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Abstract. For a finite collection A ¼ ðAiÞi A I of locally closed sets in Rn, nd 3, with

the sign si ¼G1 prescribed such that the oppositely charged plates are mutually dis-

joint, we consider the minimum energy problem relative to the a-Riesz kernel jx� yja�n,

a A ð0; 2�, over positive vector Radon measures m ¼ ðm iÞi A I such that each m i , i A I , is

carried by Ai and normalized by m iðAiÞ ¼ ai A ð0;yÞ, while the interaction between

m i , i A I , is determined by the matrix ðsisjÞi; j A I . We show that, though the closures of

oppositely charged plates may intersect each other even in a set of nonzero capacity,

this problem has a solution lx
A ¼ ðl i

AÞi A I (also in the presence of an external field) if we

restrict ourselves to m with m i c x i, i A I , where the constraint x ¼ ðx iÞi A I is properly

chosen. We establish the sharpness of the su‰cient conditions on the solvability thus

obtained, provide descriptions of the weighted vector a-Riesz potentials of the solutions,

single out their characteristic properties, and analyze the supports of the l i
A, i A I . Our

approach is based on the simultaneous use of the vague topology and an appropriate

semimetric structure defined in terms of the a-Riesz energy on a set of vector measures

associated with A, as well as on the establishment of an intimate relationship between

the constrained minimum a-Riesz energy problem and a constrained minimum a-Green

energy problem, suitably formulated. The results are illustrated by examples.

1. Introduction

The purpose of this paper is to study minimum energy problems with

external fields (also known as weighted minimum energy problems or as the

Gauss variational problems) relative to the a-Riesz kernel kaðx; yÞ :¼ jx� yja�n

of order a A ð0; 2� on Rn, nd 3, where jx� yj denotes the Euclidean distance

between x; y A Rn and the infimum is taken over classes of vector measures

m ¼ ðm iÞi A I associated with a generalized condenser A ¼ ðAiÞi A I in Rn and

normalized by m iðAiÞ ¼ ai A ð0;yÞ, i A I . More precisely, an ordered finite

collection A of locally closed sets Ai � Rn, i A I , termed plates, with the sign

si ¼G1 prescribed is said to be a generalized condenser if the oppositely signed
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plates are mutually disjoint, while a vector measure m ¼ ðm iÞi A I is said to be

associated with A if each m i, i A I , is a positive scalar Radon measure (charge)

on Rn, carried by Ai. In accordance with an electrostatic interpretation of a

condenser, we say that the interaction between the components m i, i A I , of such

m is determined by the matrix ðsisjÞi; j A I , so that the f-weighted a-Riesz energy

of m is defined by

Gka; fðmÞ :¼
X
i; j A I

sisj

ð
jx� yja�n

dðm i n m jÞðx; yÞ þ 2
X
i A I

ð
fi dm

i;

where f ¼ ð fiÞi A I , each fi : Rn ! ½�y;y� being a universally measurable func-

tion treated as an external field acting on the charges carried by the Ai.

The di‰culties appearing in the course of our investigation are caused

by the fact that a short-circuit may occur between Ai and Aj with sisj ¼ �1,

because these conductors may have zero Euclidean distance. See Theorem 5.1

below providing an example of a generalized condenser with no a-Riesz energy

minimizer. It is therefore meaningful to ask what kinds of additional require-

ments on the objects in question will prevent this blow-up e¤ect, and secure

that a solution to the corresponding f-weighted minimum a-Riesz energy

problem does exist.

We show that, though the closures of oppositely charged plates may inter-

sect each other even in a set of nonzero a-Riesz capacity, such minimum energy

problem is nevertheless solvable (no short-circuit occurs) if we restrict ourselves

to m with m i c x i, i A I , where the constraint x ¼ ðx iÞi A I is properly chosen (see

Sections 3.5 and 5.2 for a formulation of the constrained problem). Su‰cient

conditions for the existence of solutions lx
A ¼ ðl i

AÞi A I to the constrained mini-

mum a-Riesz energy problem are established in Theorems 7.1 and 7.6; those

conditions are shown in Theorem 7.2 to be sharp. The uniqueness of solutions

is studied in Lemma 3.6 and Corollary 3.1. We also provide descriptions of

the f-weighted vector a-Riesz potentials of the solutions lx
A, single out their

characteristic properties, and analyze the supports of the components l i
A, i A I

(Theorems 7.3, 7.4 and 7.5). The results are illustrated in Examples 10.1 and

10.2.

In particular, let A ¼ ðA1;A2Þ be a generalized condenser with the positive

plate A1 :¼ D and the negative plate A2 :¼ RnnD, D being an (open connected)

bounded domain in Rn with mnðDÞ > 1, mn being the Lebesgue measure

on Rn, and let f ¼ 0. Then inf Gka; fðmÞ over all m ¼ ðm1; m2Þ associated with

A and normalized by m iðAiÞ ¼ 1, i ¼ 1; 2, is an actual minimum (although

A2 \ ClRn A1 ¼ qD) if we require additionally that m1 c x1 :¼ mnjD and

m2 c x2, where x2 is a positive Radon measure carried by A2 and possessing

the property x2 d ðmnjDÞ
A2 (cf. Theorems 7.1 and 7.6). Here mnjD is the
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restriction of mn on D, and ðmnjDÞ
A2 the a-Riesz balayage of mnjD onto A2.

Throughout the paper qQ denotes the boundary of a set Q � Rn in the

topology of Rn.

