Twisted cohomology pairings of knots III; triple cup products

Takefumi Nosaka
(Received March 9, 2019)
(Revised February 5, 2020)

Abstract

Given a representation of a link group, we introduce a trilinear form as a topological invariant. We show that, if the link is either hyperbolic or a knot with the malnormal peripheral subgroup, then the trilinear form is equal to the pairing of the (twisted) triple cup product and the fundamental relative 3-class. We give some examples illustrating the main results.

1. Introduction

This paper examines knot invariants of trilinear forms, while the previous papers [$\mathrm{N} 2, \mathrm{~N} 3$] in this series discussed those of bilinear forms. In general, the bilinear form arising from the Poincare duality is a powerful tool, as in algebraic surgery theory. In contrast, there are relatively fewer studies of trilinear forms. However, some 3 -forms and trilinear cup products appear in 3-dimensional geometry together with topological information (see, e.g., [CGO, M, L, S, Tur]).

We give the definition of a trilinear pairing (see (1)) in a general situation where the coefficients are arbitrary. Let Y be a compact orientable 3-manifold with toroidal boundary and with a fixed fundamental class $[Y, \partial Y] \in$ $H_{3}(Y, \partial Y ; \mathbb{Z}) \cong \mathbb{Z}$. Take a group homomorphism $f: \pi_{1}(Y) \rightarrow G$, a right G-module M, and a G-invariant trilinear function $\psi: M^{3} \rightarrow A$ over a ring A. Then, we can define the composite map

$$
\begin{equation*}
H^{1}(Y, \partial Y ; M)^{\otimes 3} \longrightarrow H^{3}\left(Y, \partial Y ; M^{\otimes 3}\right) \xrightarrow{\langle\bullet[Y, \partial Y]\rangle} M^{\otimes 3} \xrightarrow{\psi} A . \tag{1}
\end{equation*}
$$

Here M is regarded as the local coefficient of Y via f, and the first map \smile is the cup product, and the second is defined by the pairing with $[Y, \partial Y]$. However, the trilinear form (1) is considered to be something uncomputable. Actually, it seems hard to concretely express the 3 -class $[Y, \partial Y]$ and the cup product.

[^0]This paper addresses the case where Y is the 3 -manifold which is obtained from the 3 -sphere by removing an open tubular neighborhood of a link L, i.e., $Y=S^{3} \backslash v L$. We show that, if L is a hyperbolic link, we obtain a diagrammatic method of computing the trilinear pairings. To be precise, starting from a diagram of L, we define an invariant of trilinear form, and show that the invariant is equal to the trilinear form (1), if L is a hyperbolic link (Theorem 2.5). In addition, we also show a similar theorem in the torus knot case (see Theorem 2.6). The point in the theorems is that, in the computation of (1), we do not need to describe $[Y, \partial Y]$ and cup products, thus, this computation is not so hard; see the examples in Section 4. As an application, when Y is a 3-fold covering space of S^{3} branched along a hyperbolic link L and M is a trivial coefficient, we give a diagrammatic computation of the trilinear form (1) (Theorem 3.1).

This paper is organized as follows. Section 2 formulates the trilinear forms in terms of the quandle cocycle invariants, and states the main theorems. Section 3 discusses a relationship to 3 -fold branched coverings. Section 4 describes some computations. Section 5 gives the proofs of the theorems.

Notation. The symbol L denotes a smoothly embedded oriented link in the 3-sphere S^{3}. We write E_{L} for the 3-manifold which is obtained from S^{3} by removing an open tubular neighborhood of L.

Acknowledgement

The author expresses his gratitude to an anonymous referee and the editors of Hiroshima Mathematical Journal for reading this paper and giving me valuable comments.

2. Results: diagrammatic formulations of the trilinear forms

Our purpose in this section is to give a trilinear form invariant (Theorem 2.3), and to state the main results in §2.2. For this purpose, §2.1 starts by reviewing colorings, and formulates some link-invariants of trilinear forms.

Thorough this section, we fix a group G and a right G-module M over a ring A.
2.1. Preliminary: formulation of the first cohomology. We need some notation from [IIJO, N2] before proceeding. Denote $M \times G$ by X, and define a binary operation on X by
$\triangleleft:(M \times G) \times(M \times G) \rightarrow M \times G, \quad(a, g, b, h) \mapsto\left((a-b) \cdot h+b, h^{-1} g h\right)$,
which was first introduced in [IIJO, Lemma 2.2], and satisfies "the quandle axiom". We fix a link $L \subset S^{3}$ with a group homomorphism $f: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow$ G.

Next, we review colorings. Choose an oriented diagram D of L. Then, it follows from the Wirtinger presentation of D that the homomorphism f is regarded as a map $\{\operatorname{arcs}$ of $D\} \rightarrow G$. A map $\mathscr{C}:\{\operatorname{arcs}$ of $D\} \rightarrow X$ is an X-coloring if it satisfies $\mathscr{C}\left(\alpha_{\tau}\right) \triangleleft \mathscr{C}\left(\beta_{\tau}\right)=\mathscr{C}\left(\gamma_{\tau}\right)$ at each crossings of D as illustrated in Figure 1. It is worth noticing that the set of all colorings is regarded as a subset of the direct product $X^{\alpha_{D}}$, where α_{D} is the number of the arcs of D. Let $\operatorname{Col}_{X}\left(D_{f}\right)$ denote the set of all X-colorings over f, that is,

$$
\begin{equation*}
\operatorname{Col}_{X}\left(D_{f}\right):=\left\{\mathscr{C} \in(M \times G)^{\alpha_{D}} \mid \mathscr{C} \text { is an } X \text {-coloring, } p_{G} \circ \mathscr{C}=f\right\} \tag{3}
\end{equation*}
$$

where p_{G} is the projection $X=M \times G \rightarrow G$. Then, we can easily verify from the linear operation (2) that $\operatorname{Col}_{X}\left(D_{f}\right)$ is made into an abelian subgroup of $M^{\alpha(D)}$, and that the diagonal subset $M_{\text {diag }} \subset M^{\alpha_{D}}$ is a direct summand in $\operatorname{Col}_{X}\left(D_{f}\right)$. Denoting the other summand by $\operatorname{Col}_{X}^{\text {red }}\left(D_{f}\right)$, we have a decomposition

$$
\operatorname{Col}_{X}\left(D_{f}\right) \cong \operatorname{Col}_{X}^{\mathrm{red}}\left(D_{f}\right) \oplus M_{\text {diag }}
$$

The previous paper [N 2] gave a topological meaning of the coloring sets as follows:

Theorem 2.1 ([N2]). Let E_{L} be a link complement in S^{3}. Regard the G-module M as a local system of E_{L} via $f: \pi_{1}\left(E_{L}\right) \rightarrow G$. Then, there are isomorphisms

$$
\begin{equation*}
\operatorname{Col}_{X}\left(D_{f}\right) \cong H^{1}\left(E_{L}, \partial E_{L} ; M\right) \oplus M, \quad \operatorname{Col}_{X}^{\text {red }}\left(D_{f}\right) \cong H^{1}\left(E_{L}, \partial E_{L} ; M\right) \tag{4}
\end{equation*}
$$

