
Hiroshima Math. J.

50 (2020), 269–312

Isometric deformations of wave fronts at non-degenerate

singular points

Atsufumi Honda, Kosuke Naokawa, Masaaki Umehara

and Kotaro Yamada

(Received May 23, 2019)

(Revised April 8, 2020)

Abstract. Cuspidal edges and swallowtails are typical non-degenerate singular points

on wave fronts in the Euclidean 3-space. Their first fundamental forms belong to a

class of positive semi-definite metrics called ‘‘Kossowski metrics’’. A point where a

Kossowski metric is not positive definite is called a singular point or a semi-definite point

of the metric. Kossowski proved that real analytic Kossowski metric germs at their

non-parabolic singular points (the definition of ‘‘non-parabolic singular point’’ is stated

in the introduction here) can be realized as wave front germs (Kossowski’s realization

theorem).

On the other hand, in a previous work with K. Saji, the third and the fourth

authors introduced the notion of ‘‘coherent tangent bundle’’. Moreover, the authors,

with M. Hasegawa and K. Saji, proved that a Kossowski metric canonically induces

an associated coherent tangent bundle.

In this paper, we shall explain Kossowski’s realization theorem from the viewpoint

of coherent tangent bundles. Moreover, as refinements of it, we give a criterion that

a given Kossowski metric can be realized as the induced metric of a germ of cuspidal

edge (resp. swallowtail or cuspidal cross cap). Several applications of these criteria are

given. Also, some remaining problems on isometric deformations of singularities of

analytic maps are given at the end of this paper.
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Introduction

Throughout this paper, we shall treat Cy-di¤erentiable objects as well

as real analytic ones. By the terminology ‘‘Cr-di¤erentiable’’ we mean real

analyticity if r ¼ o and Cy-di¤erentiability if r ¼ y.

We denote by R3 the Euclidean 3-space. Let M 2 be a Cr-di¤erentiable

2-manifold and f : M 2 ! R3 a Cr-map. A point p A M 2 is called a singular

point if f is not an immersion at p. A singular point p A M 2 is called a

cuspidal edge (resp. swallowtail ) if there exist a local Cr-coordinate system

ðu; vÞ centered at p and a local Cr-di¤eomorphism F on R3 such that (cf.

Figure 1)

F � f ðu; vÞ ¼ ðu2; u3; vÞð¼: fCÞ; ð0:1Þ

ðresp: F � f ðu; vÞ ¼ ð3u4 þ u2v; 4u3 þ 2uv; vÞð¼: fSWÞÞ: ð0:2Þ

A Cr-map f : M 2 ! R3 is called a (co-orientable) frontal if there exists a

Cr-di¤erentiable unit vector field n along f such that nðpÞ A R3 is perpendicular

to df ðTpM
2Þ for each p A M 2, where TpM

2 is the tangent space of M 2 at p.

Such a n is called a unit normal vector field along f , and can be identified with

the Gauss map

n : M 2 ! S2

by parallel transport in R3, where

S2 :¼ fðx; y; zÞ A R3; x2 þ y2 þ z2 ¼ 1g: ð0:3Þ

(The unit normal vector field n can be chosen up to G-ambiguity at each local

coordinate neighborhood, in general. The co-orientability of f is the property

that its unit normal vector field can be extended as a Cr-di¤erentiable vector

field along f . In this paper, we assume that frontals are all co-orientable.)

Fig. 1. A cuspidal edge and a swallowtail.
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A (Cr-di¤erentiable) frontal f is called a wave front if the induced map defined

by

L :¼ ð f ; nÞ : M 2 C p 7! ð f ðpÞ; nðpÞÞ A R3 � S2

is an immersion. It is well-known that cuspidal edges and swallowtails are

typical singularities appearing on wave fronts. A singular point p A M 2 of a

Cr-map f : M 2 ! R3 is called a cross cap (resp. a cuspidal cross cap) if there

exist a local Cr-coordinate system ðu; vÞ and a local Cr-di¤eomorphism F on

R3 such that (cf. Figure 2)

F � f ðu; vÞ ¼ ðu; uv; v2Þð¼: fCRÞ; ð0:4Þ

ðresp: F � f ðu; vÞ ¼ ðu; v2; uv3Þð¼: fCCRÞÞ: ð0:5Þ

Cross caps are not frontals, since their unit normal vector fields cannot be

extended continuously across the singular points. On the other hand, cuspidal

cross caps are frontals, but not fronts.

Let f : M 2 ! R3 be a Cr-frontal with Cr-di¤erentiable unit normal vector

field n. If we take a Cr-di¤erentiable local coordinate system ðU ; u; vÞ on M 2,

then the function

l :¼ detð fu; fv; nÞ ð fu :¼ qf =qu; fv :¼ qf =qvÞ ð0:6Þ

plays the role of an identifier of the singular points of f , that is, lðpÞ ¼ 0 if

and only if p is a singular point. We call l the signed area density function

on U . A singular point p A U (i.e. the point satisfying lðpÞ ¼ 0) is said to be

non-degenerate if the gradient vector ‘lðpÞ :¼ ðluðpÞ; lvðpÞÞ does not vanish.

If p is a non-degenerate singular point, then, by the implicit function theorem,

there exists a Cr-regular curve sðtÞ ðjtj < eÞ on U parametrizing the singular set

of f such that sð0Þ ¼ p. We call the curve s the characteristic curve (or the

singular curve) passing through p. Cuspidal edges, swallowtails and cuspidal

cross caps are non-degenerate singular points.

Fig. 2. A cross cap and a cuspidal cross cap.

271Isometric deformations of wave fronts



Definition 1. Let p be a non-degenerate singular point of a Cr-frontal

f : M 2 ! R3. A Cr-di¤erentiable local coordinate system ðU ; u; vÞ centered at

p is called adjusted if fvðpÞ ¼ 0.

We denote by ‘‘�’’ the canonical inner product on R3, and set jaj :¼
ffiffiffiffiffiffiffiffiffi
a � a

p

ða A R3Þ. Taking an adjusted coordinate system at a non-degenerate singular

point p, we define

knðpÞ :¼
fuuðpÞ � nðpÞ
j fuðpÞj2

; ð0:7Þ

which is called the limiting normal curvature. The definition of knðpÞ does not

depend on the choice of an adjusted coordinate system (cf. [11, (2.2)]).

Let gðtÞ be a curve on M 2 defined on an interval I such that ĝg :¼
f � g : I ! R3 is a Cr-regular curve. Then the normal curvature function along

ĝg is defined by

knðtÞ :¼
ĝg 00ðtÞ � n̂nðtÞ
jĝg 0ðtÞj2

ðn̂n :¼ n � gÞ; ð0:8Þ

where the prime 0 means d=dt. We let p be a non-degenerate singular point,

and let sðtÞ ðjtj < eÞ be the characteristic curve passing through p such that

p ¼ sð0Þ. As shown in [11], the following assertion holds:

Fact 1. If p is a cuspidal edge or a cuspidal cross cap (resp. a

swallowtail) on a Cr-di¤erentiable frontal f , then ŝsðtÞ :¼ f � sðtÞ for t A I

(resp. for t A Inf0g) is a Cr-regular curve, and the value knðpÞ coincides with

the normal curvature knð0Þ (resp. the limit of the normal curvature lim
t!0

knðtÞ).

Definition 2. A non-degenerate singular point p of a Cr-di¤erentiable

frontal f is said to be n-flat if its limiting normal curvature knðpÞ vanishes, and
is said to be non-n-flat otherwise.

Kossowski defined a class of positive semi-definite metrics on 2-manifolds.

We call metrics belonging to this class ‘‘Kossowski metrics’’ (see Definition 7).

A point where a Kossowski metric is not positive definite is called a singular

point or a semi-definite point of the metric. A Riemannian metric (i.e. a

positive definite metric) is a Kossowski metric without singular points. (The

concept of Kossowski metric can be generalized to manifolds of arbitrary

dimension, see [17].)

In this paper, we consider singular points of metrics as well as singular

points of Cr-di¤erentiable maps. To distinguish between these two kinds of

singular points, we use the terminology ‘‘semi-definite points’’ for singular

points of a metric. On the other hand, a point where the metric is positive
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definite is called a regular point. A Kossowski metric on M 2 induces a

Cr-function called a signed area density function (cf. (1.8)), which is defined

on each coordinate neighborhood. The following fact explains how Kossowski

metrics are related to frontals (see [8] and also [2]):

Fact 2. The first fundamental form (i.e. the pull-back of the canonical

metric on R3) of a Cr-di¤erentiable frontal which admits only non-degenerate

singular points is a C r-di¤erentiable Kossowski metric. Moreover, the signed

area density function given in (0.6) coincides with that of the Kossowski metric

up to G-multiple ambiguity.

Since this fact plays an important role, we shall prove this fact in

Section 1. For each semi-definite point p of a Kossowski metric, an invariant

(cf. (1.13))

WðpÞ A T �
p M

25T �
p M

2

is defined. If WðpÞ ¼ 0, we call p a parabolic point of ds2 (cf. Definition 9).

The following fact explains the relationship between singular points on wave

fronts and semi-definite points on Kossowski metrics.

Fact 3 ([11]). Let p be a non-degenerate singular point of a Cr-

di¤erentiable frontal f : M 2 ! R3. Then the following three assertions are

equivalent:

(1) p is a non-parabolic semi-definite point of the induced Kossowski

metric,

(2) f is a wave front at p, and p is a non-n-flat singular point of f ,

(3) p is a regular point of the Gauss map of f .

Kossowski proved the following:

Fact 4 (Kossowski’s realization theorem [8]). Let ds2 be a real analytic

(i.e. Co-di¤erentiable) Kossowski metric on a real analytic 2-manifold M 2, and

let p A M 2 be a non-parabolic semi-definite point of ds2. Then there exist a

neighborhood U of p and a real analytic wave front f : U ! R3 such that the

first fundamental form of f coincides with ds2 on U.

In a joint work with Saji [15], the third and the fourth authors introduced

the notion of ‘‘coherent tangent bundle’’ and proved Gauss-Bonnet type for-

mulas for it. A realization of the Cr-di¤erentiable vector bundle as a limiting

tangent bundle of a Cr-di¤erentiable frontal is given in [16]. The purpose

of this paper is to explain Kossowski’s realization theorem (Fact 4) from the

viewpoint of the theory of coherent tangent bundles, and to prove several

refinements. In fact, we define A2 points and A3 points as semi-definite points

of a Kossowski metric ds2 (see Definition 8). The following fact is important:
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Fact 5 ([2, Proposition 2.19]). Let f : M 2 ! R3 be a C r-di¤erentiable

wave front, and let p A M 2 be a non-degenerate singular point. Then p is a

cuspidal edge (resp. a swallowtail) if and only if it is an A2 semi-definite point

(resp. an A3 semi-definite point) of ds2.

Cross caps are generic singular points appearing on Cy-di¤erentiable maps

of 2-manifolds into R3. However, they never appear on frontals ([2, Proposi-

tion 4.3]). The corresponding assertion for cross cap singular points is an open

problem (see Question 3 in Section 5).

If p is an A2 semi-definite point, then the secondary invariant

W 0ðpÞ A T �
p M

25T �
p M

2

is also defined (cf. (1.18)). The following assertion holds:

Theorem A. Let M 2 be a real analytic 2-manifold and ds2 a real analytic

Kossowski metric on it. Suppose that p A M 2 is a semi-definite point of the

metric ds2. Then there exists a real analytic frontal f : U ! R3 defined on a

neighborhood U of p such that ds2 is the first fundamental form of f , and the

limiting normal curvature of f at p does not vanish. Moreover, such a realiza-

tion f satisfies the following properties:

(1) f is a wave front at p if and only if p is a non-parabolic point (of ds2),

(2) f has a cuspidal edge at p if and only if p is a non-parabolic A2 semi-

definite point,

(3) f has a swallowtail at p if and only if p is a non-parabolic A3 semi-

definite point,

(4) f has a cuspidal cross cap at p if and only if p is a parabolic A2 semi-

definite point satisfying W 0ðpÞ0 0.

Fact 4 corresponds to the assertion (1). In particular, Theorem A is a

generalization and refinement of Fact 4. We prove this in Section 4.

Remark 1. Under the assumptions of Theorem A, it is shown in [6] that

f has a 5=2-cuspidal edge at p if the Gaussian curvature function K of ds2 can

be extended as a smooth function defined on a su‰ciently small neighborhood

of p and dKðhÞ does not vanish at p, where h A TpM
2 is a null direction at the

semi-definite point p.