The approach developed below is mainly based on the simultaneous use of

the vague topology and an appropriate (semi)metric structure defined in terms

of the a-Riesz energy on a set of vector measures associated with a generalized

condenser (see Section 3.2 for a definition of such a (semi)metric structure1), as

well as on the establishment of an intimate relationship between the constrained

minimum a-Riesz energy problem and a constrained minimum a-Green energy

problem, suitably formulated. Regarding the latter problem, crucial to the

arguments applied in its investigation is the perfectness of the a-Green kernel ga
D

on an arbitrary open set D, established recently by the present authors [15],

which amounts to the completeness in the topology determined by the energy

norm knkg a
D
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ga
Dðn; nÞ

p
of the cone of all positive scalar Radon measures n on

D with finite a-Green energy ga
Dðn; nÞ :¼

Ð
ga
Dðx; yÞdðnn nÞðx; yÞ < y.

2. Preliminaries

Let X be a locally compact (Hausdor¤ ) space [2, Chapter I, Section 9,

n� 7], to be specified below, and MðXÞ the linear space of all real-valued scalar

(signed) Radon measures m on X , equipped with the vague topology, i.e.

the topology of pointwise convergence on the class C0ðX Þ of all continuous

functions2 on X with compact support. We refer to [3, 10] for the theory of

measures and integration on X , to be used throughout the paper (see also [11]

for a short survey).

For the purposes of the present study it is enough to assume that X is

metrizable and countable at infinity, where the latter means that X can be

represented as a countable union of compact sets [2, Chapter I, Section 9,

n� 9]. Then the vague topology on MðXÞ satisfies the first axiom of count-

ability [14, Remark 2.4], and the vague convergence is entirely determined by

convergence of sequences. The vague topology on MðXÞ is Hausdor¤; hence,

a vague limit of any sequence in MðXÞ is unique (whenever it exists).

Let mþ and m� denote the positive and negative parts of a measure

m A MðXÞ in the Hahn–Jordan decomposition, jmj :¼ mþ þ m� its total varia-

1A key observation behind that definition is the fact that there corresponds to every positive

vector measure m ¼ ðm iÞi A I of finite energy associated with A a scalar (signed ) Radon measure

Rm :¼
P

i A I sim
i on Rn, and the mapping R : m 7! Rm preserves the corresponding energy semimetric

(see Theorem 3.1). This approach extends that from [22]–[26] where the closures of the oppositely

charged plates were assumed to be mutually disjoint.

2When speaking of a continuous numerical function we understand that the values are finite real

numbers.
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tion, and SðmÞ ¼ S
m
X its support. A measure m is said to be bounded if

jmjðX Þ < y.

Let MþðX Þ stand for the (convex, vaguely closed) cone of all positive

m A MðXÞ, and let CðXÞ consist of all lower semicontinuous (l.s.c.) functions

c : X ! ð�y;y�, nonnegative unless X is compact.

Lemma 2.1 (see e.g. [11, Section 1.1]). For any c A CðX Þ the mapping

m 7! hc; mi :¼
Ð
c dm is vaguely l.s.c. on MþðXÞ.

We define a (function) kernel on X as a symmetric positive function k

from CðX � XÞ. Given m; n A MðXÞ, we denote by kðm; nÞ and kð�; mÞ the

mutual energy and the potential relative to the kernel k, respectively, i.e.3

kðm; nÞ :¼
ð
kðx; yÞdðmn nÞðx; yÞ;

kðx; mÞ :¼
ð
kðx; yÞdmðyÞ; x A X :

Note that kðx; mÞ is well defined provided that kðx; mþÞ or kðx; m�Þ is finite, and
then kðx; mÞ ¼ kðx; mþÞ � kðx; m�Þ. In particular, if m A MþðX Þ, then kðx; mÞ
is defined everywhere and represents a l.s.c. positive function on X (see

Lemma 2.1). Also observe that kðm; nÞ is well defined and equal to kðn; mÞ
provided that kðmþ; nþÞ þ kðm�; n�Þ or kðmþ; n�Þ þ kðm�; nþÞ is finite. For

m ¼ n, kðm; nÞ becomes the energy kðm; mÞ of m. Let EkðXÞ consist of all

m A MðXÞ whose energy kðm; mÞ is finite, which by definition means that the

kernel k is ðjmjn jmjÞ-integrable, i.e. kðjmj; jmjÞ < y, and let Eþ
k ðXÞ :¼

EkðXÞ \MþðX Þ.
Given a set Q � X , let MþðQ;XÞ consist of all m A MþðXÞ carried by

Q, which means that XnQ is locally m-negligible, or equivalently that Q is

m-measurable and m ¼ mjQ, where mjQ ¼ 1Q � m is the restriction of m on Q

[3, Chapter V, Section 5, n� 3, Example]. (Here 1Q denotes the indicator

function of Q.) If Q is closed, then m is carried by Q if and only if it

is supported by Q, i.e. SðmÞ � Q. It follows from the countability of X

at infinity that the concept of local m-negligibility coincides with that of

m-negligibility; and hence m A MþðQ;XÞ if and only if m�ðXnQÞ ¼ 0, m�ð�Þ
being the outer measure of a set. Denoting by m�ð�Þ the inner measure of a set,

for any m A MþðQ;X Þ we thus get

m�ðQÞ ¼ m�ðQÞ ¼: mðQÞ:

3When introducing notation about numerical quantities we assume the corresponding object on

the right to be well defined (as a finite real number or Gy).
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Write Eþ
k ðQ;XÞ :¼ EkðX Þ \MþðQ;X Þ, MþðQ; q;X Þ :¼ fm A MþðQ;XÞ : mðQÞ

¼ qg and Eþ
k ðQ; q;X Þ :¼ EkðXÞ \MþðQ; q;XÞ, where q A ð0;yÞ.

Among the variety of potential–theoretic principles investigated for ex-

ample in the comprehensive work by Ohtsuka [21] (see also the references

therein), in the present study we shall only need the following two:
� A kernel k is said to satisfy the complete maximum principle (intro-

duced by Cartan and Deny [6]) if for any m A Eþ
k ðXÞ and n A MþðXÞ

such that kðx; mÞc kðx; nÞ þ c m-a.e., where cd 0 is a constant, the

same inequality holds everywhere on X .
� A kernel k is said to be positive definite if kðm; mÞd 0 for every (signed)

measure m A MðX Þ for which the energy is well defined; and k is said

to be strictly positive definite, or to satisfy the energy principle if in

addition kðm; mÞ > 0 except for m ¼ 0.