Let us review shadow colorings [CKS, IIJO]. A shadow coloring is a pair of a coloring \mathscr{C} over f and a map λ from the complementary regions of D to M, satisfying the condition depicted in the right side of Figure 1 for every arc. Let $\mathrm{SCol}_{X}\left(D_{f}\right)$ denote the set of shadow colorings of D such that the unbounded exterior region is assigned by $0 \in M$. Notice that, by the coloring rules, assignments of the other regions are uniquely determined from the unbounded region, and admit, therefore, a shadow coloring; we thus obtain

Fig. 1. The coloring conditions at each crossing τ and around each arcs.
a bijection

$$
\begin{equation*}
\operatorname{Col}_{X}\left(D_{f}\right) \simeq \operatorname{SCol}_{X}\left(D_{f}\right) . \tag{5}
\end{equation*}
$$

2.2. Invariants of trilinear forms. We will explain Definition 2.2 below, and show Theorem 2.3.

For this, we need two things: first, we take three G-modules M_{1}, M_{2}, M_{3} and the associated $X_{i}=M_{i} \times G$. Let A be an abelian group. Let us consider a trilinear map $\psi: M_{1} \times M_{2} \times M_{3} \rightarrow A$ over \mathbb{Z} satisfying the G-invariance, that is,

$$
\begin{equation*}
\psi\left(a_{1} \cdot g, a_{2} \cdot g, a_{3} \cdot g\right)=\psi\left(a_{1}, a_{2}, a_{3}\right) \tag{6}
\end{equation*}
$$

holds for any $a_{i} \in M_{i}$ and $g \in G$.
Next, let us consider the map $X_{1} \times X_{2} \times X_{3} \rightarrow A$ by the formula

$$
\begin{equation*}
\left(\left(b_{1}, g_{1}\right),\left(b_{2}, g_{2}\right),\left(b_{3}, g_{3}\right)\right) \mapsto \psi\left(\left(b_{1}-b_{2}\right) \cdot\left(1-g_{2}\right), b_{2}-b_{3}, b_{3}-b_{3} \cdot g_{3}^{-1}\right) \tag{7}
\end{equation*}
$$

for $a_{i} \in M_{i}$ and $g_{1}, g_{2}, g_{3} \in G$. This map was first defined in [N1, Corollary 4.6]. Given three shadow colorings $\mathscr{S}_{i} \in \operatorname{SCol}_{X_{i}}\left(D_{f}\right)$ with $i \leq 3$ and each crossing τ of D, we can find assignments as illustrated in Figure 2. Inspired by the formula (7), we define a weight of τ to be

$$
\mathscr{W}_{\psi, \tau}\left(\mathscr{S}_{1}, \mathscr{S}_{2}, \mathscr{S}_{3}\right):=\psi\left(\left(a_{1}-b_{1}\right)\left(1-g^{\varepsilon_{\tau}}\right), b_{2}-c_{2}, c_{3}-c_{3} \cdot h^{-1}\right) \in A,
$$

where $\varepsilon_{\tau} \in\{ \pm 1\}$ is the sign of τ.
Definition 2.2. Given a G-invariant trilinear map $\psi: M_{1} \times M_{2} \times M_{3} \rightarrow$ A, we define a trilinear map

$$
\mathscr{T}_{\psi}: \prod_{i=1}^{3} \operatorname{SCol}_{X_{i}}\left(D_{f}\right) \rightarrow A ; \quad\left(\mathscr{S}_{1}, \mathscr{S}_{2}, \mathscr{S}_{3}\right) \mapsto \sum_{\tau} \mathscr{W}_{\psi, \tau}\left(\mathscr{S}_{1}, \mathscr{S}_{2}, \mathscr{S}_{3}\right),
$$

where τ runs over all the crossings of D.
The point is that, given a diagram D, we can diagrammatically deal with the trilinear map \mathscr{T}_{ψ} by definitions; see $\S 4.1-\S 4.3$ for examples.

Next, we now show the invariance of \mathscr{T}_{ψ} up to trilinear equivalence:

Fig. 2. Colors around a crossing with respect to the shadow colorings $\mathscr{S}_{1}, \mathscr{S}_{2}, \mathscr{S}_{3}$. Here $\left(b_{i}, g\right)$ and $\left(c_{i}, h\right)$ lie in $M \times G$.

Fig. 3. The 1:1-correspondence associated with a Reidemeister move of type III.

Theorem 2.3. Let two diagrams D and D^{\prime} differ by a Reidemeister move. Then, there is a canonical isomorphism $\mathscr{B}_{i}: \operatorname{SCol}_{X_{i}}\left(D_{f}\right) \simeq \operatorname{SCol}_{X_{i}}\left(D_{f}^{\prime}\right)$, for which the equality $\mathscr{T}_{\psi}=\mathscr{T}_{\psi}^{\prime} \circ\left(\mathscr{B}_{1} \otimes \mathscr{B}_{2} \otimes \mathscr{B}_{3}\right)$ holds. In particular, the equivalence class of the trilinear map \mathscr{T}_{ψ} depends only on the homomorphism $f: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow$ G and the input data $\left(M_{1}, M_{2}, M_{3}, \psi\right)$.

Proof. We first focus on the Reidemeister move of type III; see Figure 3. Considering the correspondence in Figure 3 with $x_{i}, y_{i}, z_{i} \in X_{i}$, we can construct the bijection \mathscr{B}_{i}, where $i \in\{1,2,3\}$. We suppose that the left region is colored by $r_{i} \in M$. Let us show the desired equality $\mathscr{T}_{\psi}=\mathscr{T}_{\psi}^{\prime} \circ\left(\mathscr{B}_{1} \otimes \mathscr{B}_{2} \otimes\right.$ $\left.\mathscr{B}_{3}\right)$. For this, take $a_{i}, b_{i}, c_{i} \in M_{i}$ and $g, h, k \in G$ such that $x_{i}=\left(a_{i}, g\right), y_{i}=$ $\left(b_{i}, h\right), z_{i}=\left(c_{i}, k\right) \in X_{i}$. Then, the sum from the left side is, by definition and examining the figure, computed as

$$
\begin{aligned}
& \psi\left(\left(r_{1}-a_{1}\right)(1-g), a_{2}-c_{2}, c_{3}\left(1-k^{-1}\right)\right) \\
& \quad+\psi\left(\left(r_{1} g-a_{1} g+a_{1}-b_{1}\right)(1-h), b_{2}-c_{2}, c_{3}\left(1-k^{-1}\right)\right) \\
& \quad+\psi\left(\left(r_{1}-a_{1}\right) k\left(1-k^{-1} g k\right),\left(a_{2}-b_{2}\right) k,\left(b_{3} k-c_{3} k+c_{3}\right)\left(1-k^{-1} h^{-1} k\right)\right)
\end{aligned}
$$

On the other hand, the sum from the right side is formulated as

$$
\begin{aligned}
& \psi\left(\left(r_{1}-a_{1}\right)(1-g), a_{2}-b_{2}, b_{3}\left(1-h^{-1}\right)\right) \\
& \quad+\psi\left(\left(r_{1}-b_{1}\right)(1-h), b_{2}-c_{2}, c_{3}\left(1-k^{-1}\right)\right) \\
& \quad+\psi\left(\left(r_{1}-a_{1}\right) h\left(1-h^{-1} g h\right),\left(b_{2}-a_{2}\right) h+a_{2}-c_{2}, c_{3}\left(1-k^{-1}\right)\right)
\end{aligned}
$$

Then, an elementary calculation using (6) can show that the two sums are equal. However, since the calculation is a little tedious, we omit the details.

