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ABSTRACT. In this paper, we consider a model selection criterion using the GEE
method including unknown scale and correlation parameters. We propose a model
selection criterion for selecting variables and a working correlation structure. Under
some regularity conditions, we showed that our criterion is the same as the criterion
proposed by Inatsu and Imori [8]. A numerical study reveals that we can reduce the
prediction error by selecting both variables and a working correlation structure.

1. Introduction

Recently, in real data analysis, we treat data with correlation for
many fields, for example medical science, economics and many other fields.
Especially, data that are measured repeatedly over times from the same
subjects, named longitudinal data, are widely used in those fields. In general,
the data from the same subject have a correlation, whereas the data from
different subjects are independent. Nelder and Wedderburn [12] proposed
generalized linear model (GLM), and after that Liang and Zeger [10] intro-
duced an extension of GLM, named generalized estimating equation (GEE).
The GEE method is one of the methods to analyze the data with correla-
tion. Defining features of the GEE method is that we use a working
correlation matrix which can be chosen freely. We can get the consistent
estimators of parameters whether the working correlation matrix is correct or
not. It is worthy to say that we do not need a full specification of a joint
distribution. In those reasons, the GEE method is widely used.

As with other statistical frameworks, the model selection problem in the
GEE method is also important. In general, in the model selection, we mea-
sure the goodness of models by a certain risk. Then, by using some asymp-
totically unbiased estimators of the risk, we obtain a model selection criterion.
For example, the most famous Akaike’s information criterion (AIC) (Akaike,
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[1], [2]) was defined as an asymptotic unbiased estimator of the expected
Kullback-Leibler divergence (Kullback and Leibler [9]). The AIC is calculated
by AIC = —2 x (maximum log likelihood) + 2 x (the number of parameters).
Furthermore, the generalized information criterion (GIC) proposed by Nishii
[13] and Rao [15] which is a generalization of the AIC is also applied to many
fields. However, we cannot use model selection criteria based on the likeli-
hood function such as AIC or GIC for GEE because we do not specify the
joint distribution. Some model selection criteria like AIC and GIC in the
GEE method have been already proposed. For example, Pan [14] proposed
the QIC (quasi-likelihood under the independence model criterion) based on
the quasi-likelihood defined by Wedderburn [16]. Moreover, the GC, (gen-
eralized version of Mallows’s C,) proposed by Cantoni et al [3] is a gener-
alization of Mallows’s C, (Mallows [I1]). The correlation information
criterion (CIC) proposed by Hin and Wang [6] and Gosho et al [4] is a
criterion for selecting the correlation structure. In the GEE method, we can
get the smallest asymptotic variance of the GEE estimator by using the true
correlation matrix as a working correlation matrix. It seems that the esti-
mation accuracy can be improved by simultaneously selecting explanatory
variables and a correlation structure, and the efficiency will be improved.
Therefore, it is important to simultaneously select explanatory variables and a
working correlation structure using one risk function. Unfortunately, the risk
function of the QIC is based on the independent quasi likelihood, so the risk
function does not reflect the correlation. Moreover, CIC is focused on the
working correlation structure modeling, on the other hand, CIC is not focused
on the variable selection. The Mallows’s C, is based on the prediction mean
squared error so we can use these type criteria in the GEE method. From this
background, Inatsu and Imori [8] proposed the new model selection criterion,
named PMSEG (the prediction mean squared error in the GEE) using the risk
function based on the prediction mean squared error (PMSE) normalized by
the covariance matrix. Inatsu and Imori [8] proposed this criterion when
both the correlation parameters included in a working correlation matrix and
the scale parameters are known, but the correlation and scale parameters are
generally unknown in practice, so we consider to modify this criterion for the
case that they are unknown.

In this paper, the main purpose is to propose a model selection criterion
taking account of the correlation structure when both the correlation and scale
parameters are unknown. In order to propose our model selection criterion,
we evaluate the asymptotic bias of the estimator of a risk function and
investigate the influences of the estimations of the correlation and scale
parameters. We focus on the variable selection and the working correlation
structure selection.
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The present paper is organized as follows: In section 2, we introduce the
GEE framework and propose the estimation method for parameters. After
that, we perform the stochastic expansion of the GEE estimator. In section 3,
we define a risk and a naive estimator of it, evaluate the asymptotic bias,
and propose a model selection criterion. In section 4, we perform a numerical
study. In appendix, we provide the calculation process of the bias.

2. Preliminaries

2.1. GEE estimator. Let y; be a scalar response variable from the ith subject
at the jth observation time and xy ; be an /-dimensional nonstochastic vector
consisting of possible explanatory variables, where i =1,...,n and j=1,...,
m. Assume that the response variables from different subjects are independent
and the response variables from the same subject are correlated. For each
i=1,...,n let y; = (yi1,..., vin)’ be the response vector from the ith subject
and X, ; = (xf‘,,-l,...,xf»,,-m)’ be the explanatory matrix from the ith subject.
Moreover, let X; = (x;,..., %)  be an m x p submatrix of the matrix X
All the observed data for the ith subject are (y;, Xr;). Liang and Zeger [10]
used the GLM as the marginal density of yy,

S i, xi, B, ¢) = exp[{y6y — a(0y)}/d + b(yy, )], (2.1)

where «a(-) and b(-) are known functions, 0; is an unknown location parameter
defined by 0; = u(n;) = 0;(f) with a known function u(-) and ¢ is a scale
parameter. Here, f is a p-dimensional unknown parameter and 77; = xg,ﬁ is
called the linear predictor. In the present paper, we assume that the scale
parameter ¢ is unknown, and let @ be the natural parameter space (see, Xie and
Yang [17]) of the exponential family of distributions presented in (2.1), and the
interior of @ is denoted as ®°. Then, it is known that @ is convex and all
the derivatives of a(-) and all the moments of y; exist in @°. We denote
the derivative and the second derivative of a function f(x) as f(x) and f(x),
respectively. Under these conditions, the expectation and variance of y; are
given by

#;(B) = Elyy) = a(0y),  o3(B) = Var[yy] = a(05)$ = v(u;(B)).

In the GLM framework, the expectation of y; is represented by the link
function ¢(-) as g(u;) = n; = x;B, where g(t) = (ao u) "' (f). We call that the
model with x;; and x; as the full model and the candidate model, respec-
tively. We assume that the true density function of y; can be written as
(2.1), i.e., the true model is one of the candidate models. When the correla-

tion and scale parameters are known, GEE proposed by Liang and Zeger [10]
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is as follows:
(B =S DBV (B.0)(y, — () = 0,, (22)
i=1

where #;(B) = (111 (B), - -, ttin(B))', Di(B) = om:(B) /0B’ = Ai(B)4i(B)X:, Ai(B) =
diag(a7i (B), ..., 05, (B)). 4i(B) = diag(00:/dn, ..., 00m/on;,) and Vi(p,a) =
Al.l/ 2(ﬂ)Rw(az)A}/ *(B)¢. Here, R,(a) is called a working correlation matrix
which can be chosen freely. Moreover, R, (a) includes nuisance parameter a.
The nuisance parameter space is defined as follows:

o ={a=(,...,0) € R|R,(a) is positive definite}.

