðS�Þð1� n�1=4Þa� ð1þ 2n�1=4Þd2j Þ

þ PðEc
4 Þ þ PðEc

5; jÞ: ðE:4Þ

From condition (C2), it is straightforward to identify that

lim
n!y;p=n!c

ðk� � kjÞ trðS�Þfð1� n�1=4Þa� 1g
ð1þ 2n�1=4Þd2j

> 1:

Hence, when n is su‰ciently large or n and p are su‰ciently large, we have

PðtrðVj; j� Þ > ðk� � kjÞ trðS�Þð1� n�1=4Þa� ð1þ 2n�1=4Þd2j Þ

a
Var½trðVj; j� Þ�

½ðk� � kjÞ trðS�Þfð1� n�1=4Þa� 1g � ð1þ 2n�1=4Þd2j �
2
¼ Oðn�2Þ: ðE:5Þ

Further, by using (i) and (ii) in Lemma 1, the orders of PðEc
4 Þ and PðEc

5; jÞ are

as follows:

PðEc
4 Þ ¼ Oðx2 trðS�Þ�2

n�1=2Þ; PðEc
5; jÞ ¼ OðlmaxðS�Þp�1n�1=2Þ: ðE:6Þ

Equations (E.4), (E.5), and (E.6) give limn!y;p=n!c Pð ĵjS ¼ j�Þ ¼ 0.

Finally, when we replace assumption A3 with assumption A3 0, the results

in this case can be derived from (E.1), (E.2), and (E.3) because of x trðS�Þ�1 ¼
oð1Þ. r

F. Proof of Lemma 3. For j A Jþ \ f j�gc, using (19), we have

RGCpð jja; lÞ � RGCpð j�ja; lÞ

¼ �trfY 0ðPj � Pj� ÞYS�1
l g þ ðkj � k�Þpa

b�trðVj; j� ÞlmaxðS�1
l Þ þ ðkj � k�Þpa

b�lðn� kÞ trðVj; j� Þ
trðWÞ þ ðkj � k�Þpa

¼ lfSGCpð jjaÞ � SGCpð j�jaÞg þ ðkj � k�Þðp� lÞa; ðF:1Þ

where Vj; j� and W are given by (12). Moreover, for j A J�, using (19), we

have

RGCpð jja; lÞ � RGCpð jþja; lÞ

¼ trfY 0ðPjþ � PjÞYS�1
l g � ðkjþ � kjÞpa

b lminðS�1
l Þ trfY 0ðPjþ � PjÞYg � ðkjþ � kjÞpa

b ð1þ l�1Þ�1ðn� kÞ trðWÞ�1 trfY 0ðPjþ � PjÞYg � ðkjþ � kjÞpa

370 Ryoya Oda



¼ ð1þ l�1Þ�1fSGCpð jjaÞ � SGCpð jþjaÞg

þ ðkjþ � kjÞfð1þ l�1Þ�1 � pga; ðF:2Þ

where jþ ¼ j [ j�. From (F.1) and (F.2), we can replace RGCpð jja; lÞ �
RGCpð j�ja; lÞ and RGCpð jja; lÞ � RGCpð jþja; lÞ with SGCpð jjaÞ � SGCpð j�jaÞ
and SGCpð jjaÞ � SGCpð jþjaÞ, respectively. Therefore, in the same way as the

proof of Lemma 2, the results of Lemma 3 can be derived. r

G. Proof of Theorem 4. For j A Jþ \ f j�gc, using (19), we have

RGCpð jja; lÞ � RGCpð j�ja; lÞ

a�trðVj; j� ÞlminðS�1
l Þ þ ðkj � k�Þpa

a�ð1þ l�1Þ�1ðn� kÞ trðWÞ�1 trðVj; j� Þ þ ðkj � k�Þpa

¼ ð1þ l�1Þ�1fSGCpð jjaÞ � SGCpð j�jaÞg

þ ðkj � k�Þfp� ð1þ l�1Þ�1ga: ðG:1Þ

For j � j�, using (19), we have

RGCpð jja; lÞ � RGCpð j�ja; lÞ

a lmaxðS�1
l Þ trfY 0ðPj� � PjÞYg � ðk� � kjÞpa

a lðn� kÞ trðWÞ�1 trfY 0ðPj� � PjÞYg � ðk� � kjÞpa

¼ lfSGCpð jjaÞ � SGCpð j�jaÞg � ðk� � kjÞðl� paÞ: ðG:2Þ

By using (G.1) and (G.2), in the same way as the proof of Theorem 2, the

results of Theorem 4 can be derived. r

H. Proof of Lemma B.1. First, we calculate the expectation E½trðE 0
�AE�Þ� to

prove (i). It is straightforward that

E½trðE 0
�AE�Þ� ¼

Xn
i; j

ðAÞijE½e 0i ej� ¼
Xn
i¼1

ðAÞiiE½e 0i ei� ¼ trðAÞ trðS�Þ;

where the summation
Pn

i; j is defined by
Pn

i¼1

Pn
j¼1.

Next, we calculate the expectation E½trðBE�Þ2� in (ii). Let bi be the i-th

column vector of B. Then, we have

E½trðBE�Þ2� ¼
Xn
i; j

b 0
iE½eie 0j �bj ¼

Xn
i¼1

b 0
i E½eie 0i �bi ¼ trðS�BB

0Þ:
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Finally, we calculate the expectation E½trðE 0
�AE�Þ2� in (ii). The expecta-

tion E½trðE 0
�AE�Þ2� can be expressed as follows:

E½trðE 0
�AE�Þ2� ¼

Xn
i; j;k;l

ðAÞijðAÞklE½ðe 0i ejÞðe 0kelÞ�

¼
Xn
i¼1

fðAÞiig
2
E½ðe 0i eiÞ

2� þ
Xn
i0j

ðAÞiiðAÞjjE½ðe 0i eiÞðe 0j ejÞ�

þ 2
Xn
i0j

fðAÞijg
2
E½ðe 0i ejÞ

2�

¼
Xn
i¼1

fðAÞiig
2

 !
E½kek4� þ

Xn
i0j

ðAÞiiðAÞjj

 !
trðS�Þ2

þ 2
Xn
i0j

fðAÞijg
2

 !
trðS2

�Þ;

where the summation
Pn

i0j is defined by
Pn

j¼1

Pn
i:i0 j. Hence, given that

Xn
i0j

ðAÞiiðAÞjj ¼ trðAÞ2 �
Xn
i¼1

fðAÞiig
2;

Xn
i0j

fðAÞijg
2 ¼ trðA2Þ �

Xn
i¼1

fðAÞiig
2;

we can calculate E½trðE 0
�AE�Þ2� as follows:

E½trðE 0
�AE�Þ2� ¼

Xn
i¼1

fðAÞiig
2

 !
k4 þ trðAÞ2 trðS�Þ2 þ 2 trðA2Þ trðS 2

�Þ: r
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