Finally, the required equality concerning Reidemeister moves of type I immediately follows from $\psi(0, y, z)=0$, and the invariance under the Reidemeister move of type II is clear by a similar discussion.

Remark 2.4. In this way, the construction for trilinear forms is applicable to not only tame links in S^{3}, but also handlebody-knots in S^{3}. In fact, by a similar discussion to [IIJO], we can easily check that the trilinear form is invariant with respect to the diagrammatic moves of handlebody-knots; see [IIJO, Figures 1 and 2] for the moves.
2.3. Topological meaning of the trilinear forms. As mentioned in the introduction, we will state (Theorems 2.5 and 2.6) that the trilinear forms of some links are equal to the trilinear pairings (The proofs of the theorems appear in §5).

Theorem 2.5. Let M_{1}, M_{2}, M_{3} be G-modules as in Definition 2.2. Choose a fundamental class $\left[E_{L}, \partial E_{L}\right]$ in $H_{3}\left(E_{L}, \partial E_{L} ; \mathbb{Z}\right) \cong \mathbb{Z}$. We assume that L is either a hyperbolic link or a prime knot which is neither a cable knot nor a torus knot. Then, via the identification (4), the trilinear form \mathscr{T}_{ψ} is equal to the following composite map:

$$
\begin{equation*}
\bigotimes_{i=1}^{3} H^{1}\left(E_{L}, \partial E_{L} ; M_{i}\right) \longrightarrow H^{3}\left(E_{L}, \partial E_{L} ; M_{1} \otimes M_{2} \otimes M_{3}\right) \xrightarrow{\psi \circ\left\langle\bullet,\left[E_{L}, \partial E_{L}\right]\right\rangle} A . \tag{8}
\end{equation*}
$$

The following theorem shows that a weak version of the identity in Theorem 2.5 also holds for the torus knots.

Theorem 2.6. Let $M_{1}, M_{2}, M_{3}, \psi$, and $\left[E_{L}, \partial E_{L}\right]$ be as above. Assume that L is the (m, n)-torus knot. Then, the trilinear form \mathscr{T}_{ψ} is equal to the composite (8) modulo the integer $m n \in \mathbb{Z}$.

As a concluding remark, while the triple cup product of a link is often considered to be speculative and uncomputable, it turns out to be computable only from a link diagram without describing $\left[E_{L}, \partial E_{L}\right]$ and any triangulation of $S^{3} \backslash L$.

Remark 2.7. We compare the trilinear forms in Definition 2.2 with the existing results on "the quandle cocycle invariants". Briefly speaking, the link invariant in [CKS] is constructed from a quandle X and a map $\Phi: X^{3} \rightarrow A$ which satisfy "the quandle cocycle condition", and is defined to be a certain map $\mathscr{J}_{\Phi}: \mathrm{SCol}_{X}(D) \rightarrow A$. Then, our trilinear form is a trilinearization of the quandle cocycle invariants with respect to quandles of the form $X=M \times G$. To be precise, if $M=M_{1}=M_{2}=M_{3}$, we can see that the associated invariant $\mathscr{J}_{\Phi}: \mathrm{SCol}_{X}(D) \rightarrow A$ is equal to the composite $\mathscr{T}_{\psi} \circ(\triangle \times \mathrm{id}) \circ \Delta$ by definitions, where \triangle is the diagonal map $\operatorname{SCol}_{X}(D) \rightarrow \operatorname{SCol}_{X}(D)^{2}$. In conclusion, the theorems also suggest topological meaning of the quandle cocycle invariants with $X=M \times G$.

Remark 2.8. We also explain that the assumption for L in Theorem 2.6 stems from malnormality. Here, a subgroup $K \subset G$ is said to be malnormal if $g^{-1} K g \cap K=\left\{1_{G}\right\}$ for any $g \in G \backslash K$. For a knot $K \subset S^{3}$, it is proved [HW, Wei] that the peripheral subgroup $\pi_{1}\left(\partial\left(S^{3} \backslash K\right)\right) \subset \pi_{1}\left(S^{3} \backslash K\right)$ is malnormal if and only if K is a prime knot which is neither a cable knot nor a torus knot, as above. Furthermore, for a hyperbolic link L, the peripheral subgroups of the link group is malnormal. Theorem 2.6 is proved in Section 5.2 by using the results in [N5], which in turn is proved by using the malnormality of peripheral subgroups.

3. Relation to 3 -fold branched coverings

In this section, we consider a closed oriented 3-manifold N and the triple cup product

$$
\begin{equation*}
H^{1}(N ; \mathbb{Z} / n \mathbb{Z})^{\otimes 3} \longrightarrow H^{3}(N ; \mathbb{Z} / n \mathbb{Z}) \xrightarrow{\langle\bullet[N]\rangle} \mathbb{Z} / n \mathbb{Z} \tag{9}
\end{equation*}
$$

where the coefficient module $\mathbb{Z} / n \mathbb{Z}$ is a G-module with the trivial G-action. Although there are studies of this map (see, e.g., [S, CGO, Tur]), there are few examples of computation. As an application of the theorems above, this section gives a recovery of the triple cup products of N, when N is a 3 -fold cyclic covering of S^{3} branched over a link.

To state Theorem 3.1, we need some terminology. Let G be $\mathbb{Z} / 3 \mathbb{Z}=$ $\left\langle t \mid t^{3}=1\right\rangle$. Consider the epimorphism $f: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow G$ which sends every meridian to t, and the associated 3 -fold cyclic branched covering $\tilde{C}_{L} \rightarrow S^{3}$.

Theorem 3.1. Let G be \mathbb{Z} / n, and the modules M_{1}, M_{2}, and M_{3} in Definition 2.2 be $\mathbb{Z}\left[t^{ \pm 1}\right] /\left(n, t^{2}+t+1\right)$ with $n \neq 3$. Let $p: \mathbb{Z}\left[t^{ \pm 1}\right] /\left(n, t^{2}+t+1\right)$ $\rightarrow \mathbb{Z} / n \mathbb{Z}$ be the epimorphism which sends $a+$ tb to a. Set up the map $\psi_{0}: M^{3} \rightarrow \mathbb{Z} / n \mathbb{Z}$ which takes (x, y, z) to xyz. As in Theorem 2.5, assume that L is either a hyperbolic link or a prime knot which is neither a cable knot nor a torus knot. Then, there is an isomorphism $\operatorname{Col}_{X_{i}}^{\text {red }}\left(D_{f}\right) \cong \tilde{\tilde{C}}_{L}\left(\tilde{C}_{L} ; \mathbb{Z} / n \mathbb{Z}\right)$ such that the trilinear map $\mathscr{T}_{\text {pow }}$ is equivalent to (9) with $N=\tilde{C}_{L}$.