We can use different working correlation matrices depending on each situa-
tion. Typical working correlation matrices are as follows:

(1) independence: (Ry(a)); =0 (j # k),
(2) exchangeable: (R, (a)); = o (j # k),
(3) autoregressive: (Rw(a)')jk = (Ru(a))y; = a7k (j > k),
_ B fa (j=k+1)
(4) 1-dependence: (R (a)); = (Ru(a))y, = {0 Gakil jtk)
(5) unstructured: (Ry(a)), = (Ru(a))y; = wic (J > k).

Note that the diagonal elements of R, (@) are ones, since it is a correlation
matrix. The dimension of a depends on the working correlation matrix. In
many cases, ¢ is unknown. Although a is the nuisance parameter, we must
estimate ¢ in order to estimate f. In practice, we estimate a by real data.
When both the correlation and scale parameters are unknown, we estimate
a by B and qg, where ¢§ is an estimator of ¢. Denote a(p, qg) = (1 (B, qg), ey
4,(B.9))’, and assume that a(f,, ¢,) = ao € /°, where B, is the true value of
P, a is the estimator of a, ay is the convergence value of @, .7° is the interior of
o/ and ¢, is the convergence value of qg Denote X;(f) = Ail/z(ﬁ)RoAil/z(ﬁ‘)qﬁ,
where Ry is the true correlation matrix. Assume that for i =1,...,n, the true
correlation matrix is the common matrix Ry. If R, (ag) = Ry, Vi(By,a0) =
Zi(Bo) = A (Bo)RoA;” (By)gy = Covly,).

In this paper, we assume that ¢ and ¢ are unknown, so we replace
V. '(B,a) in (2.2) with I';7'(B) including the estimator of the correlation
parameter @, where I';(f) = Vi(B,a(B,#(B))). Then, we obtain the following
equation:

w(B) =S DB (B) s — () =0, (2.3)
i=1
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The solution of (2.3) denoted as f is the estimator of f,. We call # the GEE
estimator.

2.2. Estimation method. The parameters a, f and ¢ are unknown, so we
estimate them by the following iterative method:

Algorithm (Estimation method for parameters a, f and ¢)

Step 1 Set an initial value of @ denoted as <"

Step 2 Solve the GEE with @*>, and the solution of the GEE is denoted as g% = f(a<).
Step 3 Estimate ¢+ by g,

Step 4 Estimate %+ by g% and ¢V,

Step 5 Iterate from step 2 to 4 until a certain condition about the convergence holds.

In the present paper, we estimate the scale parameter ¢ as follows:
Lo L i — 1(B)°
¢(p) =— B
e 2 oy )

and assume that ¢ 2 #o. In addition, the estimator a differs depending on
each working correlation structure, and we give the following examples:

Exchangeable : a(B, 4(B)) = —Z Z fz’j(ﬁ)fik(ﬁ)/é(ﬁ)v

Autoregressive : &(ﬁ, qg(ﬁ)) = m ' fz]’(ﬁ)fi,j+l(ﬁ)/¢(ﬁ);

a2 1 nmflA"Af” A
dependence (U8 = Gy S S B 8)9),
Unstructured : &jk(ﬂ d(p) = %ify(ﬁ)fzk(ﬁ)/é(ﬁ%

where 7;(B) = yj — 1;(F). A moment estimation is popular. In fact, a is
calculated by using the moment method in many statistical softwares. Em-
pirically, by using the moment method, the above algorithm usually con-
verges. However, the moment assumption does not necessarily imply that
R, (ap) is positive definite. Nevertheless, in many working assumptions
(e.g., “Exchangeable” or “AR-1), the positive definiteness of R,,(ay) mostly
holds.
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2.3. Stochastic expansion of GEE estimator. In this subsection, we perform
the stochastic expansion of ﬁ Furthermore, in order to evaluate the asymp-
totic properties of the GEE estimator, we assume the following conditions
(Xie and Yang [17]):
Cl. The set Z is compact. For all sequence {x;}, it is established that
u(x;p) € ©° and x; € 2.
C2. The true regression coefficient f, is in an admissible set %4, and % is
an open set of R?, i.e., B, € B°, # = {ﬂ|u"(x{j )eO if x; €X'},
C3. For any e 4, it is established that x;f is included in g(.#), where
A is the image of a(@°).
C4. The function u(n;) is four times continuously differentiable and
u(n;) >0 in g(u°).
C5. The matrix M, is positive definite when » is large, denoted by

n
/ —1 —1
M0 =Y Di ¥V ZioV o Dio,
-

1

where D; o= D;(f,), Vio = Vi(fy,a0) and ;o = Zi(f,).

C6. 1Tt is established that liminf, .., Amin(Hpo/n) >0, where H, =
S DL Vi) Dio and Jmin(4) is the minimum eigenvalue of a
matrix A.

C7. There exist a constant ¢y > 0 and ny, such that for all n > ny and
for any p-dimensional vector A satisfying ||4|| =1, it holds that

P(—i’asn—(,ﬂ)12nco>: 1 (BeNy),
op
where Ny is a neighborhood of f,.
C8. The GEE has a unique solution when # is large.
Conditions C1-C8 are modifications of the conditions proposed by Xie and
Yang [17]. Conditions Cl, C2 and C3 are necessary to consider the GLM
framework. Conditions C4 and C5 are necessary to calculate the asymptotic
bias of the estimator of the risk. In addition, Conditions C1, C6, C7 and C8
are necessary to have the strong consistency, asymptotic normality and unique-
ness of the GEE estimator. Furthermore, in order to evaluate the asymp-
totic bias of the model selection criterion, we assume the following additional
conditions.
C9. There exists a compact neighborhood of ay, say U,, and
vec{R,'(a)} is three times continuously differentiable in the interior
of U,,.
C10. There exists a compact neighborhood of f, say Uy, and a(f, (B))
is three times continuously differentiable in the interior of Ug, .
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Cll. For all pe U, it is established that a® = 0,(1) (k =1,2,3),

where
ahp) = HEED - arip) — L 0atp, a¥p) = ©a%),

Cl12. The estimator ay = a(f,, ¢(f,)) satisfies /n(ay —ag) = O (1), and
there exists an s x p nonstochastic matrix # such that al)(g,) —
A = 0,(n'P).

