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Abstract. For a given angle y, consider the configuration space Cn of equilateral

n-gons in R3 whose bond angles are equal to y except for two successive ones. We

show that when nb 8 and y is su‰ciently close to the inner angle n�2
n
p of the regular

n-gon, Cn is homeomorphic to the ðn� 4Þ-dimensional sphere Sn�4.

1. Introduction

Configuration spaces of n-gons in the Euclidean space Rd have been

studied from a topological, an algorithmic or a kinematic viewpoint (see, for

example, [3], [9], [11], [12], [13], [14], [15], [17], [19]). In this paper, we fix

an integer nb 5 and an angle y with n�3
n�1 p < y < n�2

n
p, which we call the

fixed bond angle, and consider the configuration space Cn ¼ CnðyÞ of equilat-

eral n-gons in R3 whose bond angles are equal to y except for two successive

ones.

We give a precise definition of Cn. An n-gon is a graph embedded in

R3 with vertices v0; v1; . . . ; vn�1 and bonds b1; b2; . . . ; bn�1; b0, where bi con-

nects vi�1 and vi ði ¼ 1; 2; . . . ; n� 1Þ. (Indices are considered modulo n when-

ever we treat an n-gon.) We call the vector bi :¼ vi � vi�1 the i-th bond

vector. An n-gon is said to be equilateral if all of its bonds have the same

length, say 1. The bond angle of an n-gon at the vertex vi is defined to be

the angle between the vectors �bi and biþ1. We assume that every such

equilateral n-gon is normalized so that v0 ¼ ð0; 0; 0Þ, vn�1 ¼ ð�1; 0; 0Þ and

vn�2 ¼ ðcos y� 1; sin y; 0Þ. Then the configuration space CnðyÞ is defined as

follows.

Definition 1 ([6], [7], [8]). For k ¼ 1; . . . ; n� 2, let fk : ðR3Þn�3 ! R be

the function defined by

fkðv1; . . . ; vn�3Þ ¼
1

2
ðkbkk � 1Þ:

2010 Mathematics Subject Classification. Primary 52C99; Secondary 57M50, 58E05, 92E10.

Key words and phrases. Configuration space.



For k ¼ 1; . . . ; n� 3, let gk : ðR3Þn�3 ! R be the function defined by

g1ðv1; . . . ; vn�3Þ ¼ h�b0; b1i� cos y;

gkðv1; . . . ; vn�3Þ ¼ h�bkþ1; bkþ2i� cos y ðk ¼ 2; . . . ; n� 3Þ:

Here h ; i denotes the standard inner product in R3 and kxk the standard normffiffiffiffiffiffiffiffiffiffiffiffiffi
hx; xi

p
. The configuration space Cn ¼ CnðyÞ is defined by as follows:

Cn ¼ fp A ðR3Þn�3 j f1ðpÞ ¼ � � � ¼ fn�2ðpÞ ¼ g1ðpÞ ¼ � � � ¼ gn�3ðpÞ ¼ 0g:

The maps fk, gk are called rigidity maps, and they determine bond lengths

and angles of the n-gon in Cn. The n-gons in Cn are equilateral n-gons in

R3 with n vertices such that the bond angles are all equal to the given angle y

except for the two successive bond angles at the vertices v1 and v2.

We have been interested in a mathematical model of n-membered ringed

hydrocarbon molecules, and obtained the following results in [7]. If n ¼ 5

and y ¼ 7
12 p, the average of bond angles of 5-membered ringed hydrocarbon

molecules, then CnðyÞ is homeomorphic to Sn�4. If n ¼ 6; 7 and the fixed

bond angle is tetrahedral angle y ¼ cos�1 � 1
3

� �
, the standard bond angle of the

carbon atom, then CnðyÞ is homeomorphic to Sn�4. Moreover, these results

were generalized in [6] as follows. If n ¼ 5; 6; 7 and the bond angle y satisfies
n�4
n�2 p < y < n�2

n
p, then CnðyÞ is homeomorphic to Sn�4. If n ¼ 8 and the bond

angle y satisfies 5
7 pa y < 3

4 p, then CnðyÞ is homeomorphic to Sn�4.