Proof. We first show the isomorphism $\operatorname{Col}_{X_{i}}^{\mathrm{red}}\left(D_{f}\right) \cong H^{1}\left(\tilde{C}_{L} ; \mathbb{Z} / n \mathbb{Z}\right)$. Let R be the ring $\mathbb{Z}[t] /\left(n, t^{2}+t+1\right)$. By Theorem 2.1, we have $\operatorname{Col}_{X_{i}}^{\text {red }}\left(D_{f}\right) \cong$ $H^{1}\left(E_{L} ; \partial E_{L} ; M\right)$. Notice that $H^{i}\left(\partial E_{L} ; M\right)$ is annihilated by $1-t$. Since $1-t$ and $1+t+t^{2}$ are coprime, we have

$$
\begin{equation*}
H^{1}\left(E_{L} ; \partial E_{L} ; M\right) \cong H^{1}\left(E_{L} ; M\right) \cong \operatorname{Hom}_{R-\bmod }\left(H_{1}\left(E_{L}, M\right), R\right) \tag{10}
\end{equation*}
$$

Let $\tilde{E}_{L} \rightarrow E_{L}=S^{3} \backslash L$ be the 3 -fold covering. Then, by Shapiro's lemma (see, e.g. [Bro]), the canonical inclusion $l: \mathbb{Z} / n \rightarrow R$ yields the isomorphisms:

$$
\begin{align*}
H^{*}\left(\tilde{E}_{L}: \mathbb{Z} / n\right) & \cong H^{*}\left(E_{L} ; \mathbb{Z}[t] /\left(n, t^{3}-1\right)\right) \\
& \cong H^{*}\left(E_{L} ; R\right) \oplus H^{*}\left(E_{L} ; \mathbb{Z}[t] /(n, t-1)\right) \tag{11}
\end{align*}
$$

Here, the second isomorphism is obtained from the ring isomorphism $\mathbb{Z}[t] /\left(n, t^{3}-1\right) \cong R \oplus \mathbb{Z}[t] /(n, t-1)$. Let $i: \tilde{E}_{L} \hookrightarrow \tilde{C}_{L} \quad$ be the inclusion. According to [Kaw, Theorem 5.5.1], the homology $H_{1}\left(\tilde{C}_{L} ; \mathbb{Z}\right)$ is annihilated by $1+t+t^{2}$, and the induced map $i_{*}: H_{1}\left(\tilde{E}_{L} ; \mathbb{Z}\right) \rightarrow H_{1}\left(\tilde{C}_{L} ; \mathbb{Z}\right)$ is a splitting surjection. Thus, the induced map $i^{*}: H^{1}\left(\tilde{C}_{L} ; \mathbb{Z} / n\right) \rightarrow H^{1}\left(\tilde{E}_{L} ; \mathbb{Z} / n\right)$ is injective and the image is isomorphic to $H^{1}\left(E_{L} ; R\right)$. In summary, we obtained the desired isomorphism.

We will complete the proof. By (11), we have a splitting injection $\mathscr{S}: H^{*}\left(\tilde{E}_{L}, \partial \tilde{E}_{L} ; R\right) \rightarrow H^{*}\left(E_{L}, \partial E_{L} ; \mathbb{Z} / n\right)$. Take the canonical maps

$$
j:\left(\tilde{E}_{L}, \partial \tilde{E}_{L}\right) \rightarrow\left(\tilde{C}_{L}, \tilde{C}_{L} \backslash \tilde{E}_{L}\right), \quad \text { and } \quad k:\left(\tilde{C}_{L}, \varnothing\right) \rightarrow\left(\tilde{C}_{L}, \tilde{C}_{L} \backslash \tilde{E}_{L}\right)
$$

Then, we have the commutative diagram:

Here, the vertical maps j^{*} are the isomorphisms by the excision axiom. Moreover, by the discussion in the above paragraph, the composite $k^{*} \circ\left(j^{*}\right)^{-1} \circ \mathscr{S}$ is an isomorphism from $H^{1}\left(E_{L}, \partial E_{L} ; M\right)$. Since $p \circ \imath: \mathbb{Z} / n \rightarrow \mathbb{Z} / n$ is an isomorphism, the following two composites are equivalent:

$$
p \circ \psi_{0} \circ\left\langle\bullet,\left[E_{L}, \partial E_{L}\right]\right\rangle \circ \smile, \quad\left\langle\bullet,\left[\tilde{C}_{L}\right]\right\rangle \circ \smile
$$

By Theorem 2.5, the left hand side is equal to the trilinear map $\mathscr{T}_{p \circ \psi_{0}}$. Hence, $\mathscr{T}_{p \circ \psi_{0}}$ is equivalent to (9) with $N=\tilde{C}_{L}$ as desired.

4. Examples as diagrammatic computations

4.1. For the trefoil knot and the figure eight knot. We will compute the trilinear forms \mathscr{T}_{ψ} associated with some homomorphisms $f: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow G$, where L is either the trefoil knot or the figure eight knot.

Fig. 4. The trefoil knot, the figure eight knot, and the (m, m) -torus knot.

As a simple example, we first focus on the trefoil knot 3_{1}. Let D be the diagram of K as illustrated in Figure 4. Note that the Wirtinger presentation is given by $\pi_{1}\left(S^{3} \backslash L\right) \cong\langle\alpha, \beta \mid \alpha \beta \alpha=\beta \alpha \beta\rangle$. Then, we can easily see that a correspondence $\mathscr{C}:\{\alpha, \beta, \gamma\} \rightarrow X$ with

$$
\mathscr{C}(\alpha)=\left(a_{i}, g\right), \quad \mathscr{C}(\beta)=\left(b_{i}, g\right), \quad \mathscr{C}(\alpha)=\left(c_{i}, g\right) \in M_{i} \times G
$$

is an X-coloring over $f: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow G$, if and only if it satisfies the four equations

$$
\begin{gather*}
g=f(\alpha), \quad h=f(\beta), \quad g h g=h g h, \tag{12}\\
c_{i}=a_{i} \cdot h+b_{i} \cdot(1-h), \tag{13}\\
\left(a_{i}-b_{i}\right) \cdot(1-g+h g)=\left(a_{i}-b_{i}\right) \cdot(1-h+g h)=0 . \tag{14}
\end{gather*}
$$

Furthermore, given a G-invariant linear form ψ, the sum \mathscr{T}_{ψ} is equal to

$$
\begin{aligned}
& \psi\left(-a_{1} \cdot(1-g), a_{2}-b_{2}, a_{3} \cdot\left(1-h^{-1}\right)\right) \\
& \quad+\psi\left(-b_{1} \cdot(1-h), b_{2}-c_{2}, c_{3} \cdot\left(1-h^{-1} g^{-1} h\right)\right) \\
& \quad+\psi\left(-c_{1} \cdot\left(1-h^{-1} g h\right), c_{2}-a_{2}, a_{3} \cdot\left(1-g^{-1}\right)\right)
\end{aligned}
$$

by definition. Then, by canceling out c_{i} by using (12) and (13), we can easily obtain the following formula: for $\left(\left(a_{i}, g\right),\left(b_{i}, h\right)\right) \in \operatorname{SCol}_{X_{i}}\left(D_{f}\right) \subset M_{i}^{2}$,

$$
\begin{equation*}
\mathscr{T}_{\psi}\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right)\right)=\psi\left(\left(a_{1}-b_{1}\right) g^{-1},\left(a_{2}-b_{2}\right) \cdot h, a_{3}-b_{3}\right) \in A . \tag{15}
\end{equation*}
$$

Next, we will compute \mathscr{T}_{ψ} of the figure eight knot. The computation can be done in a similar way to the trefoil case. We only describe the outline.