C13. The following equations hold:

n

E Z(yi_ﬂi,o),E;&Di,Ohl,O
=

=0(n™),

[ n

E Z(yi - :uLO)IEiT(}DI}OjI,O

i=1

= o™,

E Z(yi—ﬂi,o)'diag(A;,f,obf‘,O)Ro_lAi,_g/zDi,0”1.,0 =0(n™),

E|> (5 —m0) 44" Ry diag(A; , oby.0)Diohio| = O(n™"),
L i=1

n

E Z(J’ s 0)' diag(A; ; obr.0)Ry AzO/zDi.O.il,O =0(n"),
=

n

E| Y (i —m0) 4,0 Ry diag(47, obr.0)Dior o | = O(n™),
Li=1

where g; o = p;(fy) and A; o = A:(By).
Note that for a matrix W = (wy), the derivatives of W by = (f,,... ,[)’p)’ and
fi are defined as follows:

0 ® W ow ow ow (ﬁw,-j)
ﬂl 0ﬁ1 ﬂp ’ P P/
We define hy o, j, o, A7 ;o and by o at the end of this section. Conditions C9,
C10, C11, C12 and C13 are necessary for ignoring the influence of estimating

the nuisance parameter a. Furthermore, by Condition CS5, it is established that
H, = O(n). Furthermore, by Condition C12, a(f,,d,) L 4y € o/° holds.

THEOREM 1. Suppose that Conditions C1, C2, C3, C4, C7 and C8 hold.
Furthermore, suppose that @ is a moment estimator. If the matrix R, (ay) is
positive definite, Conditions C9, C10, C11, C12 and C13 hold.
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The moment estimator is defined by a continuous function of f. By using
properties of continuous functions, it is easy to show that Theorem 1 holds.
Hence, we omit the proof of Theorem 1.

Based on the above conditions, to perform the stochastic expansion of
B, we focus on the equation §, = s,(f) = 0,. By applying Taylor’s expansion
around ﬁ = f, to this equation, §, is expanded as follows:

s, () X | U , d _ 0su(B) 5
op ﬂ:ﬂo(ﬂ - Bo) +§{(ﬂ —By) ®1,} (6_ﬁ’ ® ) ’p—p*(ﬂ = bo)

op’
=500 — Duo(l, + D10+ Do) (B — By)

$n,0 +

—i—%{(ﬁ —By)’ ®Ip}Ll(ﬁ*)<ﬁ —ho)
=0,

where p* lies between f, and ﬁ, I, is the p-dimensional identity matrix and
Sn0 = sn(By). Here, Li(f*), Dno, 210 and 2, are follows:

£\ i asn(ﬂ) q _ é ! -1pn.
Ll(ﬂ )<aﬁ ® aﬂ/ >‘ﬂﬂ*? Jm()*;l)i,ori,ol)’ﬂv

n 6
D10 = —@n,ézl)ﬁo< ®F,-1(lf)’
i=1

op >{IP®(yi_:ui70)}7

B=B,

[ 0
D0 = _@"_BZ<G_ﬁ' @D;(ﬁ)‘ >[IP®{riT(}(yi_:ui,0)}>
i=1

B=Po

where I';o=TIi(f,). By Lindberg central limit theorem, it holds that
Li(B") = 0y(n), B—By=0,(n""?), @1 0= 0,(n""?) and D, 9= 0,(n""/?).
Moreover, R (@) is expanded as follows:

R, (a) = R, (a0) + R, (a0){Ry(a0) — Ry.(20)} R, (a0) + Op(n ).

w

By Taylor’s theorem, since ay — ap = O,(n~'/?), it holds that

. 0 X _
IRufan) — Roa) < | & @ Rulw] a0 —anl = 0,007,

a=a*

ie., R.(ag) — Ry(a) = O,(n~'/?), where a* lies between ay and & Hence, it
holds that
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D0 = ZD;OF,-T(;DI;O
i=1
— ZD o R, )A;(}/zz)i,o

= H, 0+ 0y(n'?).
By this result and the fact that s, = ¢, + O,(1), B is expanded as follows:
B—By=H, g0+ 0p(n"") = b0+ 0,(n") (say),
where ¢, o = ¢q,(By). Also, since

0
op’

® R, (a(p, 45(13)))‘ ]
B=B,

and above these results, (2.3) is expanded as follows:

S0 = no+21) 7o PR (@0){R,,(@0) — R, (@) } R}, (o)A, D g

(I, + Gr0+ Ga0 + G3,0) (B — By)

(B 1) @ LY 10+ (Lo~ S0} (B~ By)

~s(-py el e (50 20) }’W

{(B—Bo)® (B- By}, (2.4)

where ™ lies between f, and B. Denote S0 =E[L1]. Then, & o= O(n)
and Ly o — %10 = 0,(n'/?), where

(2 ﬁsn(ﬁ)>‘
b <5/’® B ) lpp,

Note that f— g, = 0,(n~'/?) and

{ o © ( T asé}ﬁf%}‘ﬁ_w = 0,(n).

Hence, the last term of (2.4) is O,(n~'/?). We define 61;, 62, 63, G1.0, G20,
G3,0, b1 o and j, , as follows:
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%(B) = D(P)A; P (BR, (@),  Gxu(B) = D/(HA;*(B),
() = R, (a0)4; ' (B),

L 0 _
Gro=—H, > Gy (a—,,, ® 4, 1/2(/3)‘ >{1,, ® (51— m0)}
i—1 B=h
1 0
Gro=—H, ;> <0_ﬂ’ ® (521‘(ﬂ)‘ ) I, ® {€3i0(yi — mio)},
i=1 B=h,

G0 = *H,Z%) i %1i,0E [% QR (a(p, é(ﬂ)))’ ]
i—1 b p=B
1 ® {4, (v = w0},

n
hio=—H, (> Gio{R(a) — Ry(20)} 6], ob1.0,

Jro=H, 5> Guio{Ru(a0) — Ri(@0)}Csi0(y; — ;)
i=1

where 61;.0 = 61i(fy), €20 = 62(By) and €3; 0 = 63 (f,). Note that G o =
0p(n7'2), Gro=0,(n"'2), G30=0,(n""2), hyg=0,(n"") and j 4=

O,(n~"). By using the above equations, B is expanded as follows:

B —Py=UI,— G0+ G+ Gsy)
: [ »—H,§ ZD,’ oA R}, (a0) { Ry (a0) — w<ao>}Rw1<ao>A,,3/ZD,-,o]

“H, [Sn,o +%{(ﬁ —B)' @ LH{S 10+ (Lio— F1.0)}(B - ﬂo)]
=bi o+ bro+ Oy(n3?), (2.5)

where bl,O = Hni(l)qn#o = Op(l’l_l/z) and b27() = H,:(l)(bio ® Ip)y170b170/2 —
G1,0b1,0 — Ga.0b1,0— G3obio+hio+j o= Op(n").