Definition 3. Let fi ði ¼ 1; 2Þ be two germs of Cr-frontals. Then we say

these two map germs are congruent (resp. isometric) if there exist an isometry

germ F on R3 and a Cr-di¤eomorphism germ j (resp. a Cr-di¤eomorphism

germ j) such that F � f2 � j ¼ f1 (resp. j� ds22 ¼ ds21), where ds2i ði ¼ 1; 2Þ is the
first fundamental form of fi. On the other hand, two map germs are strongly

congruent if there exists an isometry germ F on R3 such that F � f2 ¼ f1.
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The strong congruence implies the congruence. In this paper, we mainly

discuss the number of strong congruence classes of wave fronts with the same

first fundamental forms. The following theorem gives properties of the set of

germs of real analytic frontals whose first fundamental forms coincide with a

real analytic Kossowski metric germ ds2 at p A M 2.

Theorem B. Let M 2 be a real analytic 2-manifold and ds2 a real analytic

Kossowski metric on M 2. Let oðtÞ and mðtÞ be two germs of real analytic

functions of one variable at t ¼ 0. For each p A M 2, take a Co-regular curve

gðtÞ in M 2 such that gð0Þ ¼ p and g 0ð0Þ is not a null vector (i.e. ds2ðg 0ð0Þ; g 0ð0ÞÞ
> 0, see Definition 8). Then there exists a real analytic frontal germ f ¼ fo;m
satisfying the following properties:

(1) ds2 is the first fundamental form of f ,

(2) the normal curvature function germ along g defined by (0.8) coincides

with eoðtÞ for a suitable choice of unit normal vector field n,

(3) mðtÞ gives the torsion function germ along ĝgðtÞ ¼ f � gðtÞ,
(4) if p is a regular point (resp. a non-parabolic semi-definite point) of ds2,

then f is an immersion (resp. a wave front with non-vanishing limiting

normal curvature).

The possibilities for the strong congruence classes of such an f are at most

two. In particular, if m vanishes identically (i.e. ĝg is a planar curve), then the

strong congruence class of f is uniquely determined.

Remark 2. When gðtÞ is a characteristic curve of ds2 consisting of semi-

definite points of type A2, the assertion of Theorem B is proved in [13]. So

Theorem B can be considered as its generalization.

Remark 3. In the last statement of Theorem B, we wrote that ‘‘the

possibilities for the strong congruence classes of f are at most two’’. However,

if we consider the possibilities for the congruence classes instead, the number

turns to be ‘‘four’’ since we have the freedom to reverse the orientation of the

singular curve, see [5] for details.

As a consequence, the following assertion holds:

Corollary C. Let I be an interval, and let fosðtÞgs A I and fmsðtÞgs A I be

two families of real analytic function germs of the variable t depending real

analytically on the parameter s. Then there exists a family fs :¼ fos;ms ðs A IÞ of
real analytic frontal germs satisfying the properties (1)–(4) in Theorem B for

each s A I and depending on the parameter s real analytically.

In Section 4, we prove Theorems A and B and Corollary C, and also give

a variant (cf. Theorem 14) of Theorem B. When p is an A2 semi-definite
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point, we can choose g to be a characteristic curve, since g 0ð0Þ is not a null

vector. Then we obtain the following assertion:

Corollary D. Let f : ðU ; pÞ ! R3 be a real analytic germ of cuspidal

edge (resp. cuspidal cross cap), and let sðtÞ be a real analytic germ of regular

curve in U parametrizing the singular set by the arc-length parameter such that

sð0Þ ¼ p. Suppose that the limiting normal curvature at p does not vanish.

We let GðtÞ be a real analytic germ of regular space curve parametrized by the

arc-length such that the curvature function kðtÞ of GðtÞ is the same as that

of f � sðtÞ (GðtÞ may not have the same torsion function as ŝsðtÞ :¼ f � sðtÞ).
Then, for each choice of G , there exist a neighborhood Vð� UÞ of p and a

front (resp. a frontal) g : ðV ; pÞ ! R3 having a cuspidal edge (resp. cuspidal

cross cap) at p such that g is isometric to f and GðtÞ ¼ g � sðtÞ. Moreover, the

possibilities for the strong congruence classes of such a g are at most two.

We prove Corollary D also in Section 4. Here, we remark that, in [6],

analogues of Theorems A and B and Corollary D are obtained for 5=2-cuspidal

edges. As a consequence of Theorem A and Theorem B, the following asser-

tion is obtained:

Corollary E. Let f0, f1 be two real analytic frontal germs with singu-

larities whose limiting normal curvatures do not vanish. Suppose that they are

mutually isometric. Then there exists a continuous deformation of real analytic

frontal germs gs ð0a sa 1Þ satisfying the following properties:

(1) g0 ¼ f0 and g1 ¼ f1,

(2) gs is isometric to g0,

(3) the limiting normal curvature of each gs does not vanish.

Moreover, if both f0 and f1 are germs of cuspidal edges, swallowtails or cuspidal

cross caps, then so are gs for 0a sa 1.

In particular, if T is an orientation reversing isometry of R3, then T � f0
can be isometrically deformed into f0 (see Remark 14 for details).

The paper is organized as follows: In Section 1, we recall the definition

of Kossowski metrics, and define A2 semi-definite points and A3 semi-definite

points. The relationship between frontals and the induced Kossowski met-

rics is also discussed there. In Section 2, we show the existence of certain

orthogonal local coordinate systems (called ‘‘K-orthogonal coordinates’’) for

Kossowski metrics. Using this, we show representation formulas for A2 or A3

semi-definite points of Kossowski metrics. As an application, we also discuss

properties of distance functions induced by Kossowski metrics. In Section 3,

we explain the relationships between Kossowski metrics and their induced

coherent tangent bundles. In Section 4, we prove the main results, using
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K-orthogonal coordinates. In Section 5, we mention some open questions

relating to our results.

1. Kossowski metrics

Throughout this paper, we fix a Cr-di¤erentiable 2-manifold M 2, where

r ¼ y or o. Let ds2 be a positive semi-definite Cr-metric on M 2.

Definition 4. A point p A M 2 is called a regular point of ds2 if ds2 is

positive definite at p, and is called a singular point or semi-definite point if it

is not regular.

To distinguish from singular points of frontal maps, we use the termi-

nology semi-definite points for singular points of semi-definite metrics. The set

of semi-definite points in M 2 is called the semi-definite set.

For the sake of simplicity, we use the notations

qu :¼ q=qu; qv :¼ q=qv ð1:1Þ

for each local coordinate system ðu; vÞ of M 2.

Definition 5. Let p be a semi-definite point of the metric ds2 on M 2.

Then a non-zero tangent vector v A TpM
2 is called a null vector if

ds2ðv; vÞ ¼ 0: ð1:2Þ

Moreover, a local coordinate neighborhood ðU ; u; vÞ is called adjusted at p A U

if qv gives a null vector of ds2 at p.

It can be easily checked that (1.2) implies that ds2ðv; xÞ ¼ 0 holds for all

x A TpM
2. If ðU ; u; vÞ is a local coordinate neighborhood adjusted at a semi-

definite point p ¼ ð0; 0Þ, then Fð0; 0Þ ¼ Gð0; 0Þ ¼ 0 holds, where

ds2 ¼ E du2 þ 2F dudvþ G dv2: ð1:3Þ

We denote by Xr the set of Cr-di¤erentiable vector fields on M 2, and by

CrðM 2Þ the set of real valued Cr-di¤erentiable functions on M 2. We set

hX ;Yi :¼ ds2ðX ;YÞ for X ;Y A Xr. Kossowski [8] defined a map Y : Xr �
Xr �Xr ! CrðM 2Þ as

YðX ;Y ;ZÞ :¼ 1

2
ðXhY ;Ziþ YhX ;Zi� ZhX ;Yi

þ h½X ;Y �;Zi� h½X ;Z�;Yi� h½Y ;Z�;XiÞ; ð1:4Þ

where ½X ;Y � :¼ XY � YX . We call Y the Kossowski pseudo-connection with

respect to the Kossowski metric.
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If the metric ds2 is positive definite, then YðX ;Y ;ZÞ ¼ h‘XY ;Zi holds,

where ‘ is the Levi-Civita connection of ds2. One can easily check the

following two identities (cf. [8])

XhY ;Zi ¼ YðX ;Y ;ZÞ þYðX ;Z;Y Þ; ð1:5Þ

YðX ;Y ;ZÞ �YðY ;X ;ZÞ ¼ h½X ;Y �;Zi: ð1:6Þ

The equation (1.5) (resp. (1.6)) corresponds to the condition that ‘ is a metric

connection (resp. is torsion free). The following assertion can be also easily

verified:

Proposition 1 (Kossowski [8]). For each Y A Xr and for each semi-

definite point p A M 2, the map

TpM
2 � TpM

2 C ðv1; v2Þ 7! YðV1;Y ;V2ÞðpÞ A R

is a well-defined bilinear map, where Vj ð j ¼ 1; 2Þ are Cr-di¤erentiable vector

fields of M 2 satisfying vj ¼ VjðpÞ.

For each p A M 2, the subspace

Np :¼ fv A TpM
2; ds2ðv;wÞ ¼ 0 for all w A TpM

2g

is called the null space or the radical of ds2 at p. A non-zero vector belonging

to Np is a null vector at p (cf. Definition 5).

Lemma 1 (Kossowski [8]). Let p be a semi-definite point of ds2. Then the

Kossowski pseudo-connection Y induces a tri-linear map

ŶYp : TpM
2 � TpM

2 �Np C ðv1; v2; v3Þ 7! YðV1;V2;V3ÞðpÞ A R;

where Vj ð j ¼ 1; 2; 3Þ are Cr-vector fields of M 2 such that vj ¼ VjðpÞ.

Proof. Applying (1.4),

2YðV1; fV2;V3Þ ¼ V1h fV2;V3iþ fV2hV1;V3i� V3hV1; fV2i

þ h½V1; fV2�;V3i� h½V1;V3�; fV2i� h½ fV2;V3�;V1i

¼ 2fYðV1;V2;V3Þ þ ðV1 f ÞhV2;V3i� ðV3 f ÞhV1;V2i

þ ðV1 f ÞhV2;V3iþ ðV3 f ÞhV2;V1i

¼ 2fYðV1;V2;V3Þ þ 2ðV1 f ÞhV2;V3i

¼ 2fYðV1;V2;V3Þ

holds at p, where the fact that V3ðpÞ A Np is used to show the last equality.
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Definition 6. A semi-definite point p of the metric ds2 is called admis-

sible1 if ŶYp in Lemma 1 vanishes.

A semi-definite point of the metric ds2 is called of rank one if Np is a

1-dimensional subspace of TpM
2.

By a suitable a‰ne transformation in the uv-plane, one can take a local

coordinate system adjusted at p (cf. Definition 4). The following assertion

gives a characterization of admissible semi-definite points:

Proposition 2 ([2]). Let ðu; vÞ be a Cr-di¤erentiable local coordinate

system adjusted at a rank one semi-definite point p. Then p is admissible if

and only if

F ¼ G ¼ 0; Ev ¼ 2Fu; Gu ¼ Gv ¼ 0 ð1:7Þ

hold at p ¼ ð0; 0Þ, where ds2 ¼ E du2 þ 2F dudvþ G dv2.

Proof. Since ½qu; qv� vanishes, and qv A Np at p, the formula (1.4) yields

that

2ŶYðqu; qu; qvÞ ¼ 2quhqu; qvi� qvhqu; qui ¼ 2Fu � Ev;

2ŶYðqu; qv; qvÞ ¼ quhqv; qviþ qvhqu; qvi� qvhqu; qvi ¼ quhqv; qvi ¼ Gu;

2ŶYðqv; qv; qvÞ ¼ qvhqv; qvi ¼ Gv

hold at the origin ð0; 0Þ. Thus, ŶYp vanishes if and only if (1.7) holds at p.

Definition 7. A Cr-di¤erentiable positive semi-definite metric ds2 is called

a Kossowski metric if each semi-definite point p A M 2 of ds2 is admissible and

there exists a Cr-function lðu; vÞ defined on a local coordinate neighborhood

ðU ; u; vÞ of p such that

EG � F 2 ¼ l2 ðon UÞ; ð1:8Þ

ðluðpÞ; lvðpÞÞ0 ð0; 0Þ; ð1:9Þ

where E, F , G are Cr-functions on U satisfying (1.3).

We call such a l the signed area density function of ds2 with respect to

the local coordinate neighborhood ðU ; u; vÞ. In fact, if ds2 is positive definite,

then dA :¼ jlðu; vÞjdu5dv gives the area element of the metric ds2. The func-

tion l plays a role of an identifier of semi-definite points. In fact, lðpÞ ¼ 0

if and only if p is a semi-definite point. If ds2 is the first fundamental form of

1Admissibility was originally introduced by Kossowski [8]. He called it dðh ; iÞ-flatness.
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a frontal f : M 2 ! R3, then the function l given in (0.6) coincides with the

signed area density function of ds2.

As pointed out in the introduction (cf. Fact 2), the first fundamental form

of a frontal f : M 2 ! R3 whose singular points are all non-degenerate is a

Kossowski metric.

Lemma 2. We let p be a semi-definite point of the Kossowski metric ds2.

Then the null space of ds2 at p is 1-dimensional.