Unless explicitly stated otherwise, in all that follows we assume a kernel k

to satisfy the energy principle. Then EkðXÞ forms a pre-Hilbert space with

the inner product kðm; nÞ and the energy norm kmkk :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðm; mÞ

p
(see [11]).

The (Hausdor¤ ) topology on EkðXÞ determined by the norm k � kk is termed

strong.

In contrast to [12, 13] where capacity has been treated as a functional

acting on positive numerical functions on X , in the present study we use the

(standard) concept of capacity as a set function. Thus the (inner) capacity of a

set Q � X relative to the kernel k, denoted ckðQÞ, is defined by

ckðQÞ :¼ inf
m AEþ

k ðQ;1;X Þ
kðm; mÞ

� ��1

ð2:1Þ

(see e.g. [11, 21]). Then 0c ckðQÞcy. (As usual, here and in the sequel

the infimum over the empty set is taken to be þy. We also set 1=ðþyÞ ¼ 0

and 1=0 ¼ þy.) Because of the strict positive definiteness of the kernel k,

ckðKÞ < y for every compact K � X : ð2:2Þ

Furthermore, by [11, p. 153, Eq. 2],

ckðQÞ ¼ sup ckðKÞ ðK � Q; K compactÞ: ð2:3Þ

We shall often use the fact that ckðQÞ ¼ 0 if and only if m�ðQÞ ¼ 0 for

every m A Eþ
k ðXÞ, see [11, Lemma 2.3.1].

As in [19, p. 134], we call a measure m A MðXÞ ck-absolutely continuous

if mðKÞ ¼ 0 for every compact set K � X with ckðKÞ ¼ 0. It follows from

(2.3) that for such m, jmj�ðQÞ ¼ 0 for every Q � X with ckðQÞ ¼ 0. Hence,

every m A EkðXÞ is ck-absolutely continuous; but not conversely [19, pp. 134–

135].
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Definition 2.1. Following [11], we call a (strictly positive definite) kernel

k perfect if every strong Cauchy sequence in Eþ
k ðX Þ converges strongly to any

of its vague cluster points4.

Remark 2.1. On X ¼ Rn, nd 3, the a-Riesz kernel kaðx; yÞ ¼ jx� yja�n,

a A ð0; nÞ, is strictly positive definite and moreover perfect [7, 8]; thus so is the

Newtonian kernel k2ðx; yÞ ¼ jx� yj2�n [5]. Recently it has been shown by the

present authors that if X ¼ D where D is an open set in Rn, nd 3, and ga
D,

a A ð0; 2�, is the a-Green kernel on D [19, Chapter IV, Section 5], then k ¼ ga
D

likewise is strictly positive definite and moreover perfect [15, Theorems 4.9,

4.11]. See also [14, Remark 2.2] for some other examples of perfect kernels.

Theorem 2.1 (see [11]). If a kernel k on a locally compact space X is

perfect, then the cone Eþ
k ðX Þ is strongly complete and the strong topology on

Eþ
k ðX Þ is finer than the (induced) vague topology on Eþ

k ðX Þ.

Remark 2.2. In contrast to Theorem 2.1, for a perfect kernel k the whole

pre-Hilbert space EkðXÞ is in general strongly incomplete, and this is the case

even for the a-Riesz kernel of order a A ð1; nÞ on Rn, nd 3 (see [5] and [19,

Theorem 1.19]). When speaking of a completion of EkaðRnÞ, one needs to

consider e.g. tempered distributions of finite Deny-Schwartz energy defined with

the aid of the Fourier transform [7]. Recently it has also been shown that

if we restrict ourselves to n A EkaðRnÞ such that S n
Rn � D, D being a bounded

domain in Rn, then the pre-Hilbert space of all those n can be isometrically

imbedded into its completion, the Sobolev space ~HH�a=2ðDÞ, see [18, Corollary

3.3].

Remark 2.3. The concept of perfect kernel is an e‰cient tool in mini-

mum energy problems over classes of positive scalar Radon measures with finite

energy. Indeed, if Q � X is closed, ckðQÞ A ð0;yÞ, and k is perfect, then the

minimum energy problem (2.1) has a unique solution lQ, termed the (inner)

k-capacitary measure on Q [11, Theorem 4.1]. Later the concept of perfectness

has been shown to be e‰cient also in minimum energy problems over classes

of vector measures associated with a standard condenser (see [22]–[26]; see also

Remarks 3.1 and 3.2 below for a short survey). The approach developed in

[22]–[26] substantially used the assumption of the boundedness of the kernel on

the product of the oppositely charged plates of a condenser (see requirement

(3.16) below), which made it possible to extend Cartan’s proof [5] of the strong

completeness of the cone Eþ
k2
ðRnÞ of all positive measures on Rn with finite

Newtonian energy to an arbitrary perfect kernel k on a locally compact space

4 It follows from Theorem 2.1 that, in fact, for a perfect kernel such a vague cluster point exists

and is unique.
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X and suitable classes of (signed ) measures m A EkðX Þ; compare with Remark

2.2 above.

3. Minimum energy problems for a generalized condenser in a locally

compact space

3.1. Vector measures associated with a generalized condenser. A subset L of a

topological space Y is said to be locally closed if for every x A L there is a

neighborhood V of x in Y such that V \ L is a closed subset of the subspace V

[2, Chapter I, Section 3, Definition 2], or equivalently if L is the intersection of

an open and a closed subset of Y [2, Chapter I, Section 3, Proposition 5].