3. Main result

In this section, we propose a model selection criterion. We measure
the goodness of fit of the model by the risk function based on the PMSE
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normalized by the covariance matrix. The risk function is as follows:

n

Z(Zi - ﬁi)/E;& (zi — ﬂz)H — mn,

Riskp = PMSE — mn = E, lEZ
i=1

where f; :,u,-(ﬁ) and z; = (zi1,...,Zim)’ is an m-dimensional random vector
that is independent of y; and has the same distribution as y,. If # = §,, Riskp
has the minimum value zero, i.e., PMSE has the minimum value mn. We
consider that the model which has minimum PMSE is the optimum model,
and we want to select this model. Since the PMSE is typically unknown, we
must estimate it.

We define R(B), L(B,,B,) and L*(p) as follows:

=%§"ZA;”2</)'><y,~—ﬂ,-<m><y,-—m(ﬂ)) S BB,
i=1

n

LB B) = (v —m(B)) A7 P (BIRT (B AT (B) (v — m(B))P (Bo),

i=1

n

L(B) =) (vi—m(B) Zr5(vi — m(B)).

i=1

Then, we estimate the PMSE by (8, ,BAf), where /';ff is the GEE estimator from
the full model, namely, we obtain f; as the solution of the following equation:

Sf.n ﬁf ZD ﬂf ﬂ/a‘lf)( ﬂi(ﬂ/‘)) =0,

where  Dy(B) = Ai(B)A(B) Xy VilByoor) = Ai”(Br)Rilo) 4;(B) and
Ri(as) is a positive definite working correlation matrix which can be chosen
freely. Also, I_Qi(af) is the same for all the candidate models. For simplicity,

we denote Z(By, By) = L(B) and L*(B) = £
We construct a model selection criterion by correcting the asymptotic bias

of the estimator ;'f(ﬂ ﬁ/) as an estimator of PMSE like as the Mallows’s C,.
The bias of E(ﬁ ﬂf) is given by

Bias = PMSE — E, [g(ﬂ, ﬂf)]
= {Riskp — E,[£"(B)]} + {E,[£"(B)] - E,[£"]}
+{E,[Z"] - E,[Z ()]} + {E,[L(B)] - E,[L(B.B)]}
= Biasl + Bias2 + Bias3 + Bias4.

We evaluate Biasl, Bias2, Bias3 and Bias4 separately.
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At first, Bias3 is as follows:

n

ST —mo){Z50 — A7 BIRT(BAT (BB} (i — m,@]

i=1

Bias3 =E,

n

S i m0) A7 P BORT(B)AT (BB (vi — w] :

i=1

=mn —E,

Hence, Bias3 depends on only the full model, so we can ignore Bias3 for model
selection.
Second, Biasl is expanded as follows:

Biasl =E,

E. [im ) Ed - ﬂ»] S ) S m]

i=1

=Ly
i=1

E. lZ(Zi — Mo+ Mo —ﬂi)lzfol (zi — M0+ Mo _ﬂi)‘|

n
- Z(y[ — Mot Mo _ﬁ[)lzijf}(yi — Mot Mo _ﬁi)]
i1

~E,

= 2F,

n
Z(yi—/lno)lzi,(;(ﬂi—l‘i,o)]- (3.1)
i=1

For expanding Biasl, we must expand & —p; . Since f; is the function of B,
by applying Taylor’s expansion around f = f,, #; is expanded as follows:

N o o (B)

Hi— Mo = ap’ ‘ﬂ_ﬁo(ﬁ—ﬂo)

1 N / 0 aﬂi(ﬁ)
r3l-py o (e P a-p
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+é{(ﬁ—ﬁo>/®1m}{§,ﬂ ® (% © altg;'/ﬂ)>}‘ﬂ—ﬂ

{B-B)® (BB}
) 1. , A _
= Dio(B o) +5{(B—B)) @ LI (B~ By) + 0p(n 7). (3.2)
where ™ lies between f, and [;’, and D1‘<,10) is defined by

D}y = (aﬁ ® D; (ﬂ)) ’HO.

By substituting (2.5) for (3.2), we can expand g; as follows:
A — o =Di,0b1,0+{ D;obao + (b’ 0®1n1)D§7‘0’b170}+ 0,(n3%).  (3.3)
By using (3.1) and (3.3), we get the following expansion:

1. -l(p
EBlasl =E, Z(yi - ﬂ[,O)/Ei,(}(ﬂi _”i,O)]

—E,

Z(yi - ﬂi,O),E,‘,(}Di‘Obl‘O‘|

i=1

n

Z(yi—ﬂi,o)lz { i,0b2,0 +5 (b10®l )Dfl(;bho}]

i=1

+E,

+E,[0,(n"17?)). (3.4)

Since the data from different two subjects are independent, we can get
E[(y; —m0) (¥, —m0)] =0 (i # j). The first term of (3.4) is calculated as
follows:

n
E, lZ(J’i - :ui.,O)/EiT(}DEObLO
i=1

lzz :uz() l(}DlOHnOD//OVJ_O(y ﬂ/o)‘|

i=1 j=1

n
=E, lZ(J’i - ﬂt,o)/zﬁébi.OHﬁ)D;o ViI)I (¥ — ﬂi,o)]

i=1
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n

o
5|

n
{Hn%)z lolE ﬂ[,O)(yi_ﬂz‘,O>/]Ei,_(}Di,0}
1
0

quO :(;D OHnoDzono( ﬂi,o)H

{ll
I\ Iy—1
{HnOZDlO 10 —#0)(¥i — #io) Ei,oDi,O}l

i=1

i=1

n

D!
<Hn ZDIO 101D10>
i=

1

=tr(l))
=P (3.5)
Also, since for all i, j, k (not i = j=k),
E[(y; — ﬂf,o) ® (J’_/ —/‘_/,o)/(yk —ﬂk,o)] =0y,

the second term of (3.4) is calculated as follows:

n

1
Z(y :uz 0)2 { 0b20+2( 0®I )Dl(lgbl’o}

i=1

E,

=Eyl2(y — 1 0)' 27 { 10b210+2(b110®1 )Df_l())bu,o”

i=1

=E, lZ(yi —1:0) Z50 {Di,O(bzi,o —hi0—Jjio)

i=1

+5 (bl ®1 )Df,lo)blz',OH

I\JIP—‘

+E,

i(yi - :ui,O),ZiT(; {Dio(h 0 JFJ'1.,0)}] )

i—1
where

biio= Hn_,(])Di,,O Vi,_()l (i — :ui,O)v

byio = H,Z(l)(bii‘o ® I,)%1.0b1i,0/2 — G1i0b1i,0 — Gi0b1i,0 — G3i0b1i0

+h170 +.il,07
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0 _
Giio = _Hn_,%)(gli-,o 7 ®A; 1/2(/),)‘ {Ip ® (y; _ﬂiﬁ,o)}v
2 b=4,
0
Goo=—H, (-2 ® %(ﬂ)] 1, ® (Gx0(0: — m o)}l
op s