Proof. Since l, F , G, Gu and Gv vanish at p, twice di¤erentiating the

equality EG � F 2 ¼ l2 with respect to u and v, we have

2luðpÞ2 ¼ EðpÞGuuðpÞ � 2FuðpÞ2; 2lvðpÞ2 ¼ EðpÞGvvðpÞ � 2FvðpÞ2:

If EðpÞ ¼ 0 then we have luðpÞ2 þ FuðpÞ2 ¼ 0 and lvðpÞ2 þ FvðpÞ2 ¼ 0, which

imply ðluðpÞ; lvðpÞÞ ¼ ð0; 0Þ contradicting (1.9). So we have EðpÞ0 0, that

is, qu is not a null vector. Thus, Np is exactly 1-dimensional, proving the

assertion.

By (1.9), we can apply the implicit function theorem for lðu; vÞ ¼ 0, and

find a Cr-regular curve sðtÞ ðjtj < eÞ in the uv-plane (called the characteristic

curve or the singular curve) parametrizing the semi-definite set of ds2 such that

sð0Þ ¼ p and s : ð�e; eÞ ! U is an embedding, where e is a su‰ciently small

positive number. The following assertion holds:

Proposition 3. Let ds2 be a Cr-di¤erentiable Kossowski metric on M 2.

We let l : U ! R be a Cr-function satisfying (1.8) on a connected C r-coordinate

neighborhood ðU ; u; vÞ of M 2. Then, the 2-form

dÂA :¼ l du5dv ð1:10Þ

does not depend on the choice of such local coordinates, up to G-ambiguity, and

gives a C r-di¤erentiable 2-form defined on the universal covering of M 2.

Proof. Let ðU ; u; vÞ be a connected local coordinate neighborhood at p.

Then ds2 has the expression as in (1.3). Let l1, l2 be two signed area density

functions on U satisfying ðl1Þ2 ¼ ðl2Þ2 ¼ EG � F 2. We fix q A U arbitrarily.

If q is a regular point, then l1 ¼Gl2 holds on a su‰ciently small neighborhood

of W of q, obviously. So we suppose that q A U is a semi-definite point.

Since we have observed that the semi-definite set around q can be para-

metrized as a regular curve, we can take a new local coordinate system ðV ; a; bÞ
ðV � UÞ centered at q so that the a-axis is the characteristic curve. Then

we have l1ða; 0Þ ¼ l2ða; 0Þ ¼ 0. By the division lemma, there exist two Cr-

function germs l̂l1, l̂l2 at ð0; 0Þ such that

liða; bÞ ¼ bl̂liða; bÞ ði ¼ 1; 2Þ
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on V . In particular, ðl1Það0; 0Þ ¼ ðl2Það0; 0Þ ¼ 0 hold. By (1.9), we have

that

00 ðliÞbð0; 0Þ ¼ l̂lið0; 0Þ ði ¼ 1; 2Þ;

and j :¼ l1=l2 ¼ l̂l1=l̂l2 gives a Cr-function defined on a connected neighbor-

hood Wð� VÞ of the origin. Then we have

ðl2Þ2 ¼ ðl1Þ2 ¼ ðl2Þ2j2:

Since l1 0 0 except on the a-axis, 1 ¼ j2 holds on W by the continuity of j,

and that implies l1 ¼Gl2 on W . Since U is connected and q is arbitrarily

fixed, l1 ¼ l2 or l1 ¼ �l2 holds on U . So we now set l :¼ l1.

We next prove the second assertion. Let ðx; yÞ be another local coor-

dinate system on U . Then

l du5dv ¼ lðux dxþ uy dyÞ5ðvx dxþ vy dyÞ ¼ lðuxvy � uyvxÞdx5dy ð1:11Þ

holds on U . On the other hand, if we write ds2 ¼ ~EE dx2 þ 2 ~FF dxdyþ ~GG dy2,

then we have that

~ll2 ¼ ~EE ~GG � ~FF 2 ¼ ðEG � F 2Þðuxvy � uyvxÞ2 ¼ l2ðuxvy � uyvxÞ2;

and so Glðuxvy � uyvxÞ gives the area density function with respect to the

coordinate neighborhood ðU ; x; yÞ. Thus, (1.11) yields the last assertion.

Remark 4. The 2-form dÂA on U given in (1.10) is called a (local) signed

area element. If dÂA is well-defined on M 2, that is, if it can be taken to be a

2-form on M 2 so that its restriction to each local coordinate neighborhood

ðU ; u; vÞ gives a signed area element of ðU ; u; vÞ, then we say that ds2 is co-

orientable on M 2.

Let p be a semi-definite point of a Kossowski metric ds2, and let sðtÞ
be the characteristic curve satisfying sð0Þ ¼ p. Then there exists a Cr-

di¤erentiable non-zero vector field hðtÞ along sðtÞ which points in the null

direction of the metric ds2. We call hðtÞ a null vector field along the char-

acteristic curve sðtÞ.

Definition 8. A semi-definite point p A M 2 of a Kossowski metric ds2

is called an A2 semi-definite point or semi-definite point of type A2 if the deriva-

tive s 0ð0Þ of the characteristic curve at p is linearly independent of the null

direction hð0Þ. A semi-definite point p which is not of type A2 is called an

A3 semi-definite point, or semi-definite point of type A3 if

d

dt

����
t¼0

detðs 0ðtÞ; hðtÞÞ0 0: ð1:12Þ
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Remark 5. Cuspidal edges (resp. swallowtails) are called A2-singularities

(resp. A3-singularities) of wave fronts. These points are corresponding to A2

semi-definite points (resp. A3 semi-definite points) with respect to the induced

Kossowski metrics. The naming of Ai ði ¼ 2; 3Þ points comes from this fact.

Remark 6. We can extend the null vector field hðtÞ to be a Cr-

di¤erentiable vector field ~hh defined on a neighborhood of p. Then it can be

easily checked that p is an A2 semi-definite point (resp. an A3 semi-definite

point) if and only if

l~hhðpÞ0 0 ðresp: l~hhðpÞ ¼ 0 and l~hh~hhðpÞ0 0Þ;

where l~hh :¼ dlð~hhÞ, and l~hh~hh :¼ dl~hhð~hhÞ.

We denote by S the semi-definite set of the Kossowski metric ds2 in M 2

(cf. Definition 4). Let K be the Gaussian curvature of ds2 defined on M 2nS.
For each su‰ciently small local coordinate system ðU ; u; vÞ, the signed area

element dÂA is defined (cf. Proposition 3). Then a 2-form

W :¼ K dÂA ð1:13Þ

is defined on UnS, which can be extended as a Cr-di¤erentiable 2-form on U

(cf. [8] and [2, Theorem 2.15]). We call W the (local) Euler form associated to

ds2 (on U). If W can be extended as a Cr-di¤erentiable 2-form to M 2, then

the integral

1

2p

ð
M 2

W

gives the Euler characteristic of the associated coherent tangent bundle induced

by ds2 when M 2 is compact and orientable. See [2, Proposition 3.3].

Definition 9. A semi-definite point p A M 2 of a Kossowski metric ds2 is

called parabolic (resp. non-parabolic) if the Euler form W vanishes (resp. does

not vanish) at p.

To prove Fact 3, we prepare the following lemma:

Lemma 3. Let f : M 2 ! R3 be a Cr-di¤erentiable frontal and p A M 2

a non-degenerate singular point of f . Suppose that p is a non-parabolic point

with respect to the first fundamental form ds2 of f , then f is a wave front

at p.

Proof. We let p be an A2 semi-definite point of ds2. As shown in

[11, Page 261], we can take a local coordinate system ðU ; u; vÞ centered at p

satisfying the following three properties:
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(1) the u-axis coincides with the singular set, and j fuj ¼ 1 on the u-axis,

(2) fvðu; 0Þ ¼ 0 for each u,

(3) f fu; fvv; ng is an orthonormal frame along the u-axis.

Then, as shown in [11, Pages 262–263], there is a Cr-function K̂K on U such

that

K̂Kðu; vÞ ¼ vKðu; vÞ ð1:14Þ

on Unfv ¼ 0g, where K is the Gaussian curvature of ds2. Let lðu; vÞ be the

signed area density function on U . Since lðu; 0Þ ¼ 0, there exists a Cr-function

l̂l such that lðu; vÞ ¼ vl̂lðu; vÞ. Thus, the Euler form can be written as

W ¼ Kl du5dv ¼ K̂K l̂l du5dv:

The function K̂K coincides with the same function as in [11, Page 263]. Since

lðu; 0Þ ¼ 0, it holds that luð0; 0Þ ¼ 0. By (1.9), we have l̂lð0; 0Þ ¼ lvð0; 0Þ0 0.

In [11], the cuspidal curvature kc and the product curvature kP are defined,

and we have the following (cf. [11, (3.26)])

kPðpÞ ¼ knðpÞkcðpÞ: ð1:15Þ

Moreover, by [11, (3.25)], K̂KðpÞ0 0 if and only if kPðpÞ0 0. As shown in

[11, Proposition 3.11], kcðpÞ0 0 if and only if f is a wave front. Since p is

non-parabolic point, kPðpÞ0 0. So f is a wave front at p.

We next consider the case that p is not an A2 semi-definite point. As

shown in [11, Page 267], we can take a local coordinate system ðU ; u; vÞ
centered at p satisfying the following three properties:

� fuð0; 0Þ ¼ 0,
� the u-axis is the singular set, and
� j fvð0; 0Þj ¼ 1.

Using this coordinate system, the Euler form satisfies W ¼ K̂K l̂l du5dv; where

K̂Kðu; vÞ ¼ vKðu; vÞ, l̂l is a Cr-function satisfying lðu; vÞ ¼ vl̂lðu; vÞ and l̂lð0; 0Þ0 0

(cf. [11, Page 270]). Moreover,

K̂Kðu; 0Þ ¼ mPðpÞ þOðuÞ ð1:16Þ

holds (cf. [11, (4.12)]), where the normalized cuspidal curvature mcðpÞ is defined

at [11, (4.6)] and satisfies (cf. [11, (4.10)])

mPðpÞ ¼ knðpÞmcðpÞ: ð1:17Þ

As shown in [11, Proposition 4.2], mcðpÞ0 0 if and only if f is a wave front

at p. Since knðpÞ0 0, (1.16) and (1.17) yield that mcðpÞ0 0 if and only if

WðpÞ0 0. So the fact that p is a non-parabolic point implies that f is a wave

front at p.
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Proof of Fact 3. We suppose (1). By Lemma 3, (1) implies that f is

a wave front. We first consider the case that p is an A2 semi-definite point.

Moreover, since p is non-parabolic, as seen in the proof of Lemma 3,

kPðpÞ0 0 holds. So kPðpÞ ¼ knðpÞkcðpÞ implies knðpÞ0 0. Therefore, we

obtain (2). We next consider the case that p is not an A2 semi-definite

point. Since p is non-parabolic, we have K̂KðpÞ0 0. Then (1.16) yields that

mPðpÞ0 0. As seen in the proof of Lemma 3, the fact that f is a wave front

at p implies mcðpÞ0 0, and so knðpÞ0 0 by (1.17). Thus we obtain (2).

We next suppose (2). Then (3) follows from the equivalency of (2) and

(3) in [11, Corollary C]. Finally, we suppose (3). Since n is an immersion

at p, f is a wave front at p. Then the limiting normal curvature of f at p

does not vanish. Then [11, Theorem A] implies that Wð¼ K dÂAÞ does not

vanish at p. So, p is non-parabolic, that is, (1) holds. r

Let p be an A2 semi-definite point of ds2 and sðtÞ the characteristic curve

such that sð0Þ ¼ p. Since p is of type A2, the velocity vector s 0ð0Þ is not a

null vector, and so we may assume that t is an arc-length parameter of s,

that is, ds2ðs 0ðtÞ; s 0ðtÞÞ is identically equal to 1. Then the 2-form

W 0ðpÞ :¼ d

dt
WsðtÞ

����
t¼0

A T �
p M

25T �
p M

2 ð1:18Þ

is defined, which is called the derived Euler form at p associated with ds2. The

following assertion is an analogue of Fact 5, but we do not assume that f is a

wave front:

Proposition 4. Let f : M 2 ! R3 be a C r-frontal and p its non-degenerate

singular point where the limiting normal curvature does not vanish. Then

( o ) f is a wave front at p if and only if p is non-parabolic (i.e. WðpÞ0 0)

with respect to the first fundamental form ds2 of f ,

( i ) p is a cuspidal edge if and only if it is an A2 semi-definite point and

WðpÞ0 0,

( ii ) p is a swallowtail if and only if it is an A3 semi-definite point and

WðpÞ0 0,

(iii) p is a cuspidal cross cap if and only if it is an A2 semi-definite point,

WðpÞ ¼ 0 and W 0ðpÞ0 0.

