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Abstract. Let Ng be the non-orientable surface of genus g, MCGðNgÞ the mapping

class group of Ng, TðNgÞ the index 2 subgroup generated by all Dehn twists of

MCGðNgÞ. We prove that for odd genus, (1) if g ¼ 4k þ 3 ðkb 1Þ, MCGðNgÞ can

be generated by three elements of finite order; (2) if g ¼ 4k þ 1 ðkb 2Þ, TðNgÞ can be

generated by three elements of finite order.

1. Introduction

Let Ng be the closed non-orientable surface of genus g. We denote by

HomeoðNgÞ the group consisting of all self-homeomorphisms of Ng, and by

Homeo0ðNgÞ the normal subgroup consisting of homeomorphisms which are

isotopic to the identity. Then the quotient group HomeoðNgÞ=Homeo0ðNgÞ
is called the mapping class group of Ng and is denoted by MCGðNgÞ. The

subgroup of MCGðNgÞ generated by all Dehn twists is denoted by TðNgÞ.
Lickorish is the first one who discovered that TðNgÞ is an index 2 sub-

group of MCGðNgÞ ([6, 7]). Outside TðNgÞ, there is a mapping class called

a ‘‘Y-homeomorphism’’ or a ‘‘crosscap slide’’. Chillingworth in [2] gave a

finite set of generators for TðNgÞ and hence also a finite set of generators

for MCGðNgÞ. When the genus g is low, for example, g ¼ 2, Lickorish found

MCGðN2ÞGZ2 lZ2 and Chillingworth found TðN2Þ can be generated by one

Dehn twist ([6, 2]). When g ¼ 3, Birman and Chillingworth gave a concrete

presentation for MCGðN3Þ and then proved that MCGðN3Þ can be generated

by three elements ([1]). Chillingworth found TðN3Þ can be generated by

two Dehn twists ([2]), and Szepietowski simplified Birman and Chillingworth’s

generating set into a set consisting of three involutions ([10]).

It is a natural question to what extent we can simplify the generating

sets for MCGðNgÞ and TðNgÞ when g is large. We would like to reduce both
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the number and the orders of the generators. When gb 4, a generating set

for MCGðNgÞ consisting of four involutions was constructed by Szepietowski.

Szepietowski also proved when gb 4, MCGðNgÞ can be generated by three

elements (see [10]). The first homology of MCGðNgÞ has been calculated

by Korkmaz [5]. As a consequence, Korkmaz proved that when g ¼ 4, the

minimal number of the generators for MCGðN4Þ is 3. About TðNgÞ, Stukow
gave a finite presentation of TðNgÞ in [9]. Omori reduced the number of

Dehn twist generators for TðNgÞ to gþ 1 when gb 4 ([8]).

In [3], the author proved the following: when the genus g 0 b 5 and Sg 0

is an orientable closed surface of genus g 0, the extended mapping class group

MCGGðSg 0 Þ can be generated by two elements of finite order. One is of order

2 and the other is of order 4g 0 þ 2. In the preprint [4], the author proved that

the above result is also true for g 0 ¼ 3; 4. We found that the method in [3, 4]

can be used in some of the cases of MCGðNgÞ’s and TðNgÞ’s. We have the

following result:

Theorem 1. Let Ng, MCGðNgÞ, TðNgÞ be as above.

(1) If g ¼ 4k þ 3 ðkb 1Þ (i.e. g ¼ 7; 11; 15 . . .), MCGðNgÞ can be gen-

erated by three elements of finite order. In the generating set, one of the gen-

erators is of order 2g, and the other two are of order 2.

(2) If g ¼ 4k þ 1 ðkb 2Þ (i.e. g ¼ 9; 13; 17 . . .), TðNgÞ can be generated

by three elements of finite order. In the generating set, one of the generators

is of order 2g, and the other two are of order 2.

2. Preliminary

Crosscap slide.

In [6, 7], Lickorish proved that ½MCGðNgÞ : TðNgÞ� ¼ 2. As an exam-

ple of the mapping classes which do not lie in TðNgÞ, he described a map-

ping class so-called a ‘‘Y-homeomorphism’’ or a ‘‘crosscap slide’’ as shown in

Figure 1.

Fig. 1
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Two points of view for the Möbius band partition of a non-orientable surface

of odd genus.

If g is odd, we can decompose the non-orientable surface Ng into g Möbius

bands. Figure 2 shows two points of view to do this.

(1) The left picture of Figure 2 is a 2g-gon with a crosscap in the middle,

and the opposite sides glued together pairwise. Under this gluing, the vertices

of this 2g-gon are divided into two equivalence classes. After the gluing,

they form two points on Ng. We denote them by N and S. There are g

arcs in dotted lines connecting pairs of antipodal vertices and passing through

the crosscap in the middle of the 2g-gon. They cut the 2g-gon into g strips.