G309 = _H,:%)(gZi,OE B

L, @ { AP (v — 1))

Under Condition C13, we have

2 @R (@l é(ﬁ)))\ ]
B=B

D o(baio — hio — jio) + (b]; 0 ® Im)D,slo)bu.o/2 = 0,(n?),

E, lZ(J’[ _:ui.,O)lEiT(} {Dio(hio+jio)}| = o(n™"),

i=1

so the second term of (3.4) is calculated as follows:

n

1
> - m0)'Zi {Dz',obz,o +5 (b ® Im)Di(,lo)bLO}

i=1

E, =0omn"). (3.6

Under the regularity conditions, the limit of expectation is equal to the expec-
tation of limit. Furthermore, in many cases, a moment of statistic can be
expanded as power series in n~! (e.g., Hall [5]). Therefore, by substituting
(3.5) and (3.6) for (3.4), we obtain

Biasl = 2p + O(n™").
Similarly, we obtain
Bias2 + Biasd = O(n!). (3.7)

The derivation of (3.7) is shown in Appendix.
From the above, the bias is expanded as follows:

Bias = 2p + Bias3 + O(n™").

Note that Bias3 does not depend on all the candidate models so we propose
the model selection criterion as

PMSEG = Z(B,8;) + 2p.

This criterion is the same as the criterion proposed by Inatsu and Imori [8].
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4. Numerical study

In this section, we perform a numerical study and discuss the result.
There are two aims to perform this simulation. One is to compare the
frequencies of selecting models in the case of we use the correct correlation
structure as a working correlation and in the case of we use the wrong
correlation structure as a working correlation. The other is to compare the
prediction errors in the same situation with estimating the correlation and
scale parameters. The QIC proposed by Pan [14] and modified QIC proposed
by Imori [7] are representative model selection criteria in the GEE method,
and Inatsu and Imori [8] confirmed a usefulness of the PMSEG through
comparisons with the QIC and modified QIC. Similar results of the compar-
isons can be expected in the framework of this paper. Therefore, the com-
parisons with the QIC and modified QIC are not performed in this numerical
study.

In this simulation, we got data from the gamma distributions which have
the scale parameter included in the exponential family. Then, we supposed
that there are two groups (e.g., male and female). Furthermore, we supposed
that the distribution of observations from one group is different from the other
one. To create data distributed according to the gamma distributions with
correlation, we used the copula method. We set n = 50,100,150,200 and
m=3. For each i=1,2,...,n, we constructed the 3 x 8 explanatory matrix
Xri= (xr.1,%r.0,%7.3) = (X1:,X2). Here, for each i=1,...,(n/2),

1 001 0O
Xy;=|11111 1],
1 211 21
and for each i= (n/2)+1,...,n,
1 00 00O
X;=|11 10 0 0
1 21 0 00
Furthermore, all the elements of X,; (i =1,...,n) are independent and iden-

tically distributed according to the uniform distribution on the interval [—1, 1].
Let the true correlation structure be the exchangeable structure, i.e., Ry =
(1 — )1, + al,,1),, where o is the correlation parameter. Furthermore, in this
simulation, we prepare two situations, as follows:

Case 1: a=0.3, B, =(0.25,0.25,0.25,0.25,0.25,0.25,0,0)’,

Case 2: o =0.8, B, = (0.25,0.25,0.25,0.25,0.25,0.25,0,0)".
The explanatory matrix for the ith subject in the kth model (k=1,2,...,8)
consists of the first k columns of X;; We simulate 10,000 realizations of
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Table 1. Frequencies of selecting models (%) and prediction errors when
o = 0.3 using exchangeable working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 | 34 14 38 07 126 531 142 108 6.573 (0.03)
100 {| 0.1 0.0 02 0.1 33 718 131 114 6.512 (0.03)
150 || 0.0 0.0 0.0 00 03 754 13.6 107 6.641 (0.03)
200 {| 0.0 0.0 00 00 0.0 755 156 8.9 6.494 (0.03)

Table 2. Frequencies of selecting models (%) and prediction errors when
o = 0.8 using exchangeable working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

5006 05 03 02 09 674 176 125 7.089 (0.04)
100 |{ 00 00 0.0 00 00 71.7 174 109 6.533 (0.03)
150 || 0.0 00 00 00 0.0 737 155 108 6.455 (0.03)
200 || 00 00 00 00 00 754 149 9.7 6.688 (0.03)

Y=(V11, -, Y13,-+s Yul, -+, ¥m3) , Where each y; is distributed according to
the gamma distribution with the mean u; = exp(x]’pﬁijﬁo). Here, in order to
obtain f;, we used the independence working correlation matrix in this
simulation.

First, we consider the situation we use the exchangeable structure as a
working correlation structure. The frequencies of selecting models and the
prediction errors in Case 1 and Case 2 are given in Table 1 and Table 2,
respectively. The values in parentheses are the standard errors of the predic-
tion error of each situation. In the both situations, the frequency of selecting
the 6th model tends to be large as n is large. Furthermore, the frequencies
of selecting the 1-5th models tend to O.