In a locally compact (Hausdor¤ ) space X we consider an ordered finite

collection A ¼ ðAiÞi A I of nonempty, locally closed sets Ai � X with the sign

si :¼ sign Ai ¼G1 prescribed. Denote Iþ :¼ fi A I : si ¼ þ1g, I� :¼ InIþ and

p :¼ Card I , where pd 1 and I� is allowed to be empty.

Definition 3.1. We call A a generalized condenser in X if Aþ \ A� ¼ q,

where

Aþ :¼
[
i A I þ

Ai and A� :¼
[
j A I �

Aj:

The sets Ai, i A Iþ, and Aj , j A I�, are termed the positive and negative

plates of the (generalized) condenser A. To avoid trivialities, we shall always

assume that

ckðAiÞ > 0 for all i A I ; ð3:1Þ

the (strictly positive definite) kernel k on X being given. Note that any two

equally signed plates may intersect each other or even coincide. Also note

that, though Ai and Aj are disjoint for any i A Iþ and j A I�, their closures

in X may intersect each other even in a set with ckð�Þ > 0. The concept of

generalized condenser thus defined generalizes that introduced recently in [14,

Section 3].

Definition 3.2. A generalized condenser A is said to be standard if all

the (locally closed) sets Ai, i A I , are closed in X .

Unless explicitly stated otherwise, in all that follows we assume A to

be a generalized condenser in X . Let MþðA;XÞ consist of all positive vector

measures m ¼ ðm iÞi A I where each m i, i A I , is a positive scalar Radon measure

on X that is carried by Ai, i.e.

MþðA;XÞ :¼
Y
i A I

MþðAi;X Þ:
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Elements of MþðA;XÞ are said to be (vector) measures associated with A.

If a measure m A MþðA;XÞ and a vector-valued function u ¼ ðuiÞi A I with

m i-measurable components ui : X ! ½�y;y� are given, then we write

hu; mi :¼
X
i A I

hui; m
ii ¼

X
i A I

ð
ui dm

i ð3:2Þ

(of course, provided that each hui; m ii, i A I , as well as their sum over I is well

defined—as a finite number or Gy).

Being the intersection of an open and a closed subset of X [2, Chapter I,

Section 3, Proposition 5], each (locally closed) set Ai, i A I , is universally

measurable, and hence MþðAi;X Þ consists of all the restrictions mjAi
where m

ranges over MþðXÞ. On the other hand, according to [2, Chapter I, Section 9,

Proposition 13], Ai itself can be thought of as a locally compact subspace

of X . Thus MþðAi;XÞ consists, in fact, of all those n A MþðAiÞ for each of

which there exists n̂n A MþðX Þ with the property

n̂nðjÞ ¼ hjjAi
; ni for every j A C0ðX Þ: ð3:3Þ

We say that such n̂n extends n A MþðAiÞ by 0 o¤ Ai to all of X . A su‰cient

condition for (3.3) to hold is that n be bounded.

Since Aþ \ A� ¼ q, there corresponds to each m A MþðA;XÞ a (signed )

scalar Radon measure RAm :¼
P

i A I sim
i A MðXÞ, the ‘resultant’ of m, whose

positive and negative parts in the Hahn–Jordan decomposition are given by

ðRAmÞþ ¼
X
i A I þ

m i and ðRAmÞ� ¼
X
j A I �

m j: ð3:4Þ

For the sake of brevity we shall use the short notation R instead of RA if this

will not cause any misunderstanding.

The mapping MþðA;XÞ C m 7! Rm A MðXÞ is in general non-injective.

We shall call m; n A MþðA;X Þ R-equivalent if Rm ¼ Rn. Note that the rela-

tion of R-equivalence on MþðA;XÞ is that of identity (m ¼ n) if and only if

all the Ai, i A I , are mutually disjoint. Also observe that m A MþðA;XÞ is

R-equivalent to 0 (if and) only if m ¼ 0.

3.2. A (semi)metric structure on classes of vector measures. For a given

(strictly positive definite) kernel k on X and a given (generalized) condenser A,

let Eþ
k ðA;X Þ consist of all m A MþðA;XÞ such that kðm i; m iÞ < y for all i A I ;

in other words,

Eþ
k ðA;XÞ :¼

Y
i A I

Eþ
k ðAi;XÞ:
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In view of [11, Lemma 2.3.1], we see from (3.1) that Eþ
k ðA;X Þ0 f0g; and

moreover Eþ
k ðAi;X Þ0 f0g for every i A I .

In accordance with an electrostatic interpretation of a condenser, we

say that the interaction between the components m i, i A I , of m A Eþ
k ðA;X Þ is

determined by the matrix ðsisjÞi; j A I . Given m; n A Eþ
k ðA;XÞ, we define the

mutual energy

kðm; nÞ :¼
X
i; j A I

sisjkðm i; n jÞ ð3:5Þ

and the vector potential km ¼ ðkm; iÞi A I , where

km; iðxÞ :¼
X
j A I

sisjkðx; m jÞ; x A X : ð3:6Þ

Lemma 3.1. For any m; n A Eþ
k ðA;XÞ we have

kðm; nÞ ¼ kðRm;RnÞ A ð�y;yÞ: ð3:7Þ

Proof. This is obtained directly from (3.4) and (3.5). r

For m ¼ n A Eþ
k ðA;XÞ the mutual energy kðm; nÞ becomes the energy kðm; mÞ

of m. Due to the strict positive definiteness of the kernel k, (3.7) yields

kðm; mÞ ¼ kðRm;RmÞ A ½0;yÞ for all m A Eþ
k ðA;X Þ; ð3:8Þ

where kðm; mÞ ¼ 0 if and only if m ¼ 0.

An assertion UðxÞ involving a variable point x A X is said to hold

ck-nearly everywhere (ck-n.e.) on Q � X if ckðNÞ ¼ 0 where N consists of

all x A Q for which UðxÞ fails.