Let D be the diagram with four arcs as illustrated in Figure 4. Similarly, we can see that a correspondence $\mathscr{C}:\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\} \rightarrow X$ with $\mathscr{C}\left(\alpha_{i}\right)=\left(x_{i}, z_{i}\right) \in$ $M_{i} \times G$ is an X-coloring \mathscr{C} over $f: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow G$, if and only if it satisfies the following equations:

$$
\begin{gather*}
z_{i}=f\left(\alpha_{i}\right), \quad z_{2}^{-1} z_{1} z_{2}=z_{1}^{-1} z_{2}^{-1} z_{1} z_{2} z_{1}^{-1} z_{2} z_{1} \in G \tag{16}\\
x_{3}=\left(x_{1}-x_{2}\right) \cdot z_{2}+x_{2}, \quad x_{4}=\left(x_{2}-x_{1}\right) \cdot z_{1}+x_{1}, \tag{17}
\end{gather*}
$$

$$
\begin{align*}
\left(x_{1}-x_{2}\right) \cdot\left(z_{1}+z_{2}-1\right) & =\left(x_{1}-x_{2}\right) \cdot\left(1-z_{2}^{-1}\right) z_{1} z_{2} \\
& =\left(x_{1}-x_{2}\right) \cdot\left(1-z_{1}^{-1}\right) z_{2} z_{1} \in M . \tag{18}
\end{align*}
$$

Accordingly, it follows from (17) that the set $\operatorname{Col}_{X}\left(D_{f}\right)$ is generated by x_{1}, x_{2}.
Given a G-invariant trilinear form ψ, the trilinear from \mathscr{T}_{ψ} is given by the following formula:

$$
\begin{aligned}
& \mathscr{T}_{\psi}\left(\left(x_{1}, x_{2}\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right),\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)\right) \\
&= \psi\left(\left(x_{1}-x_{2}\right) \cdot z_{1} z_{2}^{-1}, x_{2}^{\prime}-x_{1}^{\prime},\left(x_{1}^{\prime \prime}-x_{2}^{\prime \prime}\right) \cdot\left(1-z_{2}^{-1}\right)\right) \\
&+\psi\left(\left(x_{1}-x_{2}\right) \cdot z_{2}^{-1} z_{1},\left(x_{1}^{\prime}-x_{2}^{\prime}\right) \cdot\left(1-z_{1}\right),\left(x_{1}^{\prime \prime}-x_{2}^{\prime \prime}\right) \cdot\left(1-z_{2}^{-1}\right) z_{1}\right) .
\end{aligned}
$$

Remark 4.1. Unfortunately, the author does not know an example of $\left(G, M_{i}, \psi\right)$ of a non-discrete Lie group G, G-modules M_{i}, and a G-invariant trilinear form, for which the trilinear form \mathscr{T}_{ψ} on $M_{1} \times M_{2} \times M_{3}$ is nontrivial. Though he investigated the case where $G=S L_{2}(\mathbb{C})$ and $M=\mathbb{C}^{2}$ or \mathbb{C}^{3}, all resulting \mathscr{T}_{ψ} turned out to be trivial. So, the author would like to propose it as an open problem to construct an example of $\left(G, M_{i}, \psi\right)$, with G a nondiscrete Lie group, which yields an nontrivial trilinear form \mathscr{T}_{ψ}.
4.2. The (m, m)-torus link $T_{m, m}$. We also calculate the trilinear form \mathscr{T}_{ψ} concerning the (m, m)-torus link, following from Definition 2.2. These calculations is useful in the paper [N4], which suggests invariants of "Hurewitz equivalence classes".

Let L be the (m, m)-torus link $T_{m, m}$ with $m \geq 2$, and let $\alpha_{1}, \ldots, \alpha_{m}$ be the arcs depicted in Figure 4. Let us identity α_{i+m} with α_{i} of period m. The Wirtinger presentation of $\pi_{1}\left(S^{3} \backslash L\right)$ is

$$
\left\langle a_{1}, \ldots, a_{m} \mid a_{1} \cdots a_{m}=a_{m} a_{1} a_{2} \cdots a_{m-1}=a_{2} \cdots a_{m} a_{1}\right\rangle
$$

Given a homomorphism $f: \pi_{1}\left(S^{3} \backslash L\right) \rightarrow G$ with $f\left(\alpha_{i}\right) \in G$, let us discuss X-colorings \mathscr{C} over f. Concerning the coloring condition on the ℓ-th link component, it satisfies the equation

$$
\begin{equation*}
\left(\cdots\left(\mathscr{C}\left(\alpha_{\ell}\right) \triangleleft \mathscr{C}\left(\alpha_{\ell+1}\right)\right) \triangleleft \cdots\right) \triangleleft \mathscr{C}\left(\alpha_{\ell+m-1}\right)=\mathscr{C}\left(\alpha_{\ell}\right) \tag{19}
\end{equation*}
$$

for any $1 \leq \ell \leq m$. With the notation $\mathscr{C}\left(\alpha_{i}\right):=\left(x_{i}, z_{i}\right) \in X$, this equation (19) reduces to a system of linear equations

$$
\begin{equation*}
\left(x_{\ell-1}-x_{\ell}\right)+\sum_{\ell \leq j \leq \ell+m-2}\left(x_{j}-x_{j+1}\right) \cdot z_{j+1} z_{j+2} \cdots z_{m+\ell}=0 \in M, \tag{20}
\end{equation*}
$$

for any $1 \leq \ell \leq m$. Conversely, we can easily verify that, if a map $\mathscr{C}:\{\operatorname{arcs}$ of $D\} \rightarrow X$ satisfies the equation (20), then \mathscr{C} is an X-coloring.

Denoting the left side in (20) by $\Gamma_{f, \ell}(\vec{x})$, consider a homomorphism

$$
\Gamma_{f}: M^{m} \rightarrow M^{m} ; \quad\left(x_{1}, \ldots, x_{m}\right) \mapsto\left(\Gamma_{f, 1}(\vec{x}), \ldots, \Gamma_{f, m}(\vec{x})\right) .
$$

To conclude, the set $\operatorname{Col}_{X}\left(D_{f}\right)$ coincides with the kernel of Γ_{f}.
Next, we precisely describe the resulting trilinear form.
Proposition 4.2. Let $f: \pi_{1}\left(S^{3} \backslash T_{m, m}\right) \rightarrow G$ be as above. Let $\psi: M^{3} \rightarrow$ A be a G-invariant linear functions. Then, the trilinear form $\mathscr{T}_{\psi}: \operatorname{Ker}\left(\Gamma_{f}\right)^{\otimes 3} \rightarrow$ A sends $\left(w_{1}, \ldots, w_{m}\right) \otimes\left(x_{1}, \ldots, x_{m}\right) \otimes\left(y_{1}, \ldots, y_{m}\right)$ to

$$
\begin{gather*}
\sum_{\ell=1}^{m} \sum_{k=1}^{m-1} \psi\left(w_{\ell}\left(1-z_{\ell}\right) \hat{z}_{\ell+1 ; \ell+k-1}, \sum_{j=1}^{k}\left(x_{j+\ell-1}-x_{j+\ell}\right) \hat{z}_{j+\ell ; k+\ell-1}\right. \\
\left.y_{k+\ell}\left(1-z_{k+\ell}^{-1}\right)\right) \tag{21}
\end{gather*}
$$

Here, for $s \leq t$, we use the notations $\hat{z}_{s ; t}:=z_{s} z_{s+1} \cdots z_{t}$ and $\hat{z}_{s+1 ; s}:=1 \in G$.
The formula can be obtained by direct calculation.
4.3. Examples of Theorem 3.1. We will give some examples of Theorem 3.1. Under the setting of Theorem 3.1, let $G=\mathbb{Z} / 3=\left\langle t \mid t^{3}=1\right\rangle$, and $f: \pi_{1}\left(S^{3} \backslash L\right)$ $\rightarrow \mathbb{Z} / 3$ be the map which sends every meridian to t. Take $M_{i}=A=$ $\mathbb{Z}[t] /\left(n, t^{2}+t+1\right)$ for some $n \in \mathbb{Z}_{\geq 0}$, and let $\psi_{0}: M_{1} \times M_{2} \times M_{3} \rightarrow A$ send (x, y, z) to $x y z$.