After the gluing of the opposite sides of the 2g-gon, they form g Möbius

bands. We call it the 2g-gon presentation of Ng.

(2) The middle and the right pictures of Figure 2 show a 2-sphere with

g crosscaps. This is also Ng. Suppose the g crosscaps sit on the equator.

Denote the north pole and the south pole by N and S, respectively. There are

g arcs in dotted lines connecting N and S. They cut Ng into g Möbius bands.

We call it the g-crosscap presentation of Ng.

We can check the above two presentations of Ng are equivalent. In fact,

in both presentations, we cut Ng into g Möbius bands. The points N and S

are on the boundaries of these Möbius bands. We can build a homeomor-

phism on each Möbius band and then glue them together to make a global

homeomorphism between the 2g-gon presentation of the surface and the

g-crosscap presentation of the surface. In the following, we will go back

and forth between the two presentations.

Notations.

(a) We use the convention of functional notation, namely, elements of the

mapping class group are applied right to left, i.e. the composition FG means

that G is applied first.

Fig. 2

201Torsion generating set of the mapping class groups of non-orientable surfaces



(b) On an orientable surface, for each explicit two-sided simple closed

curve, a Dehn twist means a right-handed Dehn twist along such a curve, and

a left-handed Dehn twist is the inverse of a right-handed Dehn twist. On a

non-orientable surface of odd genus, such as the left picture of Figure 2, we

can cut o¤ the crosscap in the middle of the 2g-gon presentation to get an

orientable subsurface. So for each simple closed curve which is disjoint from

the crosscap in the middle of the 2g-gon presentation, we can still define the

right-handed Dehn twist in the oriented subsurface.

(c) We denote the curves by lower-case letters a, b, c, d (possibly with

subscripts) and the Dehn twists about them by the corresponding capital letters

A, B, C, D. Notationally we do not distinguish a di¤eomorphism/curve and

its isotopy class.

The curves needed for generating TðNgÞ.
Omori constructed a generating set which consists of gþ 1 Dehn twists

for TðNgÞ ([8]). When we use the g-crosscap presentation of Ng, the

curves for those Dehn twists are a1; a2; . . . ; ag�1; b0; e shown in Figure 3.

We can check that a Dehn twist along a1 maps e to the curve c in Fig-

ure 3. Hence the Dehn twists along a1; a2; . . . ; ag�1; b0; c can also generate

TðNgÞ.
We can also use the 2g-gon presentation to see what these curves are.

See Figure 4.

We illustrate the verification of the correspondence of such curves as

follows. The curves a1; a2; . . . ; ag�1 form a chain of curves on Ng. Here a

chain of curves means a set of curves a1; a2; . . . ; ag�1 satisfying the follow-

ing geometric intersection number conditions: (1) iðaj; ajþ1Þ ¼ 1 ð j ¼ 1; 2; . . . ;

g� 1Þ; (2) iðaj; akÞ ¼ 0 ðj j � kj > 1Þ. If we cut Ng along a1; a2; . . . ; ag�1, we

can check that Ng �
Sg�1

j¼1 aj is a Möbius band or a disk with a crosscap in

the middle. The boundary of Ng �
Sg�1

j¼1 aj consists of subarcs of aj’s. Each

Fig. 3
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two-sided curve g on Ng will be cut into a union of arcs on Ng �
Sg�1

j¼1 aj .

The end points of these arcs lie on the boundary of Ng �
Sg�1

j¼1 aj. These end

points correspond to the intersection points of g with aj ’s. Each arc on

Ng �
Sg�1

j¼1 aj is determined by its end points on the boundary and its relative

position with the crosscap in the middle of the disk. Hence we can detect g

by its intersection points with aj ’s and the resulting arcs on Ng �
Sg�1

j¼1 aj .

This gives the correspondence of the curves in both presentations of the non-

orientable surface.

3. The proof of the main theorem

We now give the proof of Theorem 1.1.

Proof (Proof of Theorem 1.1). We first give the torsion generators.

Suppose g is odd. See Figure 5. Let s be the rotation of the 2g-gon pre-

sentation, t1 the reflection of the 2g-gon presentation that preserves the curve

b0, and t2 the reflection of the g-crosscap presentation that preserves c. We

can easily see that ðt1 � B0Þ2 ¼ 1, ðt2 � CÞ2 ¼ 1, s2g ¼ 1.

Fig. 5

Fig. 4
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Let G ¼ hs; t1 � B0; t2 � Ci be the subgroup of MCGðNgÞ generated by

these three elements of finite orders. We will prove that: (1) if g ¼ 7; 11;

15 . . . , then G ¼ MCGðNgÞ; (2) if g ¼ 9; 13; 17 . . . , then G ¼ TðNgÞ.
The proof is by the following steps:

Step 1. Under the given conditions, we prove G includes A1; . . . ;

Ag�1;B0; t1, and s. Here A1; . . . ;Ag�1, and B0 are the Dehn twists along

the curves a1; . . . ; ag�1, and b0, respectively. They are shown in Figure 3

and 4.