Proof. We use the same notations as in the proof of Lemma 3. The

first assertion (o) follows from the equivalency of (1) and (2) of Fact 3. The

assertions (i) and (ii) immediately follow from Fact 3 and Fact 5. We next

prove (iii). Take an A2 semi-definite point p. The conditions WðpÞ ¼ 0 and

W 0ðpÞ0 0 are equivalent to the conditions

K̂Kð0; 0Þ ¼ 0 and K̂Kuð0; 0Þ0 0: ð1:19Þ

284 Atsufumi Honda et al.



Moreover, by [11, (3.25)], (1.19) is reduced to

kPðpÞ ¼ 0 and k 0
PðpÞ0 0; ð1:20Þ

where kP (resp. k 0
P ) is the product curvature (resp. the derivative product

curvature) for A2 semi-definite points defined in [11]. In [11], the derivative

cuspidal curvature k 0
c is also defined, and we have the following identity

(cf. [11, (3.26)])

k 0
PðpÞ ¼ k 0

nðpÞkcðpÞ þ knðpÞk 0
cðpÞ: ð1:21Þ

We let sðtÞ be a characteristic curve such that sð0Þ ¼ p and denote by knðtÞ
and kcðtÞ the limiting normal curvature and the cuspidal curvature at sðtÞ,
respectively. Since f has non-vanishing limiting normal curvature, knð0Þ0 0

holds. By (1.15) and (1.21), the condition (1.20) is equivalent to the conditions

kcð0Þ ¼ 0 and k 0
cð0Þ0 0: ð1:22Þ

On the other hand, the function cccrðtÞ defined in [11, Fact 2.4 (3)] satisfies the

identity cccrðtÞ ¼ kcðtÞ, as shown in the proof of [11, Proposition 3.11]. Since

cccrð0Þ ¼ kcð0Þ and c 0
ccrð0Þ ¼ k 0

cð0Þ, (1.22) is equivalent to the criterion for

cuspidal cross caps given in [11, Fact 2.4 (3)]. So we obtain (iii).

Remark 7. The assertion (iii) of Proposition 4 may not hold if we neglect

the assumption that the limiting normal curvature of f does not vanish. More

precisely, there exists a map germ at a cuspidal edge singular point p satisfying

WðpÞ ¼ 0 and W 0ðpÞ0 0: As shown in [10], any germs of cuspidal edges are

congruent to

f ðu; vÞ ¼ ðu; a0ðuÞ þ v2; b0ðuÞu2 þ b2ðuÞuv2 þ b3ðu; vÞv3Þ; ð1:23Þ

where b3ð0; 0Þ0 0. In this normal form, we set

a0ðuÞ ¼ b2ðuÞ ¼ 0; b3ðu; vÞ ¼
1

6
; b0ðuÞ ¼

u

2
:

Then we obtain a wave front f ðu; vÞ ¼ ðu; v2; u3=2þ v3=6Þ having cuspidal edge

singularity at ð0; 0Þ such that

kcð0Þ ¼ 1; k 0
cð0Þ ¼ 0; knð0Þ ¼ 0; k 0

nð0Þ ¼ 3:

The product curvature kPðuÞ and the derivative product curvature k 0
PðuÞ satisfy

kPð0Þ ¼ 0 and k 0
Pð0Þ ¼ 3, which yield Wð0; 0Þ ¼ 0, W 0ð0; 0Þ0 0, as seen in the

proof of Proposition 4.

Corollary 1. Let ds2 be a C r-di¤erentiable Kossowski metric ds2, and let

p A M 2 be an A2 semi-definite point of ds2 satisfying WðpÞ ¼ 0 and W 0ðpÞ0 0.
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Let ðU ; u; vÞ be a local C r-coordinate system centered at p satisfying the proper-

ties (1)–(3) in the proof of Lemma 3. Then there exist positive constants e, d

such that the sign of the Gaussian curvature function Kðu; vÞ satisfies

sign Kðu; vÞ ¼ signðuvK̂Kuð0; 0ÞÞ ððu; vÞ A Ce; dÞ;

where K̂K is the function defined in (1.14) and

Ce; d :¼ fðu; vÞ A U ; 0 < jvj < djuj; juj < eg:

Proof. We can write

K̂Kðu; vÞ ¼ vKðu; vÞ; K̂Kðu; vÞ ¼ K̂Kðu; 0Þ þ vjðu; vÞ;

where jðu; vÞ is a Cr-function at p. Moreover, by (1.19), we can write

K̂Kðu; 0Þ ¼ ucðuÞ ðcð0Þ ¼ K̂Kuð0; 0Þ0 0Þ;

where cðuÞ is a Cr-function defined for su‰ciently small juj. Without loss of

generality, we may assume that jðu; vÞ and cðuÞ are defined on a domain

W :¼ fðu; vÞ; juj < e and jvj < eg;

where e is a su‰ciently small positive number. Choosing W so that W � U ,

we have the expression Kðu; vÞ ¼ ucðuÞ=vþ jðu; vÞ on Wnfv0 0g. Since

cð0Þ0 0 and e can be taken to be arbitrarily small, we may assume

jcðuÞj > m ð> 0Þ and jjðu; vÞj < D hold on W for some constants m, D.

We set d :¼ m=D. If ju=vj > 1=d, we have

ucðuÞ
v

����
���� > m

d
¼ D > jjðu; vÞj

on Ce; d. So the sign of Kðu; vÞ on Ce; d is equal to that of ucðuÞ=v.

2. Properties of Kossowski metrics

In this section, we show the existence of a certain orthogonal coordinate

system, which will be applied to prove Theorems A and B. Using this, we also

give a method to construct Kossowski metrics having A2 semi-definite points

and A3 semi-definite points.

2.1. K-orthogonal coordinates.

Definition 10. Let ds2 be a Cr-di¤erentiable Kossowski metric on M 2,

and take a point p on M 2. (We also consider the case that p is a regular

point.) A local coordinate neighborhood ðU ; u; vÞ centered at p is called a

K-orthogonal coordinate system if
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(1) E ¼ 1 holds along the u-axis,

(2) F ¼ 0 on U , and

(3) Ev ¼ 0 holds along the characteristic curve s (when p is a semi-

definite point),

where we set ds2 ¼ E du2 þ 2F dudvþ G dv2 and (3) corresponds to the second

condition of (1.7). In this situation, if we set r :¼
ffiffiffiffi
E

p
, then the metric ds2

has the following expression

ds2 ¼ ðr duÞ2 þ l dv

r

� �2

; r > 0; rðu; 0Þ ¼ 1; ð2:1Þ

where l is the signed area density function on U .

Since F ¼ G ¼ 0 at a semi-definite point p, the following assertion trivially

holds:

Proposition 5. Let sðtÞ be a characteristic curve passing through a semi-

definite point p of ds2 and ðu; vÞ a K-orthogonal coordinate system centered at p.

Then qv belongs to NsðtÞ for each t. In particular, qv gives a null vector field

along s.

We shall apply the following lemma given in Kossowski [8] to prove our

main theorem:

Lemma 4. Let ds2 be a Cr-di¤erentiable Kossowski metric on M 2, and take

a point p on M 2. Let g be a C r-regular curve passing through p ð¼ gð0ÞÞ such

that g 0ð0Þ is not a null vector of ds2 on M 2 (when p is a semi-definite point).

Then there exists a C r-local coordinate neighborhood ðU ; u; vÞ satisfying the

following properties:

(1) the u-axis corresponds to the curve g,

(2) the u-curves are orthogonal to the v-curves with respect to ds2,

(3) qv points in the null direction at each semi-definite point on U,

(4) if ds2 and g are real analytic, then so is ðu; vÞ.

Proof. When p is a regular point, we take a Cr-di¤erentiable vector

field X2 on U such that X2 has no zeros on U . On the other hand, if p is a

semi-definite point, we define X2 as follows: Let s be the characteristic curve

passing through p. We take a null vector field h along s. We then extend h

as a Cr-di¤erentiable vector field ~hh defined on a local coordinate neighborhood

ðU ; u; vÞ by replacing U with a tubular neighborhood of s in the uv-plane. We

set X2 :¼ ~hh. Take a Cr-di¤erentiable vector field X1 on U so that the curve

g is an integral curve of X1. Since g 0ð0Þ is not a null vector, we may assume

that the vector fields in the pair ðX1;X2Þ are linearly independent at each point

on U . By [19, Lemma B.5.4], there exists a Cr-di¤erentiable local coordinate

287Isometric deformations of wave fronts



system ðx; yÞ centered at p such that qx, qy are proportional to X1, X2, respec-

tively, and the x-axis parametrizes g. We next set

Y1 :¼ qx; Y2 :¼ � ~FFqx þ ~EEqy;

where ds2 ¼ ~EE dx2 þ 2 ~FF dxdyþ ~GG dy2. Then Y1, Y2 are Cr-di¤erentiable

vector fields without zeros satisfying ds2ðY1;Y2Þ ¼ 0. By [19, Lemma B.5.4]

again, there exists a new Cr-di¤erentiable local coordinate system ð~uu; ~vvÞ cen-

tered at p such that q~uu, q~vv are proportional to Y1, Y2, respectively, and the

~uu-axis parametrizes g. (In fact, by the proof of [19, Lemma B.5.4], one can

check that ð~uu; ~vvÞ is real analytic whenever ðx; yÞ is.) Since ~uu-axis corresponds

to the x-axis and Y2 is proportional to qy on the characteristic curve s, we

can conclude that q~vv gives a null vector field along s. Hence, the coordinates

ð~uu; ~vvÞ are the desired ones.

Lemma 5. Let ds2 be a Cr-di¤erentiable Kossowski metric on M 2, and let

ðU ; u; vÞ be a C r-local coordinate system such that

ds2 ¼ E du2 þ ðl2=EÞdv2 ð2:2Þ

and E > 0 on U, where l is the signed area density function. Then the new

Cr-local coordinate system ð~uu; ~vvÞ defined by

~uu :¼
ð u

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðt; 0Þ

p
dt; ~vv :¼ v ð2:3Þ

gives a K-orthogonal coordinate system on U.

Proof. We can write

ds2 ¼ rðu; vÞ2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðu; 0Þ

p
duÞ2 þ ~llðu; vÞ2rðu; vÞ�2

dv2;

where

~llðu; vÞ :¼ lðu; vÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðu; 0Þ

p ; rðu; vÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðu; vÞ
Eðu; 0Þ

s
:

By giving the new coordinate system ð~uu; ~vvÞ as in (2.3), and replacing the

notation ð~uu; ~vvÞ and ~ll by the original ðu; vÞ and l, we obtain the expression

(2.1).

We now prove the following assertion:

Proposition 6. Let ds2 be a Cr-di¤erentiable Kossowski metric on M 2,

and let g be a regular curve passing through p ð¼ gð0ÞÞ A M 2 so that g 0ð0Þ is

not a null vector when p is a semi-definite point. Then there exists a Cr-

di¤erentiable K-orthogonal coordinate system ðU ; u; vÞ centered at p such that the
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u-axis corresponds to the curve g. Moreover, if p is an A2 semi-definite point,

then the u-axis can be taken as a characteristic curve (see Figure 3).

Proof. By Lemma 4, there exists a Cr-di¤erentiable orthogonal coordi-

nate system ðu; vÞ centered at each point p A M 2 such that the metric has

the expression as in (2.2), and the ~uu-axis parametrizes the curve g. Then

we can apply Lemma 5 for this coordinate system, and obtain the desired

K-orthogonal coordinate system. If p is an A2 semi-definite point, then

we can choose g to be the characteristic curve s. In this case, the u-axis

parametrizes s.

2.2. A representation formula for A2 semi-definite points. In this subsection,

we give a representation formula for Cr-di¤erentiable Kossowski metric germs

at A2 semi-definite points. We fix an A2 semi-definite point p A M 2 of a Cr-

di¤erentiable Kossowski metric ds2, and take a Cr-di¤erentiable K-orthogonal

coordinate system ðu; vÞ (cf. Proposition 6) centered at p with the expres-

sion as in (2.1). We may assume the u-axis parametrizes the characteristic

curve. We set oðu; vÞ :¼ log rðu; vÞ. Since rðu; 0Þ ¼ 1, we have oðu; 0Þ ¼ 0.

So there exists a Cr-function o1ðu; vÞ such that oðu; vÞ ¼ vo1ðu; vÞ. So we

can write

rðu; vÞ ¼ expðvo1ðu; vÞÞ:

Since p is of type A2, we may assume that the u-axis parametrizes the semi-

definite set. Since rvðu; 0Þ ¼ 0 holds (cf. (3) of Definition 10), we have that

o1ðu; 0Þ ¼ 0. So there exists a Cr-function germ o2ðu; vÞ at the origin so that

o1ðu; vÞ ¼ vo2ðu; vÞ. In particular, rðu; vÞ ¼ ev
2o2ðu; vÞ holds. Since the u-axis

is the semi-definite set, we have lðu; 0Þ ¼ 0, and there exists a Cr-function germ

l̂lðu; vÞ at the origin so that lðu; vÞ ¼ vl̂lðu; vÞ. Since ð0; 0Þ is non-degenerate,

Fig. 3. The coordinates ðu; vÞ at an A2 semi-definite point (left) and an A3 semi-definite point

(right), where S is the set of semi-definite points.
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we may assume l̂lð0; 0Þ > 0. We denote by Cr
0ðR2Þ the set of germs of Cr-

functions at ð0; 0Þ on R2. Summarizing the above discussions, we obtain the

following assertion.