In this paragraph, we focus only on knots, K, such that $H^{1}\left(E_{K}, \partial E_{K} ; A\right)$ $\cong H^{1}\left(\tilde{\boldsymbol{B}}_{K} ; \mathbb{Z} / n\right)$ is isomorphic to either A or 0 . We will write the trilinear map $\mathscr{T}_{\psi_{0}}$ as a cubic polynomial with respect to $(a, b, c) \in\left(H^{1}\left(E_{K}, \partial E_{K} ; \mathbb{Z} / n\right)\right)^{3}$. Then, we give the resulting computation of $\mathscr{T}_{\psi_{0}}$, when K is a prime knot with crossing number <7. The list of the computation is given as follows:

Knot	n	$\mathscr{T}_{\psi_{0}}$
3_{1}	2	$a b c$
4_{1}	4	$2 a b c$
5_{1}	any	0
5_{2}	5	$(1+t) a b c$
6_{1}	any	0
6_{2}	any	0
6_{3}	any	0

5. Proofs of the theorems

We will complete the proofs of Theorems $2.5-2.6$ in §5.3. While the statements were described in terms of ordinary cohomology, the proof will be done via the group cohomology. For this purpose, we review the relative group homology in §5.1.
5.1. Preliminary: Review of relative group cohomology. We will recall the relative group (co)homology in the non-homogeneous terms. Throughout this subsection, we fix a group Γ and a homomorphism $f: \Gamma \rightarrow G$. Then, we have the action of Γ on the right G-module M via f.

Set $C_{\mathrm{gr}}^{n}(\Gamma ; M)=\operatorname{Map}\left(\Gamma^{n}, M\right)$. For $\phi \in C_{\mathrm{gr}}^{n}(\Gamma ; M)$, define the coboundary $\partial^{n}(\phi) \in C_{\mathrm{gr}}^{n+1}(\Gamma ; M)$ by the formula

$$
\begin{aligned}
\partial^{n}(\phi)\left(g_{1}, \ldots, g_{n+1}\right)= & \phi\left(g_{2}, \ldots, g_{n+1}\right) \\
& +\sum_{1 \leq i \leq n}(-1)^{i} \phi\left(g_{1}, \ldots, g_{i-1}, g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n+1}\right) \\
& +(-1)^{n} \phi\left(g_{1}, \ldots, g_{n}\right) g_{n+1} .
\end{aligned}
$$

Let K_{j} be a subgroup and $l_{j}: K_{j} \hookrightarrow \Gamma$ be the inclusion, where the index j runs over $1 \leq j \leq m$. Then, we can define the mapping cone of l_{j} as follows:

$$
C^{n}\left(\Gamma, K_{\mathscr{f}} ; M\right):=\operatorname{Map}\left(\Gamma^{n}, M\right) \oplus\left(\underset{j}{\oplus} \operatorname{Map}\left(\left(K_{j}\right)^{n-1}, M\right)\right)
$$

For $\left(h, k_{1}, \ldots, k_{m}\right) \in C^{n}\left(\Gamma, K_{\mathscr{f}} ; M\right)$, define $\partial^{n}\left(h, k_{1}, \ldots, k_{m}\right)$ in $C^{n+1}\left(\Gamma, K_{\mathcal{F}} ; M\right)$ by

$$
\begin{aligned}
& \partial^{n}\left(h, k_{1}, \ldots, k_{m}\right)\left(a, b_{1}, \ldots, b_{m}\right) \\
& \quad=\left(\partial^{n} h(a), h\left(b_{1}\right)-\partial^{n-1} k_{1}\left(b_{1}\right), \ldots, h\left(b_{m}\right)-\partial^{n-1} k_{m}\left(b_{m}\right)\right)
\end{aligned}
$$

where $\left(a, b_{1}, \ldots, b_{m}\right) \in \Gamma^{n+1} \times K_{1}^{n} \times \cdots \times K_{m}^{n}$. Then, $\left(C^{*}\left(\Gamma, K_{\mathscr{f}} ; M\right), \partial^{*}\right)$ is a cochain complex, and we can consider its cohomology.

We now observe the submodule consisting of 1 -cocycles $Z^{1}\left(\Gamma, K_{\mathcal{F}} ; M\right)$. Let us define the semi-direct product $M \rtimes G$ by

$$
(a, g) \star\left(a^{\prime}, g^{\prime}\right):=\left(a \cdot g^{\prime}+a^{\prime}, g g^{\prime}\right), \quad \text { for } a, a^{\prime} \in M, g, g^{\prime} \in G
$$

Let $\operatorname{Hom}_{f}(\Gamma, M \rtimes G)$ be the set of group homomorphisms $\Gamma \rightarrow M \rtimes G$ over the homomorphism f. Consider the following map:

$$
\begin{gathered}
Z^{1}\left(\Gamma, K_{\mathscr{f}} ; M\right) \rightarrow \operatorname{Hom}_{f}(\Gamma, M \rtimes G) \oplus M^{m} ; \\
\left(h, y_{1}, \ldots, y_{m}\right) \mapsto\left(\gamma \mapsto(h(\gamma), f(\gamma)), y_{1}, \ldots, y_{m}\right) .
\end{gathered}
$$

Lemma 5.1 ([N2, Lemma 5.2]). This map gives an isomorphism between $Z^{1}\left(\Gamma, K_{\mathcal{f}} ; M\right)$ and the following subset of $\operatorname{Hom}_{f}(\Gamma, M \rtimes G) \oplus M^{m}$:

$$
\left\{\left(\tilde{f}, y_{1}, \ldots, y_{m}\right) \mid \tilde{f}\left(h_{j}\right)=\left(y_{j}-y_{j} \cdot h_{j}, f_{j}\left(h_{j}\right)\right), \text { for any } h_{j} \in K_{j}\right\}
$$

The image of ∂^{1}, i.e., $B^{1}\left(\Gamma, K_{\mathcal{F}} ; M\right)$, is equal to the subset $\left\{\left(\tilde{f}_{a}, a, \ldots\right.\right.$, a) $\}_{a \in M}$. Here, for $a \in M$, the map $\tilde{f}_{a}: \Gamma \rightarrow M \rtimes G$ is defined as the homomorphism which sends γ to $(a-a \cdot \gamma, f(\gamma))$. In particular, if $K_{\mathcal{F}}$ is not empty, $B^{1}\left(\Gamma, K_{\mathscr{\mathscr { F }}} ; M\right)$ is a direct summand of $Z^{1}\left(\Gamma, K_{\mathscr{F}} ; M\right)$.