Next, we consider the situation we use a wrong correlation structure as a
working correlation structure. We use the autoregressive structure as one of
such structures. The frequencies of selecting models and the prediction errors
in Case 1 and in Case 2 are given in Table 3 and Table 4, respectively. In
the case of using the different correlation structure as well as using the true
correlation structure, the frequency of selecting the 6th model tends to large as
n is large, and the frequencies of selecting the 1-5 models tend to 0. In Case
1, the prediction error in Table 1 is not much different from that in Table 3
for each n, on the other hand, in Case 2, the prediction error in Table 2 is
different from that in Table 4 for each n. From this, it is considered that
the larger the true correlation value, the greater the influence of the working
correlation structure on the prediction error.
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Table 3. Frequencies of selecting models (%) and prediction errors when
o= 0.3 using autoregressive working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 | 82 09 42 07 6.7 580 112 10.1 6.660 (0.03)
100 | 02 0.0 06 00 21 738 149 8.4 6.810 (0.04)
150 |{ 0.0 00 00 00 05 748 134 113 6.767 (0.03)
200 {| 0.0 0.0 00 00 0.0 782 128 9.0 6.990 (0.04)

Table 4. Frequencies of selecting models (%) and prediction errors when
o = 0.8 using autoregressive working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 || 1.2 06 04 02 29 655 170 122 7.268 (0.04)
100 || 0.1 0.1 00 00 0.0 742 168 8.8 7.158 (0.04)
150 {{ 0.0 0.0 00 00 0.0 782 133 8.5 7.017 (0.04)
200 || 0.0 0.0 0.0 00 00 796 129 7.5 7.402 (0.04)

Table 5. Frequencies of selecting models (%) and prediction errors when
o = 0.3 using independence working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 |87 1.9 32 09 92 526 138 9.7 6.829 (0.04)
100 | 03 00 15 00 32 694 153 103 7.135 (0.04)
150 || 0.0 00 00 00 03 758 145 9.4 7.069 (0.04)
200 || 0.0 00 00 0.0 0.0 786 13.1 8.3 7.199 (0.04)

Table 6. Frequencies of selecting models (%) and prediction errors
when o = 0.8 using independence working correlation matrix

n 1 2 3 4 5 6 7 8 Prediction Error

50 [ 22 20 1.0 03 54 693 121 7.7 11.600 (0.04)
100 |{ 0.1 00 0.0 0.0 07 836 11.1 45 11.276 (0.04)
150 |{ 0.0 0.1 0.0 00 02 840 106 5.1 11.833 (0.04)
200 | 0.0 0.0 00 0.0 0.0 878 7.6 4.6 11.585 (0.04)

Next, we consider the situation we use the independence structure as a
working correlation structure, namely, we assume the GLM. The frequencies
of selecting models and the prediction errors in Case 1 and in Case 2 are
given in Table 5 and Table 6, respectively. In this situation, the frequency of
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Table 7. Frequencies of selecting models (%) and prediction errors when o = 0.3
using tree types of correlation matrix

n W-Cor. 1 2 3 4 5 6 7 8 Prediction Error

Ex. 32 1.1 15 0.6 47 242 80 63
50 AR 62 07 22 04 22 150 35 26 6.043 (0.03)
Ind. 07 01 07 04 22 98 16 21

Ex. 00 00 02 02 08 412 85 60
100 AR 01 01 01 00 05 171 34 29 6.147 (0.03)
Ind. 00 00 02 00 08 138 27 14

Ex. 00 00 00 00 04 417 88 72
150 AR 00 00 00 00 00 199 40 23 6.104 (0.03)
Ind. 00 00 00 00 01 123 25 08

Ex. 00 00 00 00 0.1 418 81 62
200 AR 00 00 00 00 01 215 36 22 6.028 (0.03)
Ind. 00 00 00 00 00 137 14 13

selecting the 6th model is the largest of three situations, but the prediction error
is the largest.

Finally, we consider selecting the explanatory variables and the working
correlation structure simultaneously. We use three working correlation struc-
tures, i.e., exchangeable (Ex.), autoregressive (AR) and independence (Ind.).
Then, the number of models is 8 x 3 = 24. The frequencies of selecting models
and the prediction errors in Case 1 and in Case 2 are given in Table 7 and
Table 8, respectively. By comparing Table 7 with Table 1 and Table 8 with
Table 2, it shows that the prediction errors in Table 7 and Table 8 are
significantly smaller than the prediction errors in the case of we use the true
correlation structure as a working correlation for each »n. Similarly, by com-
paring Table 7 with Table 3 and Table 8 with Table 4, it shows that the
prediction errors in Table 7 and Table 8 are significantly smaller than the
prediction errors in the case of we use the wrong correlation structure as
a working correlation. Table 7 and Table 8 indicate that by selecting both
variables and a working correlation, we may be able to improve the prediction
accuracy. Note that if we use a specific correlation structure, the prediction
error might be large.

Appendix

We calculate Bias2 + Bias4. Now, Bias2 and Bias4 are expressed as
follows:
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Table 8. Frequencies of selecting models (%) and prediction errors when o = 0.8
using tree types of correlation matrix

n W-Cor. 1 2 3 4 5 6 7 8 Prediction Error

Ex. 05 04 01 02 07 407 109 79
50 AR 07 00 00 00 05 192 58 6.1 6.098 (0.03)
Ind. 00 01 01 00 02 48 06 0.5

Ex. 00 02 00 00 00 483 97 173
100 AR 01 00 00 00 00 213 49 34 6.136 (0.03)
Ind. 00 00 00 00 00 42 03 03

Ex. 00 00 00 00 00 477 101 84
150 AR 00 00 00 00 00 192 46 23 5.949 (0.03)
Ind. 00 00 00 00 00 64 08 05

Ex. 00 00 00 00 00 490 90 75
200 AR 00 00 00 00 00 227 43 26 5.844 (0.03)
Ind. 00 00 00 00 00 43 03 03

Bias2 = E,[2" (B)] — E,[L"(By)]

n n
EylZ(yiﬁi)'Ei,&(yiﬂi) (¥i = #0) 50 (3 — i)
i=1 i=1

=E, [2 2": — H; 0) (ﬂi,o - ﬁi)]

i=1

+E,

i=1

Z(ﬂi.o - ﬂi)/E;(; (ﬂi,o - ﬁz)] )
Bias4 = Ey[g(ﬁ()vﬁf)] - E}[g(ﬁ7ﬁ/)]

i=1

:E},[j@ —m;.0)' A7 P (BORT (B AT (B (i — mi0)h” <ﬁ>]

_E, [i(» — i) A7 P BORT (BAT (B (vi — i) <ﬁ,->]

i=1

2 (= m) 47 (BR </:f>Ai1/2(/3ff><ﬂi,o—ﬂi>¢51(/?_»]

—Ey[iw,»,o—a,) A7 P BORT(B)AT (B (o — ) d™ 1(/1_,-)].

i=1
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Hence, Bias2 + Bias4 is

Bias2 + Bias4 = E, [2 S = m0) {250 — A7 P (BORT(B)A; P (B)d T (B)}

(M0 _ﬂi)‘| (3.8)

S o — ) (58 — A7 GBRT B AT ()6 (B)

i=1

+E,

: (ﬂi,o — ;)| (3.9)

In order to evaluate these expectations we perform the stochastic expansion of

-1 2(/3’/) (ﬂ,) ,u,(ﬂf) [ff and ¢(ﬂ,) We expand ﬁ,» as with the expansion
of B in section 2. The expansion is as follows:

ﬁf —PBro=H;, 08 .0(Br0) + Op(n") = by + Op(n"),
where ﬁ'f70 is the true value of ﬁ'f. Here, Hy 0 is
Hy o = ZDf 00 l/zRi (af)AiTOI/ZDf,i,Oa
i=1

where Dy ;= A;(B;)A4i(B;)Xsi, Dyio=AiodioXs; and R; is the working
correlation matrix of the full model. In addition, as with the expansion of
A; in section 3, we expand u;(f;) as follows:

#:(By) — 0 = Dy.ioby.o + Op(n").
Furthermore, ay ;(f;) is the m-dimensional vector consisting of the diagonal

components of A, 1/z(ﬁj-), ie., diag(as(B/)) = Ai_l/z(ﬁ’f). Then, we can per-
form Taylor expansion of ay. i(B;) around f, = B, , as follows:

“f,i(ﬁf) =ay,i(Br0) + A7 ; obro + 0,(n"),

where

A7, y.i(By) ~
f.i,0 = f
ﬁ Br=Ps.o

Therefore, we can expand A4, 12 (ﬂf) as follows:

A7 (By) = diag(ay i(By)) = A;* + diag(4] ; oby.0) + Op(n™").



106 Tomoharu SATO and Yu INATSU

Note that by o= O,(n~"?), Dy iobso=0y(n~'?) and diag(4; obr.0) =
O,(n~"2).  Moreover, we can expand ¢(B;) as follows:

é(ﬁ/‘) = ¢+ Op(n~'1?).
Furthermore, I?(ﬁ,-) is expanded as follows:

ZA By~ m(B) (i — m(B) A7 (BT (By)

= —Z{A /2 + diag(A; ; oby.0)H{w: — (0 + Dy.i0br0)}

—1/2 . *
Avi = (0 + Dy ioby0)Y {4, + diag(4] ; obr.0)}

(b + 47 B — 00

+0,(n7")
1 n 12 , 1/2
= =3 A Dyobyo) (v = m0) + (9= 0)(Driobro) '} A,
i=1
+- ZA 1/2 — t,0) (¥ — #;0)' A 1/2¢0
IS
—&-;Z diag(A; ; obr,0)(¥; — ti0)(¥i — ﬂzo) 1/2¢0
i=1
- ZA‘”2 — 1;0)(yi — ;)" diag(A; ; oby.0)dy
- ZA V0= 0 (0= m0) A6 (B) — 45
+0,(n™M). (3.10)

By Lindberg central limit theorem, the first term of (3.10) is O,(n~'). Then,
we get the following expansion with using above expansions:

2 2
Ry'’R(B,)R,"
1 1o~ 12 12 5—1/2 ,—
=L — Lt RPN A (= o) 0y = m.0) A0 "Ry
i=1

1 _ LN . B i
+;R0 1/2Zd‘ag("‘f‘,i,obfyo)(yi—lluo)(y — #i0)'A4;, o Ry gy
i=1
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—1/2 -1 2 . * —1/2 ,—
+ R / ZA / ﬂi,o)(yi—ﬂi,o)/dlag(Af,i,obf,O)Ro /¢ol
1/2 1 2 12 p-1/2/,7 n —
Ry /ZA P =m0 i = m0) ARG (B — 4 )
+0,(n™ ")

~1)2 1 2 1 2
:Im_R() / { ZA / ﬂi,O)(y A”l 0) / ¢0
1< diag(A* b 1/2
- ;Z iag( 1,i,0 7.0) (Vi = #i.0) (¥ —/‘i,o) ¢0
i=1
—1/2 /g * ~1
——ZA — #;,0)(¥; — #;0)" diag(A; ; oby o)y

_72‘4 1/2 ﬂi,o)(y ﬂlo) 1/2(4’5 (ﬁf) P )} '

+0,(n71).

Therefore, the inverse matrix of R, 1/ zR(ﬂf)R(; 2 can be expanded as
follows:

Ry*R7 (B)Ry?

—Im+RJ”{ }:Alﬂ —0) (5 = 10)' 454y
1< diae(A* . b 1/2
—;Z iag( 1,0 f,O)(yz'_ﬂi,o)(J’i_ﬂi,o) ¢0
i1
—1/2 AT * -1
——ZA — t,0)(¥i — w;0)" diag(A; ; obr0) g

7—ZA 20— w0 (0= mi0)' A6 (B) — by >} ;'

+0,(n71). (3.11)

Therefore, R~ is expanded as follows:
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15 _ _ -1 2 4712
l(ﬁ/‘):Rol +R01{R0_—ZA / ﬂi,o)(y H; o) / ¢0
LSS iag(A? . b o
_ZZ iag( £,1,0 1,0) (Vi —ﬂi,o)(y —H; o) ¢o
i=1

——ZA 2 (01— 13.0) (v; — i0)' diag(A; ; by o)y

——ZA = o) i = i) 4,076 <izf>—¢ol>}Rol

+0,(n71).
Note that the second term of (3.12) is O,(n~'/2). Then, we have
I A P (BORT (B)AT (B (By)

= X0 — {4, + diag(4] , obr.0)}

.R01+R01{R0——ZA 20— a0) (0 = mi0) Ay

1 . : * 1 2
= diag(A] oby.0) (v — ,0) (0 — 11041005
i=1
- —Z A_l/z —Hi0) (Vi — :”i,O)/ diag(A;_ i,obf',0)¢o_l

__ZA-W — ,0) (¥ — 1i0) Ao (9™ </3'f>—¢a‘>}Ral

A, + diag(4] ; obro) Heo '+ 671 (B) — 40 "))
+ Op(n_l)

= —diag(A; ; obr.0)Ry ' 4,0 " — A5 * Ry diag(A; ; oby.0)dy

—A_l/z {Ro——ZA_l/z — t;0) (i — ;)" A _1/2¢0

1< .. ;
_;Zdlag(Af,i,()bf,O)(yi_”[.0)(.)7 .",0) 1/2¢0
i=1

(3.12)
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_—ZA_I/Z —#;0)(y; _.“f,o)l diag(A;i‘Obf,O)@)_l

——ZA V2= .0) e — mi0) AP (67 (B — o )}RO‘A o205

— A PR A6 (By) — 90"

+ OI,(n*I).