Lemma 3.2. For any m A Eþ
k ðA;XÞ all the km; i , i A I , are well defined and

finite ck-n.e. on X. Moreover,

km; ið�Þ ¼ sikð�;RmÞ ck-n:e: on X : ð3:9Þ

Proof. Since m i A Eþ
k ðXÞ for every i A I , kð�; m iÞ is finite ck-n.e. on X

[11, p. 164]. Furthermore, the set of all x A X with kðx; m iÞ ¼ y is universally

measurable, for kð�; m iÞ is l.s.c. on X . Combined with the fact that the inner

capacity ckð�Þ is subadditive on universally measurable sets [11, Lemma 2.3.5],

this implies that km; i is well defined and finite ck-n.e. on X . Finally, (3.9) is

obtained directly from (3.4) and (3.6). r

In order to introduce a (semi)metric structure on Eþ
k ðA;X Þ, we set

km� nkEþ
k ðA;XÞ :¼ kRm� Rnkk for all m; n A Eþ

k ðA;X Þ: ð3:10Þ
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Based on (3.7), we see by straightforward calculation that, in fact,

km� nk2Eþ
k ðA;XÞ ¼

X
i; j A I

sisjkðm i � n i; m j � n jÞ: ð3:11Þ

Hence, Eþ
k ðA;X Þ forms a semimetric space with the semimetric km� nkEþ

k ðA;XÞ
defined by either of the (equivalent) relations (3.10) or (3.11). Similarly to the

terminology for the pre-Hilbert space EkðX Þ, we therefore call the topology

of the semimetric space Eþ
k ðA;XÞ strong. We say that m; n A Eþ

k ðA;XÞ are

equivalent in Eþ
k ðA;XÞ if km� nkEþ

k ðA;XÞ ¼ 0, or equivalently if Rm ¼ Rn, the

latter being clear from (3.10) in view of the strict positive definiteness of the

kernel.

Lemma 3.3. The relation of equivalence on Eþ
k ðA;XÞ amounts to that of

identity if and only if all the Ai, i A I , are mutually essentially disjoint, i.e. with

ckðAi \ AjÞ ¼ 0 for all i0 j.

Proof. Since a nonzero positive scalar measure of finite energy does

not charge any set of zero capacity [11, Lemma 2.3.1], the su‰ciency part of

the lemma is obvious. To prove the necessity part, assume on the contrary

that there are two equally signed plates Ak and Al, k0 l, with ckðAk \ AlÞ
> 0. By [11, Lemma 2.3.1], there exists a nonzero positive scalar measure

t A Eþ
k ðAk \ AlÞ. Choose m ¼ ðm iÞi A I A Eþ

k ðAÞ such that mkjAk\Al
� td 0, and

define mm ¼ ðm i
mÞi A I A Eþ

k ðAÞ, m ¼ 1; 2, where mk
1 :¼ mk � t and m i

1 :¼ m i for all

i0 k, while ml
2 :¼ ml þ t and m i

2 :¼ m i for all i0 l. Then Rm1 ¼ Rm2, and

hence m1 and m2 are equivalent in Eþ
k ðA;XÞ, but m1 0 m2. r

Summarizing what we have observed, we are led to the following con-

clusion.

Theorem 3.1. Eþ
k ðA;XÞ is a semimetric space with the semimetric defined

by either of the (equivalent) relations (3.10) or (3.11), and this space is isometric

to its R-image in EkðX Þ. The semimetric km� nkEþ
k ðA;X Þ is actually a metric if

and only if all the Ai, i A I , are mutually essentially disjoint.

3.3. The vague topology on MþðA;XÞ. In Section 3.3 we consider a standard

condenser A (see Definition 3.2). The set of all (vector) measures associated

with A can be endowed with the vague topology defined as follows.

Definition 3.3. The vague topology on MþðA;XÞ, A ¼ ðAiÞi A I being a

standard condenser in X , is the topology of the product space
Q

i A I M
þðAi;X Þ

where each of the MþðAi;XÞ is endowed with the vague topology induced from

MðXÞ. Namely, a sequence fmkgk AN � MþðA;XÞ converges to m A MþðA;X Þ
vaguely if for every i A I , m i

k ! m i vaguely in MðX Þ as k ! y.
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Since all the Ai, i A I , are closed in X , MþðA;XÞ is vaguely closed in

MðXÞp. Besides, since every MþðAi;XÞ is Hausdor¤ in the vague topology,

so is MþðA;XÞ [2, Chapter I, Section 8, Proposition 7]. Hence, a vague limit

of any sequence in MþðA;X Þ belongs to MþðA;XÞ and is unique (whenever it

exists). We call a set F � MþðA;XÞ vaguely bounded if for every j A C0ðX Þ,

sup
m AF

jm iðjÞj < y for all i A I :

Lemma 3.4. A vaguely bounded set F � MþðA;XÞ is vaguely relatively

compact.

Proof. It is clear from the above definition that for every i A I the

set

F i :¼ fm i A MþðAi;XÞ : m ¼ ðm jÞj A I A Fg

is vaguely bounded in MþðX Þ; and hence, by [3, Chapter III, Section 2,

Proposition 9], F i is vaguely relatively compact in MðXÞ. Since F �
Q

i A I F
i,

the lemma follows from Tychono¤ ’s theorem on the product of compact spaces

[2, Chapter I, Section 9, Theorem 3]. r

3.4. An unconstrained weighted minimum energy problem for vector measures.

Let a (generalized) condenser A ¼ ðAiÞi A I and a (strictly positive definite)

kernel k on X be given. Fix a vector-valued function f ¼ ð fiÞi A I , where each

fi : X ! ½�y;y� is m-measurable for every m A Eþ
k ðAi;X Þ and fi is treated

as an external field acting on the charges (measures) from Eþ
k ðAi;XÞ. The

f-weighted vector potential and the f-weighted energy of m A Eþ
k ðA;X Þ are

(formally) defined by

W
m
k; f :¼ km þ f; ð3:12Þ

Gk; fðmÞ :¼ kðm; mÞ þ 2hf; mi; ð3:13Þ

respectively.5 Thus W
m
k; f ¼ ðW m; i

k; f Þi A I , where W
m; i
k; f :¼ km; i þ fi (see (3.6)).