Now, we review the cup product. When $K_{\mathscr{g}}$ is the empty set, the product of $u \in C^{p}(\Gamma ; M)$ and $v \in C^{q}\left(\Gamma ; M^{\prime}\right)$ is defined to be $u \smile v \in C^{p+q}\left(\Gamma ; M \otimes M^{\prime}\right)$ given by

$$
\begin{align*}
(u \smile v)\left(g_{1}, \ldots, g_{p+q}\right):= & (-1)^{p q}\left(u\left(g_{1}, \ldots, g_{p}\right) g_{p+1} \cdots g_{p+q}\right) \\
& \otimes v\left(g_{p+1}, \ldots, g_{p+q}\right) . \tag{22}
\end{align*}
$$

When $K_{\mathscr{f}}$ is not empty, for two elements $\left(f, k_{1}, \ldots, k_{m}\right) \in C^{p}\left(\Gamma, K_{\mathscr{f}} ; M\right)$ and $\left(f^{\prime}, k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right) \in C^{q}\left(\Gamma, K_{\mathscr{y}} ; M^{\prime}\right)$, let us define the cup product by

$$
\left(f \smile f^{\prime}, k_{1} \smile f^{\prime}, \ldots, k_{m} \smile f^{\prime}\right) \in C^{p+q}\left(\Gamma, K_{\mathscr{F}} ; M \otimes M^{\prime}\right)
$$

This formula yields a bilinear map, by passage to cohomology.
Finally, we observe another complex. Let us define the module $C_{\text {red }}^{n}(\Gamma)$ by the formula

$$
\left\{\left(c_{1}, \ldots, c_{m}\right) \in \operatorname{Map}\left(\mathbb{Z}\left[\Gamma^{n}\right], M\right)^{m} \mid c_{1}+c_{2}+\cdots+c_{m}=0 \in \operatorname{Map}\left(\mathbb{Z}\left[\Gamma^{n}\right], M\right)\right\}
$$

Then, this complex canonically has an inclusion into the direct sum of $C^{n}\left(\Gamma, K_{j}\right)$:

$$
P_{n}: C_{\mathrm{red}}^{n}(\Gamma) \rightarrow \underset{j: 1 \leq j \leq m}{ } C^{n}\left(\Gamma, K_{j}\right) .
$$

Then, we define a quotient complex, $D^{n}\left(\Gamma, K_{\mathscr{F}} ; M\right)$, to be the cokernel of P_{n}. Then, $C^{n}\left(\Gamma, K_{\mathscr{F}} ; M\right)$ is isomorphic to $D^{n}\left(\Gamma, K_{\mathscr{F}} ; M\right)$, because the kernel of the inclusions $\bigoplus_{j=1}^{m} C^{n}\left(\Gamma, K_{j}\right) \rightarrow C^{n}(\Gamma, \mathscr{K})$ is the image of P_{n}.

Remark 5.2. We give a natural relationship to the usual cohomology. Take the Eilenberg-MacLane spaces of type $(\Gamma, 1)$ and of type $\left(K_{j}, 1\right)$, and consider the map $\left(t_{j}\right)_{*}: K\left(K_{j}, 1\right) \rightarrow K(\Gamma, 1)$ induced by the inclusions. Then the relative homology $H_{n}\left(\Gamma, K_{\mathscr{F}} ; M\right)$ is isomorphic to the homology of the mapping cone of $\bigsqcup_{j} K\left(K_{j}, 1\right) \rightarrow K(\Gamma, 1)$ with local coefficients. Further, the cup product \smile above coincides with that on the singular cohomology groups.

We mention the case where L is either a knot or an unsplittable link. (We note that any hyperbolic knot is unsplittable). Then, the complement $S^{3} \backslash L$ is an Eilenberg-MacLane space by the sphere theorem. Since we only use Γ as $\pi_{1}\left(S^{3} \backslash L\right)$ in this paper, we may discuss only the relative group cohomology.
5.2. Review: results of the previous papers [N2] and [N5]. Throughout this section, we denote the union of the fundamental groups of the boundaries of $S^{3} \backslash L$ by $\partial \pi_{1}\left(S^{3} \backslash L\right)$, for brevity. Let $m=\# L$, and choose a diagram D of L.

Theorem 5.3 ([N2, Theorem 2.2]). Let X be $M \times G$, as mentioned in (2). Let $\kappa: X \rightarrow M \rtimes G$ be a map which sends (m, g) to $(m-m g, g)$. Given an X-coloring \mathscr{C} over f, consider a map $\{\operatorname{arcs}$ of $D\} \rightarrow M \rtimes G$ which assigns α to $\kappa(\mathscr{C}(\alpha))$. Then, this assignment yields isomorphisms

$$
\begin{aligned}
\operatorname{Col}_{X}\left(D_{f}\right) & \cong Z^{1}\left(\pi_{1}\left(S^{3} \backslash L\right), \partial \pi_{1}\left(S^{3} \backslash L\right) ; M\right), \\
\operatorname{Col}_{X}^{\text {red }}\left(D_{f}\right) & \cong H^{1}\left(\pi_{1}\left(S^{3} \backslash L\right), \partial \pi_{1}\left(S^{3} \backslash L\right) ; M\right) .
\end{aligned}
$$

Next, we explain Theorem 5.4. Choose a relative 1-cocycle $\tilde{f}: \pi_{1}\left(S^{3} \backslash L\right)$ $\rightarrow M \rtimes \pi_{1}\left(S^{3} \backslash L\right)$ with y_{1}, \ldots, y_{m}. We consider the subgroup K_{ℓ} defined by

$$
\left\{\left(y_{\ell}-y_{\ell} \mathfrak{m}_{\ell}^{a} \mathrm{I}_{\ell}^{b}, \mathfrak{m}_{\ell}^{a} l_{\ell}^{b}\right) \in M \rtimes \pi_{1}\left(S^{3} \backslash L\right) \mid a, b \in \mathbb{Z}^{2}\right\}
$$

Given a G-invariant trilinear map $\psi: M^{3} \rightarrow A$, consider the map

$$
\begin{gather*}
\theta_{\ell}:\left(M \rtimes \pi_{1}\left(S^{3} \backslash L\right)\right)^{3} \rightarrow A \\
((a, g),(b, h),(c, k)) \mapsto
\end{gathered} \begin{gathered}
\\
c+\left(a+y_{\ell}-y_{\ell} g\right) \cdot h k,\left(b+y_{\ell}-y_{\ell} h\right) \cdot \tag{23}
\end{gather*}
$$

Then, we can easily check that each θ_{ℓ} is a 3 -cocycle in $C^{3}\left(M \rtimes \pi_{1}\left(S^{3} \backslash L\right) ; A\right)$. The collection $\Psi:=\left(\theta_{1}, \ldots, \theta_{\# L}\right)$ represents a relative 3 -cocycle in $D^{3}(M \rtimes$ $\left.\pi_{1}\left(S^{3} \backslash L\right), \mathscr{K} ; A\right)$.