Step 2. We check t2 is conjugate to t1 by some power of s and then t2
is in G. Hence C is also in G. Here C is the Dehn twist along the curve c

shown in Figure 3 and 4.

Step 3. By Omori’s result [8], the fact that A1; . . . ;Ag�1;B0;C are in G

implies G includes TðNgÞ. Recall that ½MCGðNgÞ : TðNgÞ� ¼ 2. Hence G is

either TðNgÞ or MCGðNgÞ.
Step 4. We check whether t1 lies in TðNgÞ. If t1 lies in TðNgÞ, then

all the generators of G is in TðNgÞ. Hence G ¼ TðNgÞ. If t1 does not lie

in TðNgÞ, then G ¼ MCGðNgÞ.
The proof of Step 1:

Take the 2g-gon presentation of Ng (g is odd). If we remove the cross-

cap in the middle, then we get an orientable surface with genus g�1
2 . In

[3] and [4], for orientable surfaces, using the 2g-gon presentation, we gen-

erate MCGGðSðg�1Þ=2Þ by s and t1 � B0 when g�1
2 b 3. Here for the non-

orientable surfaces, the method is similar. All the curves in the proof will

not pass through the crosscap in the middle of the 2g-gon. In the fol-

lowing, we illustrate the main idea. For details, see [3] and [4]. We use

the lantern relation ABCD ¼ XYZ, where a, b, c, d, x, y, z are the curves

on a 4-holed sphere. The lantern relation can also be written as D ¼
ðXA�1ÞðYB�1ÞðZC�1Þ. So one Dehn twist can be decomposed into a

product of three pairs. Each pair consists of a left-handed Dehn twist and

a right-handed Dehn twist. If we denote bk ¼ skðb0Þ, then we can see

skðt1 � B0Þskðt1 � B0Þ ¼ B�1
k B0. Hence from s and t1 � B0, we can get a

pair, which consists of a left-handed Dehn twist and a right-handed Dehn

twist. Conjugate such a pair by elements in G, we get many similar pairs,

which include the three pairs XA�1, YB�1, and ZC�1 in the lantern relation.

So there is at least one Dehn twist in G. We can also check such a Dehn

twist can be chosen to be some Aj or Bk. All aj ’s are in the same s-orbit.

So every Aj is in G. Similar for Bk’s. The elements t1 � B0 and B0 are in

G, so t1 is in G. The neighbourhood of
Sg�1

j¼1 aj is a one-holed orientable

surface of genus g�1
2 . By the chain relation, ðAg�1Ag�2 . . .A1Þ2g is a Dehn

twist along the boundary curve of such a one-holed orientable surface. Such a

curve bounds the crosscap in the middle of the 2g-gon presentation of Ng.
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The Dehn twist along such a curve is trivial. Hence Ag�1Ag�2 . . .A1 equals

the rotation s�1, and so s is in G.

The proof of Step 2:

We can interpret some of the torsion elements in more geometric ways.

See Figure 6. We can check that t1 is not only a reflection in the 2g-gon

presentation but also a reflection in the g-crosscap presentation. Let t3 be the

north-south reflection of the g-crosscap presentation of Ng, t be the order g

rotation. Since s gives a permutation of the g Möbius bands and interchanges

N and S, we can see s ¼ t � t3 and t3 ¼ sg. Hence t3 and t are also in G.

Now t2 is conjugated to t1 by some power of t. So t2 also lies in G. Hence

C lies in G.

The proof of Step 3 is trivial.

The proof of Step 4:

In [7], Lickorish gave the following result: for a mapping class f in

MCGðNgÞ and its induced automorphism f� on the R-coe‰cient homology

group H1ðNg;RÞ, the element f lies in TðNgÞ (resp. does not lies in TðNgÞ)
if and only if f� has determinant þ1 (resp. �1). In the g-crosscap presenta-

tion of Ng, take g one-sided simple closed curves which are the core curves

of the g crosscaps. Since t1 is a reflection of the g-crosscap presentation, it

exchanges g� 1 core curves pairwise and reverse their orientations. These

g� 1 core curves form a basis for H1ðNg;RÞ. The induced automorphism

ðt1Þ� of H1ðNg;RÞ with respect to such a basis gives a ðg� 1Þ � ðg� 1Þ-
matrix

0 0 . . . 0 �1

0 0 . . . �1 0

..

. ..
. ..

. ..
. ..

.

0 �1 . . . 0 0

�1 0 . . . 0 0

0
BBBBBB@

1
CCCCCCA
:

Fig. 6
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When g ¼ 4k þ 3, the determinant is �1, t1 does not lie in TðNgÞ. When

g ¼ 4k þ 1, the determinant is þ1, t1 lies in TðNgÞ. This completes the proof.

r
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