Let Eþ
k; fðA;X Þ consist of all m A Eþ

k ðA;X Þ such that each fi, i A I , is

m i-integrable. For every m A Eþ
k ðA;XÞ, both Gk; fðmÞ and hf; mi are finite.

Lemma 3.5. Suppose that a set E � Eþ
k; fðA;XÞ is convex. Then there

exists l A E with

Gk; fðlÞ ¼ min
m AE

Gk; fðmÞ ð3:14Þ

5Gk; fð.Þ is also known as the Gauss functional (see e.g. [21]; compare with [17]). Note that when

defining Gk; f ð.Þ, we have used the notation (3.2).
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if and only if X
i A I

hW l; i
k; f ; m

i � l iid 0 for all m A E: ð3:15Þ

Proof. By direct calculation, for any m; n A E and any h A ð0; 1� we get

Gk; fðhmþ ð1� hÞnÞ � Gk; fðnÞ ¼ 2h
X
i A I

hW n; i
k; f ; m

i � n iiþ h2km� nk2Eþ
k ðA;XÞ:

If n ¼ l satisfies (3.14), then the left (hence, also the right) side of this display

is d 0, which leads to (3.15) by letting h ! 0. Conversely, if (3.15) holds,

then the preceding formula with n ¼ l and h ¼ 1 gives Gk; fðmÞdGk; fðlÞ for all

m A E, and (3.14) follows. r

Fix a numerical vector a ¼ ðaiÞi A I with 0 < ai < y, i A I , and write

MþðA; a;XÞ :¼ fm A MþðA;X Þ : m iðAiÞ ¼ ai for all i A Ig;

Eþ
k ðA; a;XÞ :¼ Eþ

k ðA;XÞ \MþðA; a;XÞ;

Eþ
k; fðA; a;XÞ :¼ Eþ

k; fðA;XÞ \MþðA; a;XÞ:

If the class Eþ
k; fðA; a;XÞ is nonempty, or equivalently if

Gk; fðA; a;XÞ :¼ inf
m AEþ

k; f
ðA;a;X Þ

Gk; fðmÞ < y;

then the following unconstrained weighted minimum energy problem makes

sense.

Problem 3.1. Given X, k, A, a and f , does there exist lA A Eþ
k; fðA; a;X Þ

with Gk; fðlAÞ ¼ Gk; fðA; a;XÞ?

If I ¼ Iþ ¼ f1g, A1 is closed, a1 ¼ 1 and f1 ¼ 0, then Problem 3.1 reduces

to problem (2.1), solved in [11, Theorem 4.1] (see Remark 2.3 above).

Remark 3.1. Let A be a standard condenser in X such that

sup
ðx; yÞ AAþ�A�

kðx; yÞ < y: ð3:16Þ

Under these assumptions, in [25, 26] an approach has been worked out based

on both the vague and the strong topologies on Eþ
k ðA;XÞ which made it

possible to provide a fairly complete analysis of Problem 3.1. In more detail,

it was shown that if the kernel k is perfect and if for all i A I either fi A CðXÞ
or fi ¼ sikð�; zÞ for some (signed) z A EkðX Þ, then the requirement

ckðAþ [ A�Þ < y ð3:17Þ
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is su‰cient for Problem 3.1 to be solvable for every vector a [25, Theorem

8.1]. However, if (3.17) fails, then in general there exists a vector a 0 such that

the problem has no solution (see [25]).6 Therefore, it was interesting to give a

description of the set of all vectors a for which Problem 3.1 is nevertheless

solvable. Such a characterization has been established in [26] (cf. the footnote

to Remark 3.2 below). On the other hand, if assumption (3.16) is omitted,

then the approach developed in [25, 26] breaks down, and (3.17) does not

guarantee anymore the existence of a solution to Problem 3.1. This has been

illustrated by [14, Theorem 4.6], pertaining to the Newtonian kernel jx� yj2�n

on Rn, nd 3.

3.5. A constrained weighted minimum energy problem for vector measures. A

measure s i A MþðAi;XÞ is said to be a constraint for elements of MþðAi; ai;XÞ
if s iðAiÞ > ai. Let CðAi;X Þ consist of all these s i, and let

CðA;XÞ :¼
Y
i A I

CðAi;XÞ:

Consider x ¼ ðx iÞi A I such that for each i A I either x i ¼ s i A CðAi;X Þ or

x i ¼ y, where the formal notation x i ¼ y means that no upper constraint

on the elements of MþðAi; ai;XÞ is imposed, and define

MxðA;X Þ :¼ fm A MþðA;X Þ : m i
c x i for all i A Ig:

(In the case where x i ¼ s i A CðAi;XÞ the expression m i c x i means that the

measure x i � m i is positive, while we are making the obvious convention that

any positive scalar Radon measure is < y.) Also write

MxðA; a;XÞ :¼ MþðA; a;X Þ \MxðA;X Þ;

Ex
k ðA; a;XÞ :¼ Eþ

k ðA; a;XÞ \MxðA;XÞ;

Ex
k; fðA; a;XÞ :¼ Eþ

k; fðA; a;XÞ \MxðA;XÞ:

If the class Ex
k; fðA; a;XÞ is nonempty, or equivalently if

G x
k; fðA; a;XÞ :¼ inf

m AE x
k; f

ðA;a;X Þ
Gk; fðmÞ < y;

then the following constrained weighted minimum energy problem makes

sense.