Theorem 6. Let hðu; vÞ and kðu; vÞ be two germs in C r
0ðR2Þ. Then

ds2 :¼ r2 du2 þ ðr�1lÞ2dv2 ðr :¼ ev
2hðu; vÞ; l :¼ vekðu; vÞÞ

gives a C r-di¤erentiable Kossowski metric germ at an A2 semi-definite point.

Conversely, any C r-di¤erentiable Kossowski metric germ with A2 semi-definite

points is given in this manner. Moreover, the Euler form along the semi-definite

set (i.e. the u-axis) is given by

Wðu; 0Þ ¼ e�kðu;0Þð2hðu; 0Þkvðu; 0Þ � 3hvðu; 0ÞÞdu5dv: ð2:4Þ

Proof. Let dt2 be a Riemannian metric which is expressed as dt2 ¼
E du2 þ G dv2. It is well-known that the Gaussian curvature K of dt2 is

given by (cf. [19, § 10])

K ¼ � 1

êeĝg

ĝgu
êe

� �
u

þ êev

ĝg

� �
v

� �
; ð2:5Þ

where êe :¼
ffiffiffiffi
E

p
and ĝg :¼

ffiffiffiffi
G

p
. Applying this formula for ds2 at its regular

points, we obtain (2.4). By continuity, (2.4) holds even at semi-definite points

of ds2.

In [2, Proposition 2.29], we gave another representation formula for A2

semi-definite points, which controls E;G ð:¼ l2=EÞ but not r, l.

2.3. A representation formula for A3 semi-definite points. We next consider

the case that p ¼ ð0; 0Þ is an A3 semi-definite point of a Kossowski metric

ds2, with the expression as in (2.1). This case is not discussed in [2]. We

set

oðu; vÞ :¼ log rðu; vÞ:

Since r ¼ 1 on the u-axis, we have oðu; 0Þ ¼ 0. Since qv gives the tangential

direction of the characteristic curve at ð0; 0Þ (cf. Figure 3, right), the char-

acteristic curve can be expressed as the image of a certain graph u ¼ gðvÞ
satisfying gð0Þ ¼ g 0ð0Þ ¼ 0. We set

mðvÞ :¼ det
g 0ðvÞ 0

1 1

� �
¼ g 0ðvÞ:

Since p is of type A3, (1.12) yields that mð0Þ ¼ 0 and m 0ð0Þ ¼ g 00ð0Þ0 0.

Replacing ðu; vÞ by ð�u; vÞ if necessary, we may assume that g 00ð0Þ > 0 without
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loss of generality. Then there exists a Cr-function ĝgðvÞ ðĝgð0Þ > 0Þ such that

gðvÞ ¼ v2ĝgðvÞ. Take new coordinates ~uu :¼ u and ~vv :¼ v
ffiffiffiffiffiffiffiffiffi
ĝgðvÞ

p
, then the semi-

definite set can be expressed as ~uu ¼ ~vv2. So, we may assume that the parabola

u ¼ v2 gives the semi-definite set. Since ovðv2; vÞ ¼ 0 (cf. (3) of Definition 10),

we have ovðu; vÞ ¼ ðu� v2Þaðu; vÞ ða A Cr
0ðR2ÞÞ. In particular, ovvð0; 0Þ ¼ 0

holds. Since oðu; 0Þ ¼ 0, we have

oðu; vÞ ¼
ð v

0

ðu� w2Þaðu;wÞdw:

On the other hand, since lðv2; vÞ ¼ 0 and ð0; 0Þ is a non-degenerate semi-

definite point, we can write l ¼ ðu� v2Þl̂lðu; vÞ ðl̂lð0; 0Þ0 0Þ, where l̂l A Cr
0ðR2Þ.

Thus, we obtain the following:

Theorem 7. Let hðu; vÞ and kðu; vÞ be two germs in C r
0ðR2Þ. Then

ds2 :¼ r2 du2 þ ðr�1lÞ2dv2;

rðu; vÞ :¼ exp

ð v

0

ðu� w2Þhðu;wÞdw
� �

; lðu; vÞ :¼ ðu� v2Þekðu; vÞ
� �

gives a C r-di¤erentiable Kossowski metric germ at an A3 semi-definite point.

Conversely, any Cr-di¤erentiable Kossowski metric germ at A3 semi-definite

points is given in this manner. Moreover, the Euler form at the origin is given

by

Wð0; 0Þ ¼ ½e�kð0;0Þð�hvð0; 0Þ þ hð0; 0Þkvð0; 0ÞÞ � 2ekð0;0Þkuð0; 0Þ�du5dv: ð2:6Þ

The formula (2.6) can be proved using (2.4) and the fact ovvð0; 0Þ ¼ 0.

2.4. Distance functions associated with Kossowski metrics. As an application

of the existence of K-orthogonal coordinates, we investigate properties of the

distance functions induced by Kossowski metrics:

Definition 11. Suppose that M 2 is connected. Let ds2 be a Kossowski

metric on M 2, and fix two points p; q A M 2. We denote by Pp;q the set of

piecewise smooth arcs combining two points p and q, and set dds2ðp; qÞ :¼
inffLds2ðgÞ; g A Pp;qg, where Lds2ðgÞ is the length of the arc g A Pp;q with respect

to ds2, that is,

Lds2ðgÞ :¼
ð
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ds2ðg 0ðtÞ; g 0ðtÞÞ

q
dt:

We call dds2 : M
2 �M 2 ! ½0;yÞ the pre-distance function associated with

ds2.
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Since dds2ðx; yÞ is symmetric with respect to the variables x, y and satisfies

the triangle inequality by definition, it gives a distance function if and only if

dds2ðx; yÞ ¼ 0 implies x ¼ y.

Definition 12. Let ds2 be a Kossowski metric on M 2. A semi-definite

point p A M 2 is called a peak if there exists a neighborhood U of p such that

the semi-definite points on Unfpg consists only of A2 semi-definite points.

For example, A2 or A3 semi-definite points are peaks. On the other

hand, ds20 ¼ du2 þ u2 dv2 gives a Kossowski metric whose semi-definite set

coincides with the v-axis. Each point of the v-axis is not a peak, since the

null-direction qv gives the tangential direction of the v-axis as its characteristic

curve.

Remark 8. In [15], a ‘‘peak singularity’’ on wave fronts is defined. Sup-

pose that ds2 is the first fundamental form of a wave front f . Let p A M 2 be

a non-degenerate singular point of f . Then there exists a neighborhood U of

p A M 2 such that the restriction of ds2 on U is a Kossowski metric. Moreover,

p is a peak with respect to ds2 if and only if p is at most non-degenerate peak

singular point of f . This fact immediately follows from the definition of peaks

of f .

We show the following assertion:

Theorem 8. Let ds2 be a C r-di¤erentiable Kossowski metric on M 2 whose

semi-definite points consist only of peaks. Then the pre-distance function asso-

ciated with ds2 gives a distance function which is compatible with the topology

of M 2.

We set

Bds2ðp; rÞ :¼ fq A M 2; dds2ðp; qÞ < rg ðp A M 2; r > 0Þ: ð2:7Þ

To prove Theorem 8, we prepare the following four lemmas:

Lemma 6. Let ds2 be a C r-di¤erentiable Kossowski metric and dt2 a Cy-

di¤erentiable Riemannian metric on M 2 such that ds2 < dt2 on M 2 (that is,

ds2ðv; vÞ < dt2ðv; vÞ holds for each v ð0 0Þ). Then there exists e > 0 such that

Bdt2ðp; rÞ � Bds2ðp; rÞ

holds for r A ð0; eÞ.

Proof. Since ds2 < dt2, Lds2ðgÞaLdt2ðgÞ holds for each path g A Pp;q

between two points p; q A M 2. So we obtain dds2ðp; qÞa ddt2ðp; qÞ and

Bdt2ðp; rÞ ¼ fq; ddt2ðp; qÞ < rg � fq; dds2ðp; qÞ < rg ¼ Bds2ðp; rÞ:
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Lemma 7. Let ds2 be a Cr-di¤erentiable Kossowski metric on M 2 and

p A M 2 an A2 semi-definite point. Suppose that U is an open neighborhood

of p. Then there exists d > 0 such that Bds2ðp; dÞ � U.

Proof. We can take a K-orthogonal coordinate neighborhood ðV ; u; vÞ
centered at p satisfying the following properties (cf. Theorem 6):

(1) the closure V of V is a subset of U ,

(2) there exist Cr-functions E and G on V such that ds2 ¼ E du2 þ G dv2,

(3) E > 0 on V ,

(4) the set of semi-definite points of ds2 coincides with the u-axis.

We set W :¼ fðu; vÞ A V ; juja e1; jvja e2g for su‰ciently small ei ði ¼ 1; 2Þ
and

S :¼ fðu; vÞ A W; jvjb e2=2g:

Then

m1 :¼ min
W

ð
ffiffiffiffi
E

p
Þ; m2 :¼ min

S
ð

ffiffiffiffi
G

p
Þ

are positive. Suppose q ¼ ðu0; v0Þ lies on the boundary of W, and take g A Pp;q.

If ju0j ¼ e1, the path g travels horizontally across the left or right half of W,

and so one can easily show that LðgÞ > m1e1. Similarly if jv0j ¼ e2 then g

travels vertically across one of the closed rectangular sub-domains of S, and so

LðgÞ > m2e2=2. Thus, if we set

m0 :¼ min m1e1;
m2e2

2

� �
;

then Bds2ðp;m0Þ � W � U ; proving the assertion.

Lemma 8. Let ds2 be a Cr-di¤erentiable Kossowski metric on M 2 whose

semi-definite points are all of type A2. Then the pre-distance function associated

with ds2 gives a distance function which is compatible with the topology of M 2.

Proof. We take two distinct points p; q A M 2. To prove dds2 is a

distance function, it is su‰cient to show that p0 q implies dds2ðp; qÞ0 0.

Since M 2 is a Hausdor¤ space, we can take a local coordinate neighborhood

ðU ; u; vÞ of p satisfying q B U . By Lemma 7, there exists r > 0 such that

Bds2ðp; rÞ � U . Then dds2ðp; qÞb r holds. So dds2 is a distance function.

We next show that dds2 is compatible with the topology of M 2. We fix a

point p of M 2 arbitrarily, and take a local coordinate neighborhood ðU ; u; vÞ
centered at p so that U is compact. Let dt2 be the canonical Euclidean metric

on the uv-plane. Suppose that p is a regular point of ds2. Then it can be

easily checked that for each r > 0, there exists r 0 > 0 such that Bds2ðp; r 0Þ (resp.
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Bdt2ðp; r 0Þ) is a subset of Bdt2ðp; rÞ (resp. Bds2ðp; rÞ). So we consider the case

that p is a semi-definite point of ds2. By Lemma 7, we have

Bds2ðp; rÞ � U :

For su‰ciently small r > 0, we can take a positive constant m such that

ds2 < m dt2 on U . We set M 2 ¼ U and apply Lemma 6. Then

Bdt2ðp; r=
ffiffiffiffi
m

p
Þ � Bds2ðp; rÞð� UÞ

holds for su‰ciently small r > 0. On the other hand, applying Lemma 7

again, there exists r 0 > 0 such that Bds2ðp; r 0Þ � Bdt2ðp; rÞ. Thus, the topology

induced by dds2 is the same as that of M 2 as a manifold.

Lemma 9. Let ds2 be a Cr-di¤erentiable Kossowski metric on M 2, and let

p A M 2 be a peak. Suppose that U is an open neighborhood of p. Then there

exists d > 0 such that Bds2ðp; dÞ � U.

Proof. We can take a local coordinate neighborhood ðV ; u; vÞ centered

at p such that the closure V of V is a subset of U . Take a su‰ciently small

e > 0, and set

W :¼ fq A V ; jqja eg;

where jðu; vÞj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
. Consider the subset S of W defined by

S :¼ fq A W; jqjb e=2g;

and set

m :¼ inffdds2ðq1; q2Þ; jq1j ¼ e; jq2j ¼ e=2g:

Since Unfq A W; jqja e=3g admits only regular points or A2 semi-definite

points, Lemma 8 yields that m > 0. Suppose that q ¼ ðu0; v0Þ lies on the

boundary of W, and take g A Pp;q. Since the path g travels across S, we have

Lds2ðgÞ > m. Thus, we have Bds2ðp;mÞ � W � U , proving the assertion.