The purpose of this paper is to prove the following generalization of the

results in [6] for all nb 5.

Theorem 1. For each integer nb 5, there exists y0 such that the config-

uration space CnðyÞ is homeomorphic to the ðn� 4Þ-dimensional sphere Sn�4 for

every bond angle y with y0 < y < ðn� 2Þp=n.

Since the case where 5a na 8 is already treated in the pervious papers,

we assume n > 8 throughout the paper.

This paper is arranged as follows. Section 2 is devoted to preliminaries

for the proof of Theorem 1. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

Lemma 1. Let n be an integer greater than 8. Then there exists y1 such

that any n-gon in Cn ¼ CnðyÞ satisfies the following (a)–(d) for any bond angle y

with y1 < y < ðn� 2Þp=n.
(a) Any n-gon in Cn does not contain the local configurations of three succes-

sive bonds b2, b3 and b4 with the relation b3 þ b4 ¼ gb2, where g ¼
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos y

p
as in Figs. 1 and 2.
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(b) Any n-gon in Cn does not contain the local configurations of three successive

bonds b2, b3 and b4 with the relation b3 � lb4 ¼ db2, where l ¼ 2 cos y and

d ¼G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2l2

p
as in Figs. 3 and 4.

(c) Any n-gon in Cn does not contain the local configurations of three

successive bonds bk, bkþ1, bkþ2 ðk0 0; 1; 2Þ with the bond angles y and

with the relation bk ¼ bkþ2 as in Fig. 5, where indices are considered

modulo n.

(d) Any n-gon in Cn cannot be contained in a plane.

We call a local configuration described in (a), (b) or (c) in the above

lemma a forbidden local configuration.

Proof. We draw a regular n-sided polygon in the xy plane as in Figs. 6,

7, 9 and 10. Let P be the plane which intersects the xy plane vertically in

the dotted line, and fix a unit normal vector n to this plane as in Figs. 6, 7, 9

and 10.

When n is odd, we fix the bond bðnþ3Þ=2 as in Figs. 6 and 9 and consider all

of the polygonal lines consisting of the bonds bðnþ3Þ=2; . . . ; b3. When n is even,

we fix the bond bðnþ4Þ=2 as in Figs. 7 and 10 and consider all of the polygonal

lines consisting of the bonds bðnþ4Þ=2; . . . ; b3. Let ArmðyÞ denote such a non-

closed polygonal line with the bond angle y.

Let dk denote the dihedral angle between the planes defined by bond pairs

fbk�1; bkg and fbk; bkþ1g respectively for k ¼ 4; 5; . . . ; nþ2
2

� �
, where ½x� denotes

the largest integer less than or equal to x. Let pArmðyÞ denote the non-closed

polygonal line with the bond angle y where all dihedral angles dk are 0. Note

that pArmðyÞ is planar. Observe that, when the bond angle between the bonds

Fig. 1. The forbidden local

configuration (a) for g > 0

Fig. 2. The forbidden local

configuration (a) for g < 0

Fig. 3. The forbidden local

configuration (b) for d > 0

Fig. 4. The forbidden local con-

figuration (b) for d < 0

Fig. 5. The forbidden local con-

figuration (c) with bk ¼ bkþ2
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bi and biþ1 is equal to y, the vertex viþ1 is on the cone centered on bi with the

apex at vi as in Fig. 8.

First, we consider the case where the bond angle y is n�2
n
p. Then the

vertex v2 is contained in the plane P only when the non-closed polygonal line

is congruent to pArm n�2
n
p

� �
in Figs. 6 and 7. By applying the same argument

to the ‘‘right’’ side to n-gons in Cn
n�2
n
p

� �
, we see that any n-gon in Cn

n�2
n
p

� �
is

congruent to the regular n-polygon in the plane.