Note that ;3 — A, *(B)R™'(B)A; > (B¢ (By) = Op(n~17?) and g, —
=D;ob1 o= 0,(n""/?). Then, (3.9) is calculated as follows:

n
~1/2

E, Z(ﬂi,o _ﬁi)/{EiTOl — 4, (ﬂ) (ﬂ/) _l/z(ﬂ )(15 (ﬁ )}(ﬂi,o _ﬁi)‘|

In addition, we calculate (3.8) as follows:
[22 —m ) {Z0 — A7 P (BOR (B AT (B)é T (B} (o m)]
[ZZ ﬂ,o {dlag(Afzobf O)ROIA 1/2¢01
+ A_'/zRO‘] diag(A;,i‘ob/go)%l}Dz‘,obLo}
-E, Lz_n;(y —10)' 4,6 Ry lzzf‘/ )0 = .0 (v~ )’

ARy 9y A D; obl,o]

n _ 2 n . .
—E, lZ(J’ .",0) A;, 1/2 lﬁzdlag(Af,j,obf,O)( — N 0)()’ — N o)
j=1

i=1

: Aj,é/zRo1¢0_2A,-,3/20i,0b1,o]
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. 412 2 —1)2
—EylZ(y —10)' A, RGE ZA Py = m.0) (3 = 10)’

i=1

-diag(A; ; obr.o)Ry ' ¢y ZA, o/ “Diob, O]

- 12 5-12 172 ~1)2
~E, [Z(y —#;0)'4;, "Ry ZA, Py = m0) (v — m:.0)' 4,y
]

'{ﬂgfl(ﬁf) ¢ IRy A, 1/2475011)11,0”170]

22 — #i0)’ 1/ZROIA 1/2{¢ (B ) — ¢o ' 1D ob1, o]

22 A7 PR A P45 Dok o | + O 7). (3.13)

Note that E[(y; — #;9) ® (¥ = #;0)' (¥x = #y0)] = Om (n0t i = j = k), so we can
calculate the first term of (3.13) as follows:

y

1/2
22 —Hio {dlag(Aj i, Obf O)RO 10/ 0

+A4;,°Ry! diag(Af-’[70bf70)}Di,0b1,01

n

22(3’ —H; o) {dlag(A/ iobr.i0)Ry IA 1/2¢01
i1

—E,

+ A4,y Ry diag(4; , by, i,o)}D,;,oblﬁo]

=0, (3.14)

where by 0 = H/ n, ODl(ﬁf o) Vi (ﬁf 0) (¥ — (B
E, (v — 0) (9 = #1.0) (v — ﬂ].o) (P — M, o)] =
term of (3.13) is calculated as follows:

r0))- Similarly, because of
0 (unless i = k), the second

n

2,12 112(),
—Ey | > (i —mi0)' ;R E ZA, Py = .00y = my0)’
=1

AR 524,y Dioby o
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n 2 n
—1 2 ~1/2
= —E, lZ(y — A o) A / Ry ln Z Aj,o/ (yj _:uj,O)(yj —ﬂj,o),
i=1 j=lLi#j

'A_l/zRo bo ZA_I i,Obli,O]

+ O(n‘l)

n

2 Z(J’i - ﬂi,o)/zf()ll)i,obli,o
i=1

= -E, +0(n)

=-2p+ 0. (3.15)

Here, we define notations of summation as follows:

ZZZ

i=1 j=
n n
i#j i=1 j=1,i#j

It holds that Ey[(y; — ;.0)" (¥; = #:,0) ® (Wi = #.0) W (Wi = i.0) ® (v1 = 1))
= 0 unless the following condition:

i=j=1 ot i=j#k=1 o i=Il#k=j or j=Il#k=i

Thus, the third term of (3.13) is calculated as follows:

i=1

n B 2 n
1/2 p— . *
b lz(yi — 0)' 45 "Ry , > diag(4; ; oby,0) (¥ — #:,0)(¥; — #:0)’
=1

A PRy 452 A, Dy oy 0]

=-E, lZ(J’ ﬂzo)A I/ZR 1 dldg(Af, oby, 0)( — N o)(y — N o)

iJ

: Aj_’é/2R01¢0_2Al"01/2Di,0b1,0‘|
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n 1 ) i
=—E, lZ(y ﬂzo)A /R 1 dlag(Af,i,Obf-O)(yi_:ui,O)(yi_:ui,O)’

i1
: A_1/2Ro K23 2A i,0b1,0‘|
—E, lZ(y /‘z()) A; I/ZR 1 dlag(Af, obfzo)( —H 0)()’ H 0)
i#j
.A_l/zRolgbozA_l i,Oblj,O]
~E, [Zu —1:0)'4;"°R chag(Af, 0br.,0) (%) — 1,0 () — 1;0)’
i#j
A7 PRy po A, D oby; 01
+ 0™
=0(n. (3.16)
Similarly, the forth term of (3.13) is calculated as follows:

n

“125-12 112y,
~E, > (ni—m0)' 44" R;' S §:4 Py =m0 — m0)’
i=1

-diag(4; ; oby.0)Ry ' d° A5 *Dyobu.o
— o). (3.17)

The fifth term of (3.13) is calculated as follows:

n

“125-12 172 12
—E, Z()’ /‘,0 /Rol ZA, / —Ho )(.V — K 0) A /
=1

A6 (B) — 8 YR 4,5 Diob o
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n _ 2 _ _
= -E, [Z(y —ai.0) Ay PRy A (5= o) 0y — i) A0
i=1
26,
B,

by j.0Ry IA,-TS/ 2y lDi,obu,O]
Br=Pr.0

- PR 2 ~12 ~12
—Ey[Z(y —0)' A3 *R;' S ZA P = 1.0y — 1.0)' 4

i=1

9By
by

b i,ORalA;;/2¢61Di,0bli,01
Br=Pr.o

- 12 p5-12 12 12
EylZ( —tio)' /Rol ZA// = 1,0)(y; ﬂ],)A /

by, l'-,ORO1Aiv(§/2¢olDi,0blj,0‘|

by Br=hr.0

n
~1/2 2 1/2( 12
_E}’lZ(y :uIO /R : ZAJ / :uj, )(y :uj, )A /
=1

(B
op,

= 0. (3.18)

bf',j,oRolAi_é/2¢olDi,obn,o]
Br=Bs.o

The sixth term of (3.13) is calculated as follows:

l2 Z — ) 1/2Ro ', 1/2{6’5(@‘) - ¢01}Di,0b1,01

= 0. (3.19)

_ _ 5¢ﬂ)
=E, [ZZ ,u,o 1/2 1A 1/2 ( bf,i,ODi,Obli,0‘|

Br=Br.o

Furthermore, the seventh term of (3.13) is calculated as with (3.5).

lzz —1.0)'4; PRy 4;, 1/2¢OID,,01;170] =2p. (3.20)
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By (3.14)—(3.20), (3.8) is calculated as follows:

22 —w.0) {(Zi0 = AP BORT (B)AT (B (B o — )

=0n™").

Thus, we have Bias2 + Bias4 = O(n!).
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