6 In the case of the a-Riesz kernels of order 1 < ac 2 on R3, some of the (theoretical) results on

the solvability or unsolvability of Problem 3.1 established in [25] have been illustrated in [18, 20] by

means of numerical experiments.
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Problem 3.2. Given X, k, A, a, f and x, does there exist a vector measure

lx
A A Ex

k; fðA; a;XÞ with Gk; fðlx
AÞ ¼ G x

k; fðA; a;X Þ?

Remark 3.2. Assume for a moment that (3.16) holds, the condenser A

is standard, the kernel k is perfect, and the external field f is as described in

Remark 3.1. It has been shown in [24, Theorem 6.2] that condition (3.17) then

guarantees the existence of a solution to Problem 3.2 for any x and any vector

a.7 Recently it has been shown by the present authors [14, Theorem 6.1(i)]

that this assertion on the solvability of Problem 3.2 remains valid if instead of

(3.17) it is assumed that x ¼ s A CðA;XÞ is bounded, i.e. with
P

i A I s
iðAiÞ < y.

Remark 3.3. In our recent work [14], Problem 3.2 has also been analyzed

for an ordered finite collection of compact sets with the sign si ¼G1 prescribed

such that oppositely charged sets intersect each other in a set of zero k-capacity,

k being any positive definite (not necessarily perfect) kernel. It has been shown

that if k is regular8 and each of the potentials kð�; x iÞ is (finitely) continuous on
the support Sðx iÞ, then a solution to Problem 3.2 exists [14, Theorems 6.1(ii)].

Let Sx
k; fðA; a;XÞ consist of all solutions to Problem 3.2 (if these exist).

Lemma 3.6. Any two elements l; �ll A Sx
k; fðA; a;X Þ are R-equivalent.

Proof. This can be established by standard methods based on the con-

vexity of the class Ex
k; fðA; a;XÞ, the isometry between this class and its R-image

in EkðX Þ, and the pre-Hilbert structure on the space EkðX Þ. Indeed, in view of

the convexity of Ex
k; fðA; a;XÞ, relations (3.8) and (3.13) imply

4G x
k; fðA; a;XÞc 4Gk; f

lþ �ll

2

 !
¼ kRlþ R�llk2k þ 4hf; lþ �lli:

On the other hand, applying the parallelogram identity in EkðXÞ to Rl and R�ll

and then adding and subtracting 4hf; lþ �lli we get

kRl� R�llk2k ¼ �kRlþ R�llk2k � 4hf; lþ �lliþ 2Gk; fðlÞ þ 2Gk; fð�llÞ:

When combined with the preceding relation, this yields

0c kRl� R�llk2k c�4G x
k; fðA; a;XÞ þ 2Gk; fðlÞ þ 2Gk; fð�llÞ ¼ 0;

which establishes the lemma because of the strict positive definiteness of k.

r

7Actually, this result and those described in Remark 3.1 have been obtained in [24]–[26] even for

infinite dimensional vector measures.

8A kernel k is said to be regular if for any m A MþðXÞ with compact SðmÞ, the potential kð�; mÞ is
continuous throughout X whenever its restriction to SðmÞ is continuous, see e.g. [21].
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Corollary 3.1. If the class Sx
k; fðA; a;X Þ is nonempty, then it reduces to

a single element whenever all the Ai, i A I , are mutually essentially disjoint.

Proof. This is obtained directly from Lemmas 3.6 and 3.3. r

4. a-Riesz balayage and a-Green kernel

In all that follows fix nd 3, a A ð0; 2� and a domain D � Rn with

ckaðDcÞ > 0, where Dc :¼ RnnD, and assume that either kðx; yÞ ¼ kaðx; yÞ :¼
jx� yja�n is the a-Riesz kernel on X ¼ Rn, or kðx; yÞ ¼ ga

Dðx; yÞ is the a-Green

kernel on X ¼ D. For the definition of ga
D, see [19, Chapter IV, Section 5] or

see below.

For given x A Rn and r A ð0;yÞ write Bðx; rÞ :¼ fy A Rn : jy� xj < rg,
Sðx; rÞ :¼ fy A Rn : jy� xj ¼ rg and Bðx; rÞ :¼ Bðx; rÞ [ Sðx; rÞ.

We simply write a instead of ka if ka serves as an index, and we use

the short form ‘n.e.’ instead of ‘ca-n.e.’ if this will not cause any misunder-

standing. When speaking of a positive scalar Radon measure m A MþðRnÞ, we
always assume that for the given a, kam is not identically infinite. This implies

that ð
jyj>1

dmðyÞ
jyjn�a < y ð4:1Þ

(see [19, Eq. 1.3.10]), and consequently that kað�; mÞ is finite (ca-)n.e. on Rn [19,

Chapter III, Section 1]; these two implications can actually be reversed.

Definition 4.1. A (signed) measure n A MðDÞ is called extendible if there

exist cnþnþ and cn�n� extending nþ and n�, respectively, by 0 o¤ D to Rn (see (3.3)),

and if these cnþnþ and cn�n� satisfy (4.1). We identify such n A MðDÞ with its exten-

sion n̂n :¼ cnþnþ �cn�n�, and we therefore write n̂n ¼ n.