Next, assume that y < n�2
n
p. Then ArmðyÞ can intersect the plane P.

We take a su‰ciently small e > 0 with 1� 2e > 0. Then there exists ye
with ye <

n�2
n
p such that the vertex v2 is contained in the plane Pþ e � n ¼

fpþ e � n j p A Pg only when ArmðyeÞ is congruent to pArmðyeÞ as in Figs. 9

and 10.

In other words, the distance from v2 to Pþ n is greater than or equal to

1� e, and equal to 1� e only when ArmðyeÞ is congruent to pArmðyeÞ as in

Figs. 9 and 10. Hence, for any ArmðyÞ, the distance from v2 to Pþ n is

greater than 1� e when ye < y < n�2
n
p.

Fig. 6. pArm n�2
n
p

� �
when n is odd ðn ¼ 9Þ Fig. 7. pArm n�2

n
p

� �
when n is even ðn ¼ 10Þ

Fig. 8. All positions of viþ1 on the cone
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Now we consider the non-closed polygonal line with the bond angle y

which consists of n� 1 number of the bonds b3; b4; . . . ; bn�1; b0; b1. By using

the above argument for the end point v1, we see that, when the non-closed

polygonal line with the bond angle ye forms a part of the boundary of a convex

polygon, the distance along n between v1 and v2 is greater than or equal to

1� 2e (cf. [5, p. 147, Corollary 8.2.4]). Hence, for any non-closed polygonal

line with the bond angle y, the distance along n between v1 and v2 is greater

than 1� 2e when ye < y < n�2
n
p.

(a) We now prove the assertion (a).

Case (a-1) g > 0. We add the bond b2 to ArmðyÞ at v2 to form the

local configuration in Fig. 1. We replace the two bonds b2 and b3 with a new

bond which connects v1 to v3. Let bð2;3Þ denote this new bond. As mentioned

above, the distance from v2 to Pþ n attains the minimum only when the

resulting non-closed polygonal line with the bond bð2;3Þ has a planar config-

uration where all dihedral angles are 0. Note that this planar configuration is

obtained by adding b2 to pArmðyÞ at v2 as in Fig. 1.

When y ¼ n�2
n
p, for pArm n�2

n
p

� �
with the added bond b2 as in Fig. 1, we

have hb2; ni < 1 with some computations. Then the distance from v1 to Pþ n

is equal to 1� hb2; ni ð> 0Þ. We put e ¼ 1
4 ð1� hb2; niÞ. We see that a bond

angle y 0
aþ

can be chosen so that, for any pArmðyÞ with the added bond b2 as

in Fig. 1, hb2; ni is less than 1� 3e when y 0
aþ

< y < n�2
n
p.

Now we consider the non-closed polygonal line which consists of

bonds b3; b4; . . . ; bn�1; b0; b1, and add the bond b2 to the non-closed polyg-

onal line at v2 to form the local configuration in Fig. 1. We put yaþ ¼
maxfy 0

aþ
; yeg.

Fig. 9. pArmðyeÞ when n is odd ðn ¼ 9Þ Fig. 10. pArmðyeÞ when n is even ðn ¼ 10Þ
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When yaþ < y < n�2
n
p, the distance from the vertex v1 of b2 to

Pþ ð1� eÞ � n is greater than e ð> 0Þ. Hence the polygonal line with

the added bond b2 as in Fig. 1 cannot form an n-gon when yaþ < y <
n�2
n
p.

Case (a-2) g < 0. We add the bond b2 to ArmðyÞ at v2 to form the

local configuration in Fig. 2. We replace the union of the two bonds b2
and b3 with a new bond which connects v1 to v3. Let bð2;3Þ denote this

new bond. As mentioned above, the distance from v2 to Pþ n attains the

minimum only when the resulting non-closed polygonal line with the bond

bð2;3Þ has a planar configuration where all dihedral angles are 0. Note that

this planar configuration is obtained by adding b2 to pArmðyÞ at v2 as in

Fig. 2.