Proof of Theorem 8. If we use Lemma 9 instead of Lemma 7, the same

argument as in the proof of Lemma 8 gives the proof of Theorem 8. r

3. Coherent tangent bundles induced by Kossowski metrics

In this section, we deduce the partial di¤erential equation given in

Kossowski [8], using the fact (shown in [2]) that a Kossowski metric induces

an associated vector bundle with a metric and a connection, called a ‘‘coherent

tangent bundle’’.
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3.1. Fundamental theorem for frontals. Let E be a vector bundle of rank 2

over a 2-manifold M 2, and h ; i an inner product on E. We let ‘ be a

connection on E which is compatible with respect to the inner product. If a

vector bundle homomorphism j : TM 2 ! E which induces the identity map

on M 2 satisfies the identity

‘XjðY Þ � ‘YjðX Þ ¼ jð½X ;Y �Þ ðX ;Y A XrÞ; ð3:1Þ

then we call ðE; h ; i;‘; jÞ a coherent tangent bundle over M 2, where Xr is

the set of Cr-vector fields on M 2. (This definition can be generalized for

n-dimensional manifolds, cf. [17].) In this situation, the pull-back metric of

h ; i via j,

ds2 :¼ j�h ; i

is induced, which is called the first fundamental form of j. A point p where

jp : TpM
2 ! Ep has a non-trivial kernel corresponds to a semi-definite point

of ds2.

Definition 13. Two coherent tangent bundles on M 2

ðE1; h ; i1;‘
1; j1Þ; ðE2; h ; i2;‘

2; j2Þ

are said to be isomorphic if there exists a bundle isomorphism i : E1 ! E2

satisfying the following three conditions:
� j2 ¼ i � j1,
� i preserves the inner products, that is, for each p A M 2 and for each

x; h A ðE1Þp, hx; hi1 ¼ hiðxÞ; iðhÞi2 holds,
� for each v A TpM

2 and for each section x of E1, ið‘1
vxÞ ¼ ‘2

v iðxÞ
holds.

In this situation, i is called an isomorphism between coherent tangent

bundles.

The following assertion holds:

Fact 9 ([2, Theorem 3.1]). Let M 2 be an oriented Co-di¤erentiable

2-manifold and ds2 a Co-di¤erentiable Kossowski metric on M 2. Then there

exists a unique Co-di¤erentiable coherent tangent bundle ðE; h ; i;‘; jÞ up to

isomorphisms of coherent tangent bundles such that the induced metric j�h ; i
coincides with ds2. Moreover, E is orientable if and only if ds2 is co-orientable

(see Remark 4).

Remark 9. E :¼ TM 2 can be considered as a coherent tangent bundle if

h ; i is a Riemannian metric, j is the identity map, and ‘ is the Levi-Civita

connection.
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Remark 10. Fact 9 was applied in [2] to prove two Gauss-Bonnet type

formulas for Kossowski metrics. Moreover, Kossowski metrics can be defined

on higher dimensional manifolds, and this fact was generalized for arbitrary

dimension (see [17, Theorem 7.9]).

Definition 14 (Frontal bundles). Suppose that there are two bundle

homomorphisms j;c : TM 2 ! ðE; h ; i;‘Þ such that each of them induces a

structure of a coherent tangent bundle on ðE; h ; i;‘Þ. If they satisfy the

following compatibility condition

hjðXÞ;cðYÞi ¼ hjðYÞ;cðXÞi ðX ;Y A X rÞ; ð3:2Þ

then ðE; h ; i;‘; j;cÞ is called a frontal bundle.

Example 10. Let f : M 2 ! R3 be a frontal, and let n : M 2 ! S2 be its

unit normal vector field. Then

Ef :¼ fðp;wÞ A M 2 � TR3; w A TpR
3 is perpendicular to npg

has a structure of a vector bundle of rank 2 over M 2. The inner product h ; i
is induced from the canonical inner product of R3. Moreover, taking the

tangential component of the Levi-Civita connection of R3, Ef has a connection

‘ f which is compatible with the metric h ; i. Then the two bundle homo-

morphisms defined by

jf : TM
2 C v 7! ðpðvÞ; df ðvÞÞ A Ef

and

cn : TM
2 C v 7! ðpðvÞ; dnðvÞÞ A Ef

give a structure of frontal bundle, where p : TM 2 ! M 2 is the canonical

projection. We call ðEf ; h ; i;‘
f ; jf ;cnÞ the frontal bundle induced by f .

The condition (3.1) for jf follows from the fact that ‘ f can be identified

with the Levi-Civita connection of M 2nSf , where Sf is the singular set of f .

On the other hand, the condition (3.1) for cn follows from the fact that f

satisfies the Codazzi equation on M 2nSf (see [16, Example 2.2] for details).

Let ðE; h ; i;‘; jÞ be a coherent tangent bundle over M 2. We fix a local

coordinate neighborhood ðU ; u; vÞ on M 2 with U chosen so that there is also

an orthonormal frame field ðe1; e2Þ of E on U . Such a 5-tuple ðU ; u; v; e1; e2Þ
is called a local orthonormal trivialization of E. Since ‘ is compatible with

respect to the inner product h ; i, for such a 5-tuple, there exists a 1-form y

defined on U such that

‘ve1 ¼ �yðvÞe2; ‘ve2 ¼ yðvÞe1 ðv A TUÞ ð3:3Þ
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and dy ¼ K dÂA hold on the set of regular points on U (cf. [19, (13.15)]).

By continuity, dy ¼ W holds on U , where W is the Euler form of ds2

(cf. (1.13)). The following assertion was proved in [16, Section 2], which

plays a role to realize a given Kossowski metric as the first fundamental form

of a frontal.

Theorem 11. Let ðE; h ; i;‘; j;cÞ be a Co-frontal bundle over a simply-

connected Co-local coordinate neighborhood ðU ; u; vÞ of M 2. Suppose that the

induced metric ds2 :¼ j�h ; i is a Kossowski metric having the expression as in

(2.1). We fix a point p A U arbitrarily. Suppose that

dy ¼ det
A B

C D

� �
du5dv ð3:4Þ

holds for the local orthonormal trivialization ðe1; e2Þ on ðU ; u; vÞ, where

A :¼ hcðquÞ; e1i; C :¼ hcðquÞ; e2i;

B :¼ hcðqvÞ; e1i; D :¼ hcðqvÞ; e2i: ð3:5Þ

Then there exists a unique quadruple ð f ; êe1; êe2; nÞ consisting of a Co-frontal and

an orthonormal frame field along f such that

(1) f is a frontal and n is a unit normal vector field of f ,

(2) fu � êej and fv � êej ð j ¼ 1; 2Þ coincide with hjðquÞ; eji and hjðqvÞ; eji,
respectively,

(3) nu � êej and nv � êej ð j ¼ 1; 2Þ coincide with hcðquÞ; eji and hcðqvÞ; eji,
respectively,

(4) f ðpÞ ¼ 0, and ðêe1; êe2; nÞ is the identity matrix at p.

Proof. Consider the system of partial di¤erential equations as follows:

fu ¼
X
j¼1;2

hjðquÞ; ejiêej; fv ¼
X
j¼1;2

hjðqvÞ; ejiêej; ð3:6Þ

ðêeiÞu ¼
X
j¼1;2

h‘quei; ejiêej; ðêeiÞv ¼
X
j¼1;2

h‘qvei; ejiêej ði ¼ 1; 2Þ; ð3:7Þ

nu ¼ Aêe1 þ Cêe2; nv ¼ Bêe1 þDêe2: ð3:8Þ

As shown in [16, Section 2], the integrability condition of this system follows

from the fact that ðE; h ; i;‘; j;cÞ is a Co-frontal bundle satisfying (3.4). So

we obtain the assertion.

Remark 11. Theorem 11 corresponds to the fundamental theorem of sur-

face theory for frontals, which is described for a local coordinate neighborhood.

A global version of this assertion is given in [16, Theorem 2.7].
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Let ðU ; u; vÞ be a K-orthogonal coordinate system as in (2.1) (cf. Prop-

osition 6) with respect to a Kossowski metric ds2. By Fact 9, there is a bundle

homomorphism

j : TU ! E ð3:9Þ

such that ðE; h ; i;‘; jÞ is a coherent tangent bundle satisfying ds2 ¼ j�h ; i
on U . Then

e1 :¼
1

r
jðquÞ ðr :¼

ffiffiffiffi
E

p
Þ ð3:10Þ

gives a unit vector at each fiber of E on U . We then take a local section

e2 of E on U such that ðe1; e2Þ consists of an orthonormal frame field of E

on U . There are Co-functions k, h on U such that jðqvÞ ¼ ke1 þ he2. Since

ðu; vÞ is a K-orthogonal coordinate system, k vanishes identically. Moreover,

we have

l2E�1 ¼ G ¼ hjðqvÞ; jðqvÞi ¼ h2;

and we obtain h ¼ l=
ffiffiffiffi
E

p
by replacing e2 by �e2 if necessary. So it holds that

jðqvÞ ¼
l

r
e2: ð3:11Þ

We set

‘que1 ¼ ae2; ‘qve1 ¼ be2; ð3:12Þ

where a, b are Co-functions on U . Then y ¼ �a du� b dv gives a 1-form

on U satisfying (3.3), that is,

‘que2 ¼ �ae1; ‘qve2 ¼ �be1:

Proposition 7. The functions a and b are given by

a ¼ �Ev

2l
; b ¼ 2Elu � lEu

2E2
: ð3:13Þ

Proof. By (3.1), we have that

0 ¼ ‘qujðqvÞ � ‘qvjðquÞ ¼ ‘qu

l

r
e2

� �
� ‘qvðre1Þ

¼ l

r

� �
u

e2 þ
l

r
ð�ae1Þ � rve1 � rðbe2Þ

¼ l

r

� �
u

� rb

� �
e2 �

la

r
þ rv

� �
e1:
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Thus, we obtain

l

r

� �
u

� rb ¼ 0;
la

r
þ rv ¼ 0:

Since r ¼
ffiffiffiffi
E

p
, these are equivalent to (3.13).

It is well-known that the Gaussian curvature K defined at regular points

of ds2 on U satisfies (cf. [19, (13.15)])

Kl du5dv ¼ dy ¼ ðav � buÞdu5dv:

So it holds that

Kl ¼ av � bu: ð3:14Þ

Remark 12. By (1.7), Ev vanishes on the semi-definite set of the metric.

So Ev=l is a Co-function on U .

We would like to find a new bundle homomorphism c : TU ! E so that

ðE; h ; i;‘; j;cÞ is a frontal bundle. For this purpose, let A, B, C, D be

unknown functions satisfying

cðquÞ ¼ Ae1 þ Ce2; cðqvÞ ¼ Be1 þDe2: ð3:15Þ

Proposition 8. In this setting, the following assertions hold:

(1) ðE; h ; i;‘; j;cÞ on a simply-connected domain ðU ; u; vÞ is a frontal

bundle if and only if A, B, C, D satisfy

Bu � Av ¼ aD� bC; Du � Cv ¼ bA� aB; ðCodÞ

EB ¼ lC: ðSymmÞ

(2) The integrability condition (3.4) is equivalent to the condition

AD� BC ¼ �KK ; ðGaussÞ

where �KK :¼ av � buð¼ KlÞ (cf. (3.14)).

(3) There exists a Co-di¤erentiable frontal f : U ! R3 whose first fun-

damental form is ds2 if there exist Co-functions A, B, C, D satisfying

(Cod), (Symm), (Gauss) and (3.5).

Proof. The map c as in (3.15) satisfies (Cod) if and only if ‘qucðqvÞ ¼
‘qvcðquÞ. On the other hand, (3.2) (resp. (3.4)) is equivalent to the condi-

tion (Symm) (resp. (Gauss)). So we can apply Theorem 11, and obtain the

assertion.
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Remark 13. The system of partial di¤erential equations (PDE) given by

(Cod), (Symm) and (Gauss) is the same as in [8, (5) in Page 108]. However,

there is a sign typographical error in [8, (5)], and the above PDE corrects it.

Since l vanishes along the semi-definite set, (Symm) yields the following:

Corollary 2. The function B as in Proposition 8 vanishes identically

along the semi-definite set.

3.2. Second fundamental data of frontal maps. We now fix a Co-frontal

f : U ! R3 defined on a simply-connected domain U such that its first funda-

mental form ds2 is a Co-di¤erentiable Kossowski metric. We let n : U ! R3

be a unit normal vector field along f and fix a point p A U . Then there exists

a Co-di¤erentiable K-orthogonal coordinate system ðu; vÞ centered at the origin

p by Proposition 6. Without loss of generality, we may assume that ðu; vÞ is

defined on U . Then we have the expression (2.1). So we set

êe1 :¼
1

r
fu; ð3:16Þ

which is a unit vector field defined on U . We then define a unit vector field

êe2 :¼ n� êe1:

By definition, fv is a scalar multiplication of êe2. Since

fv � êe2 ¼ detð fv; n� êe1Þ ¼
1

r
detð fv; n; fuÞ ¼

1

r
detð fu; fv; nÞ ¼

l

r
;

we have

fv ¼
l

r
êe2: ð3:17Þ

We set

A :¼ nu � êe1; B :¼ nv � êe1; C :¼ nu � êe2; D :¼ nv � êe2: ð3:18Þ

We call ðA;B;C;DÞ the second fundamental data of f .