Proposition 5.4 ([N5, Proposition 6.7]). Under the notation above, fix a shadow coloring $\mathscr{S}_{\tilde{f}}$ corresponding the relative 1-cocycle $\left(\tilde{f}, y_{1}, \ldots, y_{\# L}\right)$.

If L is either a hyperbolic link or a prime knot which is neither a cable knot nor a torus knot, as in Theorem 2.5, then the diagonal restriction of \mathscr{T}_{ψ} is equal to the pairing of the 3-class $\left[E_{L}, \partial E_{L}\right]$ and the above 3-cocycle Ψ. Namely,

$$
\begin{equation*}
\mathscr{T}_{\psi}\left(\mathscr{S}_{\tilde{f}}, \mathscr{S}_{\tilde{f}}, \mathscr{S}_{\tilde{f}}\right)=\psi\left\langle\Psi, \tilde{f}_{*}\left[E_{L}, \partial E_{L}\right]\right\rangle . \tag{24}
\end{equation*}
$$

If L is the (m, n)-torus knot, the same equality (24) holds modulo mn.

5.3. Proof of Theorem 2.5; trilinear pairing.

Proof (Proof of Theorem 2.5). First, we observe (25) below. Consider a 0 -cochain $\vec{y}:=\left(y_{1}, \ldots, y_{\# L}\right) \in D^{0}\left(M \rtimes \pi_{1}\left(S^{3} \backslash L\right), M\right)$. Then, $\tilde{f}-\partial^{0} \vec{y}$ is represented by another 1-cocycle

$$
\mathscr{C}^{\prime}:=\left(\left(\tilde{f}-\bar{y}_{1}, \ldots, \tilde{f}-\bar{y}_{\nexists L}\right),(0, \ldots, 0)\right) \in D^{1}\left(M \rtimes \pi_{1}\left(S^{3} \backslash L\right), M\right),
$$

where \bar{y}_{ℓ} denotes the map $\pi_{1}\left(S^{3} \backslash L\right) \rightarrow M$ which takes g to $y_{1}-y_{1} g$. The 3-cocycle Ψ explained in (23) is equal to the cup product $\mathscr{C}^{\prime} \smile \mathscr{C}^{\prime} \smile \mathscr{C}^{\prime}$, by definition. Hence, Proposition 5.4 implies

$$
\begin{align*}
\mathscr{T}_{\psi}\left(\mathscr{S}_{\tilde{f}}, \mathscr{S}_{\tilde{f}}, \mathscr{S}_{\tilde{f}}\right) & =\psi\left\langle\mathscr{C}^{\prime} \smile \mathscr{C}^{\prime} \smile \mathscr{C}^{\prime},\left[E_{L}, \partial E_{L}\right]\right\rangle \\
& =\psi\left\langle\mathscr{C} \smile \mathscr{C} \smile \mathscr{C},\left[E_{L}, \partial E_{L}\right]\right\rangle . \tag{25}
\end{align*}
$$

Finally, we will deal with the non-diagonal parts, and complete the proof. Here, we define M to be the direct product $M_{1} \times M_{2} \times M_{3}$, and consider the j-th inclusion

$$
l_{j}: M_{j} \rightarrow M=M_{1} \times M_{2} \times M_{3} ; \quad x \mapsto\left(\delta_{1 j} x, \delta_{2 j} x, \delta_{3 j} x\right) .
$$

Thus, we can decompose $\mathscr{S}_{\hat{f}}$ as $\left(\mathscr{S}_{1}, \mathscr{S}_{2}, \mathscr{S}_{3}\right) \in \operatorname{Col}_{X_{1}}\left(D_{f}\right) \times \operatorname{Col}_{X_{2}}\left(D_{f}\right) \times$ $\operatorname{Col}_{X_{3}}\left(D_{f}\right)$ componentwise. In addition, we define a G-invariant trilinear form

$$
\bar{\psi}: M \times M \times M \rightarrow A ; \quad((a, b, c),(d, e, f),(g, h, i)) \mapsto \psi(a, e, f) .
$$

Then, the transformation of the coefficients $l_{1} \times l_{2} \times l_{3}$ yields a diagram

Here, the left bottom \smile_{Δ} is defined by $a \mapsto a \smile a \smile a$. Then, we can verify the commutativity directly from the definitions. By Proposition 5.4, the bottom arrow is equal to the left hand side in (24). Hence, the pullback to $\prod_{i=1}^{3} H^{1}\left(E_{L}, \partial E_{L} ; M_{i}\right)$ is equal to the trilinear \mathscr{T}_{ψ} as desired.

Proof (Proof of Theorem 2.6). Let L be the (m, n)-torus knot. According to the latter part in Theorem 5.4, we need discussions modulo mn. Then, the proof runs well in the same manner.

References

[Bro] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, SpringerVerlag, New York, 1994.
[CKS] J. S. Carter, S. Kamada, M. Saito, Geometric interpretations of quandle homology, J. Knot Theory Ramifications 10 (2001), no. 3, 345-386.
[CGO] T. D. Cochran, A. Gerges, K. Orr, Dehn surgery equivalence relations on 3-manifolds, Math. Proc. Cambridge Philos. Soc. 131 (2001), no. 1, 97-127.
[HW] P. de la Harpe, C. Weber, On malnormal peripheral subgroups in fundamental groups, Confluentes Math. 6 (2014), no. 1, 41-64.
[IIJO] A. Ishii, M. Iwakiri, Y. Jang, K. Oshiro, A G-family of quandles and handlebody-knots, Illinois J. Math. 57 (2013), no. 3, 817-838.
[Kaw] A. Kawauchi ed., A survey of knot theory, Birkhaeuser, Basel, (1996).
[L] T. Lidman, On the infinity flavor of Heegaard Floer homology and the integral cohomology ring, Comment. Math. Helv. 88 (2013), no. 4, 875-898.
[M] T. E. Mark, Triple products and cohomological invariants for closed 3-manifolds, Michigan Math. J. 56 (2008), no. 2, 265-281.
[N1] T. Nosaka, Quandle cocycles from invariant theory, Adv. Math. 245 (2013), 423-438.
[N2] T. Nosaka, Twisted cohomology pairings of knots I; diagrammatic computation, Geom. Dedicata 189 (2017), 139-160.
[N3] T. Nosaka, Twisted cohomology pairings of knots II, preprint.
[N4] T. Nosaka, Bilinear-form invariants of Lefschetz fibrations over the 2-sphere, J. Gökova Geom. Topol. 11 (2017), 32-55.
[N5] T. Nosaka, On the fundamental relative 3-classes of knot group representations, Geom Dedicata 201 (2019), 1-24.
[S] D. Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975), no. 3, 275-277.
[Tur] V. G. Turaev, Cohomology rings, linking forms and invariants of spin structures of threedimensional manifolds, Mat. Sb. (N.S.) 120 (162) (1983), no. 1, 68-83.
[Wei] R. Weidmann, On the rank of amalgamated products and product knot groups, Math. Ann. 312 (1998), no. 4, 761-771.

Takefumi Nosaka
Department of mathematics
Tokyo institute of technology
2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
E-mail: nosaka@math.titech.ac.jp

[^0]: The author is supported by Grant-in-aid for Science Research, No. 00646903. 2010 Mathematics Subject Classification. Primary 12A34, 98B76; Secondary 23C57.
 Key words and phrases. Cup product, Trilinear form, knot, group homology, quandle.