When y ¼ n�2
n
p, for pArm n�2

n
p

� �
with the added bond b2 as in Fig. 2, we

have hb2; ni < 0 with some computations. Then the distance from v1 to Pþ n

is greater than 1. We see that a bond angle, y 0
a�

can be chosen so that, for

any pArmðyÞ with the added bond b2 as in Fig. 2, hb2; ni < 0 when y 0
a�

< y <
n�2
n
p.

Now we consider the non-closed polygonal line which consists of bonds

b3; b4; . . . ; bn�1; b0; b1, add the bond b2 to the non-closed polygonal line at

v2 to form the local configuration in Fig. 2. We put e ¼ 1
3 and ya� ¼

maxfy 0
a�
; yeg. When ya� < y < n�2

n
p, the distance from the vertex v1 of b2

to Pþ ð1� eÞ � n is greater than e ð> 0Þ. Hence the polygonal line with

the added bond b2 as in Fig. 2 cannot form an n-gon when ya� < y <
n�2
n
p.

(b) We now prove the assertion (b).

Case (b-1) d > 0. We add the bond b2 to ArmðyÞ at v2 to form the local

configuration in Fig. 3.

When y ¼ n�2
n
p, for pArm n�2

n
p

� �
with the added bond b2 as in Fig. 3, we

have hb2; ni < 1 with some computations. Then the distance from v1 to Pþ n

is equal to 1� hb2; ni ð> 0Þ.
By an argument similar to the case g > 0 of (a), we can take ybþ so that

any n-gon in Cn does not have the local configuration as in Fig. 3 when ybþ <

y < n�2
n
p.

Case (b-2) d < 0. We add the bond b2 to ArmðyÞ at v2 to form the local

configuration in Fig. 4.

When y ¼ n�2
n
p, for pArm n�2

n
p

� �
with the added bond b2 as in Fig. 4, we

have hb2; ni < 0 with some computations. Then the distance from v1 to Pþ n

is greater than 1.

By an argument similar to that in the case g < 0 of (a), we can take yb�
so that any n-gon in Cn does not have the local configuration as in Fig. 4

when yb� < y < n�2
n
p.
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(c) We consider the non-closed polygonal line with the bond angle y

consisting of the bonds b3; b4; . . . ; bn�1; b0; b1. Assume that the non-closed

polygonal line has one or more planar local configurations as in Fig. 5. Now,

we choose the three successive bonds bk, bkþ1 and bkþ2 having a planar local

configuration as in Fig. 5. We replace the union of the two bonds bk and bkþ1

with a new bond which connects vk�1 to vkþ1 along the dotted line in Fig. 5

or 11. Let bðk;kþ1Þ denote this new bond. When the bond angle between bkþ2

and bðk;kþ1Þ is equal to pþy
2 , the non-closed polygonal line having the local

configuration of Fig. 5 can be identified with the non-closed polygonal line of

n� 2 bonds obtained by replacing the union of the two bonds bk and bkþ1 with

the bond bðk;kþ1Þ. Note that the end points of the non-closed polygonal line

are v1 and v2.

We consider the distance between the end points v1 and v2 of the non-

closed polygonal line obtained by replacing the union of the two bonds bk and

bkþ1 with the bond bðk;kþ1Þ. As mentioned above, when the non-closed polyg-

onal line obtained by replacing the union of bk and bkþ1 with the bond bðk;kþ1Þ
forms a part of the boundary of the convex ðn� 1Þ-sided polygon, the distance

between v1 and v2 attains the minimum.

On the other hand, the distance between v1 and v2 of the original non-

closed polygonal line attains the minimum when the original non-closed polyg-

onal line forms a part of the boundary of a convex n-sided polygon.

Then the three successive bonds bk, bkþ1 and bkþ2 have a planar local

configuration as in Fig. 11.