As discussed in the previous subsection, the first fundamental form ds2

of f induces a bundle homomorphism (cf. (3.9)) j : TU ! E such that

ðE; h ; i;‘; jÞ is a coherent tangent bundle on U satisfying ds2 ¼ j�h ; i.
Then we obtain an orthogonal trivialization ðU ; u; v; e1; e2Þ of the coherent

tangent bundle ðE; h ; i;‘; jÞ by (3.10) and (3.11). We then define c : TU ! E

by

cðquÞ ¼ Ae1 þ Ce2; cðqvÞ ¼ Be1 þDe2:
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Lemma 10. The second fundamental data of f satisfies (Cod), (Symm) and

(Gauss). In particular, c is a bundle homomorphism such that ðE; h ; i;‘; j;cÞ
is a frontal bundle satisfying (3.4).

Proof. Since ds2 is a Kossowski metric, the regular set Rf of f is open

dense in U . By (3.18), ðA;B;C;DÞ satisfies

nu ¼ Aêe1 þ Cêe2; nv ¼ Bêe1 þDêe2

on U . Since f is an immersion on Rf , (Cod), (Symm) and (Gauss) hold on

Rf . By the continuity, these formulas also hold on U .

By Theorem 11 and Lemma 10, there exists a Co-frontal f0 : U ! R3

whose first fundamental form is ds2 such that ðA;B;C;DÞ is the second funda-

mental data of f0 with respect to a unit normal vector field n0. Then we can

prove the following:

Proposition 9. f is strongly congruent to f0.

Proof. The pair ð f0; n0Þ satisfies (3.6), (3.7) and (3.8) on U . On the

other hand, the pair ð f ; nÞ satisfies (3.6), (3.7) and (3.8) on Rf . By the con-

tinuity, they also hold on U . Hence the two pairs ð f0; n0Þ and ð f ; nÞ satisfy

the same system of partial di¤erential equations (3.6), (3.7) and (3.8). So the

uniqueness of the solution, f is strongly congruent to f0.

Corollary 3. Let f ; f 0 : U ! R3 be two frontal maps with the same first

fundamental form ds2. Then f , g are strongly congruent if and only if they have

the same second fundamental data up to G-multiplication.

Proof. Let n (resp. n 0) be the unit normal vector of f (resp. f 0). Sup-

pose that f 0 is strongly congruent to f , then f 0 has the same second funda-

mental data as f by replacing f 0 by �f 0 if necessary.

On the other hand, suppose that f and f 0 have the same second funda-

mental data up to a G-multiplication. By replacing f by �f , we may assume

that f and f 0 have the same second fundamental data. Then by definition,

f0 and f 0
0 have the same second fundamental data. By the uniqueness result of

Theorem 11, f0 is strongly congruent to f 0
0 . By Proposition 9, f is strongly

congruent to f 0. So we obtain the conclusion.

4. Isometric realizations of Kossowski metrics

4.1. Proof of Theorem A. To prove our main results, we need to apply the

following Cauchy-Kowalevski theorem:
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Fact 12 (cf. [9]). Let F iðu; v; z1; z2;w1;w2Þ ði ¼ 1; 2Þ be two real analytic

functions defined on a domain D of R6, and let o i : ð�e; eÞ ! R ði ¼ 1; 2Þ be real

analytic functions so that

ðu; 0;o1ðuÞ;o2ðuÞ; ðo1Þ0ðuÞ; ðo2Þ0ðuÞÞ A D ðjuj < eÞ;

where e > 0 is a su‰ciently small number. Then there exists a unique real

analytic map j ¼ ðj1; j2Þ : U ! R2 defined on a neighborhood U of the origin

of the uv-plane such that

j i
vðu; vÞ ¼ F iðu; v; j1ðu; vÞ; j2ðu; vÞ; j1

uðu; vÞ; j2
uðu; vÞÞ ði ¼ 1; 2Þ;

and j iðu; 0Þ ¼ o iðuÞ for i ¼ 1; 2.

We fix a Kossowski metric ds2 defined on a real analytic M 2, and take a

point p A M 2. Let g be a Co-regular curve in M 2 such that gð0Þ ¼ p and

g 0ð0Þ is not a null direction. By Proposition 6, we can take real analytic

K-orthogonal coordinates ðu; vÞ centered at p. Then gðuÞ ¼ ðu; 0Þ holds. Let

r, l be given as in (2.1) and a, b defined by (3.13). Since ds2 is real analytic,

the four functions r, l, a, b are all real analytic on U . Then we can consider

the system of partial di¤erential equations (Cod), (Symm) and (Gauss) with

unknown functions A, B, C, D. We now assume Að0; 0Þ0 0. By (Symm)

and (Gauss), we can set

B :¼ lC

E
; D :¼

�KK þ BC

A
¼ E �KK þ lC 2

EA
; ð4:1Þ

and substituting them into (Cod), we obtain the following normal form of a

PDE

Av ¼
lC

E

� �
u

� a
E �KK þ lC2

EA
þ bC;

Cv ¼
E �KK þ lC2

EA

� �
u

� bAþ a
lC

E
ð4:2Þ

with unknown functions A and C.

We fix two function germs aðuÞ and cðuÞ defined at u ¼ 0 so that að0Þ0 0.

By applying Fact 12, there exist A, C satisfying (4.2) and

Aðu; 0Þ ¼ aðuÞ; Cðu; 0Þ ¼ cðuÞ ð4:3Þ

defined on a certain neighborhood Vð� UÞ of the origin.

Then, by Proposition 8, there exists a frontal f :¼ fa; c : V ! R3 with

unit normal vector n whose first fundamental form is ds2 and the second
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fundamental data is ðA;B;C;DÞ. In particular, if we set (cf. (3.10) and

(3.11))

êe1 :¼
fu

r
; êe2 :¼

rfv

l
ðr :¼

ffiffiffiffi
E

p
Þ; ð4:4Þ

then ds2 has a local expression as in (2.1), and ðêe1; êe2; nÞ gives an orthonormal

frame along f so that

fu ¼ rêe1; fv ¼ lr�1êe2; n ¼ êe1 � êe2: ð4:5Þ

Moreover, it holds that

nu ¼ Aêe1 þ Cêe2; nv ¼ Bêe1 þDêe2: ð4:6Þ

By our choice of ðu; vÞ, gðuÞ ¼ ðu; 0Þ holds. Since g 0ð0Þ is not a null vector,

ĝgðuÞ :¼ f � gðuÞ ¼ f ðu; 0Þ gives a regular space curve, and so the normal cur-

vature function kn (cf. (0.8)) of f along the curve gðuÞ ¼ ðu; 0Þ can be con-

sidered as follows.

Proposition 10. Let knðuÞ be the normal curvature function of f along the

curve gðuÞ ¼ ðu; 0Þ. Then

aðuÞ ¼ �knðuÞ ð4:7Þ

holds. Moreover, if p is an A2 semi-definite point and the curve g is the

characteristic curve, then knðuÞ coincides with the limiting normal curvature

function along gðuÞ.

Proof. Let êe1, êe2 be vector fields given in (4.4). By (4.6), we have

ðêe1Þu � n ¼ �êe1 � nu ¼ �A:

Together with (3.12), we have ðêe1Þu ¼ aêe2 � An. Similarly, we have

ðêe1Þv ¼ bêe2 � Bn; ðêe2Þu ¼ �aêe1 � Cn; ðêe2Þv ¼ �bêe1 �Dn:

Di¤erentiating (4.5) using the above formulas, we have that

fuu ¼ ruêe1 þ raêe2 � rAn; ð4:8Þ

fuv ¼ rvêe1 þ rbêe2 � rBn; ð4:9Þ

fvv ¼ �lr�1bêe1 þ ðlr�1Þvêe2 � lr�1Dn: ð4:10Þ

Since rðu; 0Þ ¼ 1, we have

knðuÞ ¼
fuuðu; 0Þ � nðu; 0Þ

rðu; 0Þ2
¼ �Aðu; 0Þ ¼ �aðuÞ: ð4:11Þ
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If g is a characteristic curve parametrizing A2 semi-definite points, then by [11,

(2.2) and (2.3)] the limiting normal curvature knðuÞ defined by (0.7) coincides

with knðuÞ defined by (0.8).

Proof of Theorem A. The existence of isometric realization of ds2 as a

frontal map has been proved. So we need to prove the remaining properties.

Since að0Þ0 0, (4.7) implies that knð0Þ0 0. By (0.7), this knð0Þ is equal to

the limiting normal curvature of p. So the first assertion of Theorem A is

obtained. Assertions (1)–(4) follow immediately from Proposition 4. r

4.2. Proofs of Theorem B and Corollaries C, D, E. We next give preparations

to prove Theorem B. As shown in the previous subsection, for given real

analytic function germs aðuÞ, cðuÞ at u ¼ 0 satisfying að0Þ0 0, we constructed

a real analytic frontal fa; c : V ! R3 whose first fundamental form was ds2

satisfying (4.5) and (4.6). The congruence class of fa; c is determined from the

initial data aðuÞ, cðuÞ as follows.

Lemma 11. Two frontals fa; c and f~aa; ~cc are mutually strongly congruent if

and only if ð~aa; ~ccÞ ¼ eða; cÞ for some e A f1;�1g.

Proof. The initial data ða; cÞ and ð�a;�cÞ induce the solutions ðA;CÞ
and ð�A;�CÞ of (4.2), respectively. By (4.1), ðA;CÞ and ð�A;�CÞ induce

quadruples ðA;B;C;DÞ and ð�A;�B;�C;�DÞ satisfying (Cod), (Symm) and

(Gauss). By Proposition 8 and Corollary 3, ðA;B;C;DÞ and ð�A;�B;�C;

�DÞ induce the same frontal up to strong congruence.

We next compute the geodesic curvature of ĝgðuÞ :¼ f ðu; 0Þ, where f :¼ fa; c.

Proposition 11. Let kgðuÞ be the geodesic curvature function of f along

the curve gðuÞ ¼ ðu; 0Þ (kgðuÞ coincides with the singular curvature when the

u-axis parametrizes the characteristic curve). By adjusting the sign of kgðuÞ, it
holds that aðu; 0Þ ¼ kgðuÞ:

Proof. Since r ¼ 1 on the u-axis, we have

kg ¼
fuu � êe2
fu � fu

¼ a

r
¼ a

along the u-axis, proving the assertion.

Propositions 10 and 11 lead to the following:

Corollary 4. The curvature function kðuÞ of ĝgðuÞ ¼ f ðu; 0Þ as a regular

space curve is given by

kðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðu; 0Þ2 þ aðuÞ2

q
: ð4:12Þ
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We next compute the torsion function of ĝg.

Proposition 12. The torsion function mðuÞ of ĝgðuÞ satisfies

mðuÞ ¼ �cðuÞ þ aðuÞauðu; 0Þ � aðu; 0Þa 0ðuÞ
kðuÞ2

; ð4:13Þ

where kðuÞ is the curvature function of ĝgðuÞ.

Proof. It is well-known that

kðuÞ2mðuÞ ¼ detðĝg 0ðuÞ; ĝg 00ðuÞ; ĝg 000ðuÞÞ
jĝg 0ðuÞj6

:

Since jĝg 0ðuÞj ¼ rðu; 0Þ ¼ 1, we have

kðuÞ2mðuÞ ¼ detð fu; fuu; fuuuÞjðu; vÞ¼ðu;0Þ

¼ detðêe1; aêe2 � aðuÞn; fuuuÞjðu; vÞ¼ðu;0Þ:

So it is su‰cient to compute fuuu modulo a functional multiplication

of êe1. Using the fact that r ¼ 1 along the u-axis, we have

fuuu 1 ðau � ACÞêe2 þ ð�Au � aCÞn mod êe1:

Then

kðuÞ2mðuÞ ¼ detð fu; fuu; fuuuÞjðu; vÞ¼ðu;0Þ

¼ auðu; 0ÞaðuÞ � aðu; 0Þa 0ðuÞ � cðuÞðaðuÞ2 þ aðu; 0Þ2Þ:

Since aðuÞ2 þ aðu; 0Þ2 ¼ kðuÞ2 holds by Corollary 4, we obtain the

conclusion.

Proof of Theorem B. We set

aðuÞ :¼ �eoðuÞ; cðuÞ :¼ �mðuÞ þ aðuÞauðu; 0Þ � aðu; 0Þa 0ðuÞ
aðuÞ2 þ aðu; 0Þ2

; ð4:14Þ

as the initial values of A and C. Then we obtain a frontal f ¼ fa; c whose first

fundamental form is ds2. Moreover, ĝgðuÞ has the normal curvature function

eoðuÞ and the torsion function mðuÞ. By this construction, the first, second,

and third assertions are obvious. From now on, we prove the last assertion.

Since að0Þ0 0 and rð0; 0Þ ¼ 1, we have

00 nuðpÞ � êe1ðpÞ ¼ nuðpÞ � fuðpÞ ¼ �nðpÞ � fuuðpÞ:
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Since ðu; vÞ is adjusted at p, we can conclude that p is a non-n-flat point of f

(cf. Definition 2).

By replacing the unit normal vector field n to �n, the sign of the limiting

normal curvature is reversed. Hence, by (4.12) and Lemma 11, the possibil-

ities of aðuÞ as the initial value of A are aðuÞ ¼ eoðuÞ or �eoðuÞ. Since the

case aðuÞ ¼ �eoðuÞ produces f ¼ fa; c, and so, the other possibility is the case

that

~aaðuÞ :¼ eoðuÞð¼ �aðuÞÞ

as the initial data of A. In this case

~ccðuÞ :¼ �mðuÞ � ~aaðuÞauðu; 0Þ � aðu; 0Þ~aa 0ðuÞ
~aaðuÞ2 þ aðu; 0Þ2

¼ �2mðuÞ � cðuÞ

must be the initial data of C. Since ~aaðuÞ ¼ �aðuÞ, Lemma 11 yields that f~aa; ~cc
is strongly congruent to fa; c if ~ccðuÞ ¼ �cðuÞ, that is, mðuÞ vanishes identically.

So there are at most two possibilities of the congruence class for f , unless m

is identically zero. If p is a regular point, then f must be an immersion since

ds2 is positive definite. If p is a non-parabolic singular point, then n must be

an immersion, and f is a wave front germ. r

Proof of Corollary C. As seen in the above proof of Theorem B, f is

uniquely determined by the initial data aðuÞ and cðuÞ, and depends on them

real analytically. Since a and c can be written explicitly in terms of o and m

as in (4.14), we obtain the assertion. r

Proof of Corollary D. Let knðtÞ and ksðtÞ be the limiting normal

curvature and the singular curvature (cf. [2]) of the characteristic curve sðtÞ,
respectively. Since we may assume knð0Þ > 0, there exists a real analytic func-

tion oðtÞ such that knðtÞ ¼ eoðtÞ. Then the curvature function kðtÞ of ŝsðtÞ as

a regular space curve is given by

kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
knðtÞ2 þ ksðtÞ2

q
: ð4:15Þ

By Fact 1, knðtÞ coincides with the normal curvature of f along sðtÞ. Let mðtÞ
be the torsion function of the space curve GðtÞ. Since p is an A2 semi-definite

point, s 0ð0Þ is not a null vector, and so, by Theorem B, there exists a real

analytic frontal germ g at p whose normal curvature and torsion along g � sðtÞ
coincide with knðtÞ (cf. (4.15)) and mðtÞ, respectively. By this construction, the

curvature function of the regular space curve g � sðtÞ equals kðtÞ, and mðtÞ gives
the torsion function of g � sðtÞ. Since g � sðtÞ and GðtÞ are parametrized by an

arc-length parameter and have the same curvature and torsion, we can conclude

that GðtÞ ¼ g � sðtÞ. The property that g has a cuspidal edge or a cuspidal
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cross cap at p depends on the induced Kossowski metric of f (cf. Theorem A).

Thus, if p is a cuspidal edge (resp. cuspidal cross cap) with respect to f , then

this is so with respect to g, too. By the last assertion of Theorem B, the

number of strong congruence classes of g is at most two. r

Proof of Corollary E. Since f0 and f1 are isometric (cf. Definition 3),

there exists a local di¤eomorphism j such that g0 :¼ f0 and g1 :¼ f1 � j induce

the same Kossowski metric ds2. Let p be a semi-definite point of ds2, and

ðu; vÞ a K-orthogonal coordinate system centered at p. We fix a unit normal

vector field niðu; vÞ of fi, and then four real analytic functions

Aiðu; vÞ; Biðu; vÞ; Ciðu; vÞ; Diðu; vÞ

are determined. Then ðAi;CiÞ ði ¼ 0; 1Þ can be considered as a solution of

(4.2) which induces fi. We then set

aiðuÞ ¼ Aiðu; 0Þ; ciðuÞ ¼ Ciðu; 0Þ ði ¼ 0; 1Þ:

The sign of the limiting normal curvature of the characteristic curve of fi
with respect to ni is equal to the sign of �aiðuÞ. So, as long as considering

isometric deformations with non-vanishing limiting normal curvature, the sign

of kn does not change. So, to deform ð f0; n0Þ to ð f1; n1Þ continuously, we

must adjust the sign of Gni ði ¼ 0; 1Þ. Replacing the sign of ni of fi for

each i ¼ 0; 1 if necessary, we may assume that a0ðuÞ; a1ðuÞ < 0, where we used

the fact that the limiting normal curvature of fi does not vanish. For each

s A ½0; 1�, we set

asðuÞ :¼ ð1� sÞa0ðuÞ þ sa1ðuÞð< 0Þ; csðuÞ :¼ ð1� sÞc0ðuÞ þ sc1ðuÞ:

Then, there exists a unique solution ð ~AAsðu; vÞ; ~CCsðu; vÞÞ of (4.2) satisfying

~AAsðu; 0Þ ¼ asðuÞ; ~CCsðu; 0Þ ¼ csðuÞ:

Then we obtain a family of frontals gs : Vð� UÞ ! R3 ð0a sa 1Þ, interpolat-
ing between g0 and g1, that have the common first fundamental form ds2.

Since asðuÞ < 0, the limiting normal curvature of each gs is positive. Then

ft :¼ gt � j ð0a ta 1Þ, gives the desired deformation. The second assertion

follows from the fact that p is a cuspidal edge, a swallowtail or a cuspidal

cross cap is determined by the properties of the Kossowski metric ds2 (cf.

Proposition 4). r

Remark 14. Let f be a real analytic frontal germ with singularities whose

limiting normal curvature does not vanish. Let T be an orientation reversing

isometry of R3. Then T � f has the same first fundamental form as f , but it is
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not trivial that f can be isometrically deformed into T � f . Let n be the unit

normal vector of f such that kn > 0 along the characteristic curve. Then T � f

has the same limiting normal curvature kn as f if we choose �dT � n as a normal

vector field of T � f . So the above proof yields that the pair ð f ; nÞ can be

isometrically deformed to ðT � f ;�dT � nÞ.

4.3. Realizations of Kossowski metrics with prescribed curvature lines. We

now construct a wave front whose first fundamental form is a given germ of

Kossowski metric, and with a given curve that is a curvature line with a pre-

scribed normal curvature function. For this purpose, we prepare the follow-

ing fact, which is discussed in [8], [12], and [18]. (Teramoto [18] investigated

the behavior of the principal curvature functions near a non-degenerate singular

point p in terms of several geometric invariants at p.)

Fact 13. Let f : U ! R3 be a Cr-wave front, and p A U a non-degenerate

singular point whose limiting normal curvature does not vanish. Then there is a

unique curvature line g passing through p such that the principal curvature func-

tion along it is bounded.

We call g the characteristic principal curvature line.

Proof. Each non-degenerate singular point is a regular point on a suit-

able parallel surface of a given wave front, and the principal curvature lines

are common in the parallel surfaces. It has been shown that umbilical points

of regular surfaces cannot be a singular points of their parallel surfaces, and

two distinct Cr-vector fields X , Y of principal directions are defined on a

su‰ciently small neighborhood of non-degenerate singular points (cf. [8] and

[12, Proposition 1.10]). Since Xp, Yp are linearly independent, we may assume

that Xp is not a null vector, without loss of generality. Let gðtÞ be the integral

curve of X such that gð0Þ ¼ p. Then we can take a K-orthogonal coordinate

neighborhood ðU ; u; vÞ such that g 0ð0Þ ¼ qu. Since g is an integral curve of X ,

the normal curvature function kn along g gives the principal curvature. Since

kn is less than or equal to the curvature of f � g as a space curve, (4.11) yields

that the function kn along g is bounded.

On the other hand, since the limiting normal curvature does not vanish,

WðpÞ0 0 holds, by Fact 3. So the Gaussian curvature is unbounded at p. So

the principal curvature line passing through p as an integral curve of Y has

unbounded principal curvature.

Definition 15. Let p be a semi-definite point of a Kossowski metric

ds2 and e a positive number. A regular curve gðtÞ ðt A ½0; e�Þ emanating from

pð¼ gð0ÞÞ is called a special geodesic if
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� g 0ð0Þ is not a null vector,
� ds2 is positive definite at gðtÞ ð0 < ta eÞ,
� gðð0; e�Þ is the image of a geodesic with respect to ds2.

We shall now prove the following:

Theorem 14. Let ds2 be a real analytic Kossowski metric. Suppose that

p A M 2 is a regular point or a non-parabolic semi-definite point of ds2. We

set

mp :¼
ffiffiffiffiffiffi
Kp

p
if p is a regular point with Kpð> 0Þ;

y otherwise;

�

where Kp denotes the Gaussian curvature at p. Let gðtÞ ðjtj < eÞ be a regular

curve on M 2 such that gð0Þ ¼ p and g 0ð0Þ is not a null vector. Take a germ

oðtÞ ðjtj < eÞ of a real analytic function satisfying eoðtÞ < mp for jtj < e. Then

there exists a real analytic immersion (resp. a wave front) f : U ! R3 defined

on a neighborhood of p such that g is a curvature line and eo is the principal

curvature function along g (i.e. if p is a semi-definite point, g is a characteristic

principal curvature line). The congruence class of f is uniquely determined.

Moreover, if g is a special geodesic, ĝg :¼ f � g is a planar curve.

Proof. To adjust g to be a curvature line, we set

Cðu; 0Þð¼ cðuÞÞ ¼ 0: ð4:16Þ

Then Bðu; 0Þ ¼ 0 by Corollary 2. By (4.5) and (4.6), the u-axis (i.e. g) is a

curvature line of f . If we set

Aðu; 0Þð¼ aðuÞÞ :¼ �eoðuÞ ðeoðuÞ < mpÞ;

then eoðuÞ coincides with the normal curvature function along g. If we replace

ðaðuÞ; cðuÞÞ ¼ ð�eo; 0Þ by ðeo; 0Þ, the congruence class of the resulting wave

front f does not change (cf. Lemma 11).

We next suppose that g is a special geodesic. Since a ¼ 0, (4.16) and

(4.13) yield mðuÞ ¼ 0, that is, ĝg lies in a plane.

It should be remarked that special geodesics may not exist in general:

Fact 15 (Remizov [14]). Let p be a cuspidal edge on a wave front. If the

singular curvature at p is positive (resp. negative), there are no (resp. exactly

two) special geodesics passing through p.

Remizov investigated the geodesics of frontals whose singular set image

consists of regular space curves. Fact 15 is a special case of his result [14,
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Theorem 3], although he did not formulate his results in terms of singular

curvature. We do not know if the above two special geodesics of cuspidal

edges are real analytic or not when the wave front is real analytic. Since a

swallowtail can be considered as a limit of cuspidal edges with negative singular

curvature, it can be expected that those two special geodesics converge to a

geodesic, and the following problem naturally arises:

Question 1. Is there a special geodesic at a given swallowtail?

Recently, Fukui [1, Theorem 2.3 and Remark 2.11] showed the existence

of a local coordinate system centered at each swallowtail in R3 which shows

that one of its coordinate line has the same p-th order Taylor expansion as

the special geodesic, for each positive integer p. In particular, the possibility

of the existence of a special geodesic is given as a formal power series.

5. Remaining problems

In Corollary D, isometric deformations of cuspidal edges and cuspidal

cross caps that control their singular set images in R3 were obtained. How-

ever, we cannot similarly discuss the same problem for swallowtails, since the

initial velocity of the characteristic curve is a null vector. So the following

question remains:

Question 2. For a given real analytic space cusp ŝs, is there a swallowtail

having ŝs as the image of its singular set whose first fundamental form coincides

with a given germ of non-parabolic A3 semi-definite point of a Kossowski metric?

Since a swallowtail is a limit point of cuspidal edges, the last assertion of

Corollary D yields that the possibilities of such swallowtails are at most two.

However, the authors do not know of the existence of two non-congruent

swallowtails which have common first fundamental form and the same image

for the singular set.

By the way, the existence of isometric deformations of cross caps is also an

important remaining problem. In [3], non-trivial examples of isometric defor-

mations of cross caps are given. In [2], a class of positive semi-definite metrics

called ‘‘Whitney metrics’’ is defined. The first fundamental forms of cross caps

are Whitney metrics. So it is natural to ask:

Question 3. For a given real analytic germ of Whitney metric, is there a

cross cap germ that is an isometric realization of it?

In [4], the authors found a solution of this as a formal power series, but

have not show the convergence.
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