The non-closed polygonal line having the local configuration of Fig. 11 can

be identified with the non-closed polygonal line of n� 2 bonds obtained by

replacing the union of the two bonds bk and bkþ1 with the bond bðk;kþ1Þ when

the bond angle between bkþ2 and bðk;kþ1Þ is equal to �pþ3y
2 . Note that the

resulting non-closed polygonal line forms a part of the boundary of a convex

ðn� 1Þ-sided polygon when the bond angle between bkþ2 and bðk;kþ1Þ is equal

to �pþ3y
2 and the original non-closed polygonal line forms a part of the bound-

ary of a convex n-sided polygon.

By applying Cauchy’s arm lemma ([4, p. 229]) to convex ðn� 1Þ-sided
polygons with a bond bðk;kþ1Þ, we see that the distance between v1 and v2 is a

monotonically increasing function of the bond angle between bkþ2 and bðk;kþ1Þ.

Fig. 11. A planar local configuration of the three successive bonds
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The distance between v1 and v2 is 1 when y ¼ n�2
n
p and the bond angle between

bkþ2 and bðk;kþ1Þ is equal to �pþ3y
2 . Then the distance between v1 and v2 is

greater than 1 when y ¼ n�2
n
p and the bond angle between bkþ2 and bðk;kþ1Þ is

equal to pþy
2 .

We can take yðkÞ so that, for any angle y with yðkÞ < y < n�2
n
p, the dis-

tance between v1 and v2 is greater than 1 when the bond angle between bkþ2

and bðk;kþ1Þ is equal to pþy
2 . By taking yc ¼ maxkfyðkÞg, the proof of Lemma

1 (c) is completed.

(d) Let yc be the angle in Lemma 1 (c) and consider n-gons in CnðyÞ
when yc < y < n�2

n
p. We assume that there is an n-gon contained in a plane.

By forgetting the bond b2 from the n-gon, we have a non-closed polygonal line

with the end points v1, v2. By Lemma 1 (c), the three successive bonds form

a planar local configuration as in Fig. 11. If the bond angle y is not equal to
n�2
n
p, the distance between v1 and v2 is not equal to 1. By contradiction, the

proof of Lemma 1 (d) is completed.

By taking y1 ¼ maxfyaþ ; ya� ; ybþ ; yb� ; ycg, the proof of Lemma 1 is

completed. r

3. The proof of Theorem 1

By Lemma 1, we show the following Proposition 1:

Proposition 1. Let y0 be the maximum of the angle y1 in Lemma 1 and

the solutions of the following equations:

sinðmxÞ
sin x

¼ 1� 2 cos x ð1ama n� 6; p=2 < x < ðn� 2Þp=nÞ:

Then the configuration space Cn is an orientable closed ðn� 4Þ-dimensional

submanifold of R3n�9 if the bond angle y satisfies y0 < y < ðn� 2Þp=n.

Proof. First, note that y0 can be determined from the Chebyshev poly-

nomials of second kind
sinðmxÞ
sin x

¼
P½ðm�1Þ=2�

j¼0 mC2jþ1ðcos xÞm�2j�1ðcos2 x� 1Þ j ,
where ½y� denotes the largest integer less than or equal to y. We define

F : ðR3Þn�3 ! R2n�5 by F ¼ ð f1; . . . ; fn�2; g1; . . . ; gn�3Þ. Then Cn ¼ F �1ðfOgÞ
for O ¼ ð0; . . . ; 0Þ A R2n�5.

We show that O A R2n�5 is a regular value of F . It su‰ces to prove that

gradient vectors ðgrad f1Þp; . . . ; ðgrad fn�2Þp, ðgrad g1Þp; . . . ; ðgrad gn�3Þp are lin-

early independent for any p A F �1ðfOgÞ ¼ Cn, where ðgrad f Þp ¼
qf
qxj

ðpÞ
� �

j
. It

is convenient to decompose the gradient vectors of fk and gk into 1� 3 blocks

as follows:
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ðgrad f1Þp ¼ ðb1; 0; . . . . . . ; 0Þ;

..

.

ðgrad fkÞp ¼ ð0; . . . ; 0;�bk; bk; 0; . . . ; 0Þ;

..

.

ðgrad fn�2Þp ¼ ð0; . . . . . . ; 0;�bn�2Þ;

ðgrad g1Þp ¼ ð�b0; 0; . . . . . . ; 0Þ;

..

.

ðgrad gkÞp ¼ ð0; . . . ; 0; bkþ2; bkþ1 � bkþ2;�bkþ1; 0; . . . ; 0Þ;

..

.

ðgrad gn�4Þp ¼ ð0; . . . ; 0; bn�2; bn�3 � bn�2Þ;

ðgrad gn�3Þp ¼ ð0; . . . . . . ; 0; bn�1Þ:

Here 0 ¼ ð0; 0; 0Þ and bk ðk ¼ 0; . . . ; n� 1Þ denote the bond vectors of the

n-gon corresponding to p A Cn.

Assume that the gradient vectors ðgrad f1Þp; . . . ; ðgrad fn�2Þp, ðgrad g1Þp; . . . ;
ðgrad gn�3Þp are linearly dependent. Then, for some ðc1; . . . ; c2n�5Þ0 ð0; . . . ; 0Þ,
we have a linear relation:

Xn�2

i¼1

ciðgrad fiÞp þ
Xn�3

i¼1

ciþn�2ðgrad giÞp ¼ ð0; . . . ; 0Þ: ð�Þ

In what follows, we show, by using Lemma 1 (a), (b), (c), that, under this

assumption, all vertices of the n-gon corresponding to p are contained in a

single plane. Since two successive bond vectors not including b2 are linearly

independent, we get c2 0 0. The first 1� 3 block of the linear combination ð�Þ
implies that the bond vectors b0, b1 and b2 are contained in a single plane.

The second 1� 3 block of the linear combination ð�Þ implies that the bond

vectors b2, b3 and b4 are contained in a single plane.

We show by induction ck 0 0 ðnþ 1a ka 2n� 5Þ. First, we observe

cnþ1 0 0. In fact, the second and the third 1� 3 blocks of the linear com-

bination ð�Þ imply cnþ1 0 0 by Lemma 1 (a). Then the bond vectors b3, b4
and b5 are contained in a single plane.

We study cl ðnþ 1a la kÞ. Assume that cl 0 0 ðnþ 1a la k � 1Þ.
Then the bond vectors b0; b1; . . . ; bk�nþ3 are contained in a single plane.

Observe, by using Lemma 1 (c), the relation bi þ lbiþ1 þ biþ2 ¼ 0 ðl ¼ 2 cos yÞ
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when bi, biþ1, biþ2 are contained in a single plane for i0 0; 1; 2. The third

1� 3 block of the linear combination ð�Þ implies the equality ðc3 þ cnÞb3 �
ðc4 þ cnÞb4 þ cnþ1b5 ¼ 0 with some computations.

Since b3, b4, b5 are contained in a single plane, we have the following

relations for the coe‰cients:

cnþ1 ¼ c3 þ cn; ðRnþ1;1Þ

c4 ¼ �cn � lcnþ1: ðRnþ1;2Þ

With some computations, the ð j � nþ 2Þ-th 1� 3 block of the linear combina-

tion ð�Þ implies the equality

ð�cj�2Þbj�nþ1 þ ðcj�nþ2 þ cj�1Þbj�nþ2 � ðcj�nþ3 þ cj�1Þbj�nþ3 þ cjbj�nþ4 ¼ 0:

We have the following relations ðRj;1Þ and ðRj;2Þ among the coe‰cients of

bj�nþ2 and bj�nþ3, respectively:

cj ¼ lcj�2 þ cj�1 þ cj�nþ2; ðRj;1Þ

cj�nþ3 ¼ cj�2 � cj�1 � lcj: ðRj;2Þ

We fix l with nþ 2a la k. By adding the equalities ðRj;1Þ and ðRj;2Þ for

nþ 1a ja l, we have cl ¼ �lcl�1 � cl�2 þ ð1þ lÞcn þ c3 ðnþ 2a la kÞ.
Put d ¼ ð1þ lÞcn þ c3. With some computations, we obtain the recurrence

relations ðcl � a1cl�1Þ ¼ a2ðcl�1 � a1cl�2Þ þ d, where a1 and a2 denote the two

solutions of x2 þ lxþ 1 ¼ 0. Note that a1 þ a2 ¼ �l and a1a2 ¼ 1. From

these recurrence relations, we have the following two equalities:

ðck � a1ck�1Þ ¼ ak�n�1
2 ðcnþ1 � a1cnÞ þ dðak�n�2

2 þ ak�n�3
2 þ � � � þ 1Þ;

ðck � a2ck�1Þ ¼ ak�n�1
1 ðcnþ1 � a2cnÞ þ dðak�n�2

1 þ ak�n�3
1 þ � � � þ 1Þ:

We prove that ck 0 0. Now, we assume to the contrary that ck ¼ 0.

We put m ¼ k � n� 1 ð1ama n� 6Þ. By using the above two equalities

and cnþ1 ¼ cn þ c3, we obtain Ac3 þ Bcn ¼ 0. Here, A ¼ ðamþ1
2 � amþ1

1 Þ þ
ðam

2 � am
1 Þ þ � � � þ ða2 � a1Þ and B ¼ fðamþ1

2 � amþ1
1 Þ þ ðam�1

2 � am�1
1 Þ þ � � � þ

ða2 � a1Þg þ lfðam
2 � am

1 Þ þ � � � þ ða2 � a1Þg. It is easy to see that A ¼ lB.

If A0 0 and B0 0, then we have lc3 þ cn ¼ 0. The second 1� 3 block

of the linear combination ð�Þ implies the equality c2b2 � c3b3 þ cnb4 ¼ 0.

Since lc3 þ cn ¼ 0, we have c2b2 ¼ c3ðb3 � lb4Þ. Hence we obtain A ¼ B ¼
0 from Lemma 1 (b). Note that ðamþ1

2 � amþ1
1 Þ þ ðam

2 � am
1 Þ þ � � � þ ða2 � a1Þ

¼ 1
1þl

ðamþ1
2 � amþ1

1 Þ þ ða2 � a1Þ � ðamþ2
2 � amþ2

1 Þ. With some more computa-

tions, we have B ¼ 1
1þl

f�ðam
2 � am

1 Þ þ ð1þ lÞða2 � a1Þg.
On the other hand, it is easy to check the following equality:
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am
2 � am

1

a2 � a1
¼ 1

2m�1

X½ðm�1Þ=2�

j¼0

mC2jþ1ð�lÞm�2j�1ðl2 � 1Þ j

¼
X½ðm�1Þ=2�

j¼0

mC2jþ1ðcos yÞm�2j�1ðcos2 y� 1Þ j ;

where ½y� denotes the largest integer less than or equal to y. From the

Chebyshev polynomials of second kind, we obtain
am
2
�am

1

a2�a1
¼ sinðmyÞ

sin y
. By the

definition of y0, we have
sinðmyÞ
sin y

0 1� 2 cos y ðy0 < yÞ. Thus we obtain B0 0,

and ck 0 0 by contradiction. Therefore, all vertices of the n-gon corre-

sponding to p are contained in a single plane. This contradicts Lemma 1 (d).

As a result, the gradient vectors ðgrad f1Þp; . . . ; ðgrad fn�2Þp, ðgrad g1Þp; . . . ;
ðgrad gn�3Þp are linearly independent for any p A Cn. The proof of Proposition

1 is completed. r

Proof of Theorem 1. We first show that Cn is non-empty when n > 8.

Consider the non-closed polygonal line with the bond angle y which consists

of the bonds b3; b4; . . . ; bn�1; b0; b1. For k ¼ 4; 5; . . . ; n� 1; 0, let dk denote

the dihedral angle between the planes defined by the bond pairs fbk�1; bkg
and fbk; bkþ1g respectively, where all indices are considered modulo n. The

distance between v1 and v2 is a continuous function of the dihedral angles

d4; d5; . . . ; dn�1; d0. If the non-closed polygonal line is contained in the bound-

ary of a convex polygon, that is, all dihedral angles dk are 0, then the distance

between v1 and v2 is less than 1 because n�3
n�1 p < y < n�2

n
p. If the non-closed

polygonal line has the maximum span as in [1], [2], that is, all dihedral angles

dk are p, then the distance between v1 and v2 is greater than 1. Since the

distance between v1 and v2 is a continuous function, the distance between v1
and v2 can be 1. Hence Cn is non-empty.

Let y0 be the angle in Proposition 1 and consider the configuration

space Cn of n-gons having the bond angle y with y0 < y < n�2
n
p. We define

h : R� ðR� f0gÞ2 � ðR3Þn�4 ! R by hðv1; . . . ; vn�3Þ ¼ x2ffiffiffiffiffiffiffiffiffiffi
x2
2
þx2

3

p , where v1 ¼
ðx1; x2; x3Þ. Recall the extension of Reeb’s theorem that a smooth connected

closed manifold M is homeomorphic to a sphere if M admits a smooth func-

tion f with only two critical points (see [16, p. 25, REMARK 1], [18, p. 380,

Lemma 1]).

We show that hjCn
is a di¤erentiable function on Cn with only two critical

points. Note that p A Cn is a critical point of hjCn
if and only if there exist

ai A R such that ðgrad hÞp ¼
Pn�2

i¼1 aiðgrad fiÞp þ
Pn�3

i¼1 aiþn�2ðgrad giÞp (cf. [10]).

We can easily check that ðgrad hÞp ¼ 0;
x2
3

sin3 y
;� x2x3

sin3 y
; 0; . . . ; 0

� �
. Note that the

first 1� 3 block 0;
x2
3

sin3 y
;� x2x3

sin3 y

� �
is orthogonal to b0 and b1. So, we have
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a2 0 0 if ðgrad hÞp ¼
Pn�2

i¼1 aiðgrad fiÞp þ
Pn�3

i¼1 aiþn�2ðgrad giÞp. By the argu-

ment in the proof of Proposition 1, there exists a bond angle, such that, for

the configuration of the n-gon corresponding to a critical point p A Cn ¼ CnðyÞ,
the vertices vi ði ¼ 1; . . . ; n� 1Þ are contained in the plane Spanhb2; b3i ¼
Spanhb2; . . . ; bn�1i.

By forgetting the bond b2 from the n-gon, we have a non-closed polygonal

line with the end points v1, v2. Since the three successive bonds with the bond

angle y form a planar local configuration as in Fig. 11 by Lemma 1 (c), the

vertices v2; . . . ; vn�1 are uniquely determined. If three bonds bn�1, b0 and b1
have a planar local configuration as in Fig. 11, the distance between v1 and v2
is less than 1. If three bonds bn�1, b0 and b1 have a planar local configuration

as in Fig. 5, the distance between v1 and v2 is greater than 1. We replace the

union of the two bonds b0 and b1 with a new bond which connects vn�1 to v1.

Let bð0;1Þ denote this new bond. We see that the resulting non-closed polyg-

onal line forms a part of the boundary of a convex ðn� 1Þ-sided polygon. By

applying Cauchy’s arm lemma, we obtain that the distance between v1 and v2 is

a monotonically increasing continuous function of the bond angle between bn�1

and bð0;1Þ. When the distance between v1 and v2 is 1, the bond angle between

bn�1 and bð0;1Þ is uniquely determined. Thus the vertex v1 is uniquely deter-

mined and we can see, by using the restriction of the bond angle and length,

that there are precisely two possible positions for the vertex v0. These two are

mirror symmetric with respect to the plane Spanhb2; b3i. As a result, we have

just two configurations of n-gons corresponding to the critical points. The

proof of Theorem 1 is completed. r
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