Every bounded measure n A MðDÞ is extendible. The converse holds if

D is bounded, but not in general (e.g. not if Dc is compact). The set of all

extendible measures consists of all the restrictions mjD where m ranges over

MðRnÞ.
The a-Green kernel g ¼ ga

D on D is defined by

ga
Dðx; yÞ ¼ kaðx; eyÞ � kaðx; eD

c

y Þ for all x; y A D;

where ey denotes the unit Dirac measure at a point y and eD
c

y its a-Riesz

balayage onto the (closed) set Dc, determined uniquely in the frame of the

classical approach by [15, Theorem 3.6] pertaining to positive Radon measures

on Rn. See also the book by Bliedtner and Hansen [1] where balayage is

studied in the setting of balayage spaces.
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We shall simply write m 0 instead of mDc

when speaking of the a-Riesz

balayage of m A MþðD;RnÞ onto Dc. According to [15, Corollaries 3.19, 3.20],

for any m A MþðD;RnÞ the balayage m 0 is ca-absolutely continuous and it is

determined uniquely by relation

kað�; m 0Þ ¼ kað�; mÞ n:e: on Dc ð4:2Þ

among the ca-absolutely continuous measures supported by Dc. Furthermore,

there holds the integral representation9

m 0 ¼
ð
e 0y dmðyÞ ð4:3Þ

(see [15, Theorem 3.17]). If moreover m A Eþ
a ðD;RnÞ, then the balayage m 0 is

in fact the orthogonal projection of m onto the convex cone Eþ
a ðDc;RnÞ (see [13,

Theorem 4.12] or [15, Theorem 3.1]), i.e. m 0 A Eþ
a ðDc;RnÞ and

km� yka > km� m 0ka for all y A Eþ
a ðDc;RnÞ; y0 m 0: ð4:4Þ

If now n A MðDÞ is an extendible (signed) measure, then

n 0 :¼ nD
c

:¼ ðnþÞ0 � ðn�Þ0

is said to be a balayage of n onto Dc. It follows from [19, Chapter III,

Section 1, n� 1, Remark] that the balayage n 0 is determined uniquely by (4.2)

with n in place of m among the ca-absolutely continuous measures supported

by Dc.

The following definition goes back to Brelot [4, Theorem VII.13].

Definition 4.2. A closed set F � Rn is said to be a-thin at infinity if

either F is compact, or the inverse of F relative to Sð0; 1Þ has x ¼ 0 as an

a-irregular boundary point (cf. [19, Theorem 5.10]).

Theorem 4.1 (see [15, Theorem 3.22]). The set Dc is not a-thin at infinity

if and only if for every bounded measure m A MþðDÞ we have

m 0ðRnÞ ¼ mðRnÞ: ð4:5Þ

As noted in Remark 2.1 above, the a-Riesz kernel ka on Rn and the

a-Green kernel ga
D on D are both strictly positive definite and moreover perfect.

Furthermore, the a-Riesz kernel ka (with a A ð0; 2�) satisfies the complete

9 In the literature the integral representation (4.3) seems to have been more or less taken

for granted, though it has been pointed out in [3, Chapter V, Section 3, n� 1] that it requires that

the family ðe 0yÞy AD be m-adequate in the sense of [3, Chapter V, Section 3, Definition 1] (see also

counterexamples (without m-adequacy) in Exercises 1 and 2 at the end of that section). A proof of

this adequacy has therefore been given in [15, Lemma 3.16].
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maximum principle in the form stated in Section 2 (see [19, Theorems 1.27,

1.29]). Regarding a similar result for the a-Green kernel g, the following

assertion holds.

Theorem 4.2 (see [15, Theorem 4.6]). Let m A Eþ
g ðDÞ, let n A MþðDÞ

be extendible, and let w be a positive a-superharmonic function on Rn [19,

Chapter I, Section 5, n� 20]. If moreover gð�; mÞc gð�; nÞ þ wð�Þ m-a.e. on D,

then the same inequality holds on all of D.

The following three lemmas establish relations between potentials and

energies relative to the kernels ka and g ¼ ga
D.

Lemma 4.1. For any extendible measure m A MðDÞ the a-Green potential

gð�; mÞ is finite (ca-)n.e. on D and given by

gð�; mÞ ¼ kað�; m� m 0Þ n:e: on D: ð4:6Þ

Proof. It is seen from Definition 4.1 that kað�; mÞ is (well defined and)

finite n.e. on Rn, and hence so is kað�; m 0Þ. Applying (4.3) to mG, we get by

[3, Chapter V, Section 3, Theorem 1]

gð�; mÞ ¼
ð
½kað�; eyÞ � kað�; e 0yÞ�dmðyÞ ¼ kað�; mÞ � kað�; m 0Þ

n.e. on D, as was to be proved. r

Remark 4.1. Lemma 4.1 is valid with ‘cg-n.e.’ in place of ‘(ca-)n.e.’ since,

by [9, Lemma 2.6], for any Q � D, cgðQÞ ¼ 0 , caðQÞ ¼ 0.

Lemma 4.2. Suppose that m A MðDÞ is extendible and the extension belongs

to EaðRnÞ. Then

m A EgðDÞ; ð4:7Þ

m� m 0 A EaðRnÞ; ð4:8Þ

kmk2g ¼ km� m 0k2a ¼ kmk2a � km 0k2a : ð4:9Þ

Proof. In view of the definition of a (signed) measure of finite energy

(see Section 2), we obtain (4.7) from the inequality10

ga
Dðx; yÞ < kaðx; yÞ for all x; y A D; ð4:10Þ

while (4.8) from [15, Corollary 3.7] (or [15, Theorems 3.1 and 3.6]). According

to Lemma 4.1 and Remark 4.1, gð�; mÞ is finite cg-n.e. on D and given by (4.6),

10The strict inequality in (4.10) is caused by our convention caðDcÞ > 0.
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while by (4.7) the same holds jmj-a.e. on D (see [11, Lemma 2.3.1]). Integrat-

ing (4.6) with respect to mG, we therefore get by subtraction

y > gðm; mÞ ¼ kaðm� m 0; mÞ: ð4:11Þ

Since kað�; m� m 0Þ ¼ 0 n.e. on Dc by (4.2), we see from the ca-absolute con-

tinuity of m 0 that

kaðm� m 0; m 0Þ ¼ 0; ð4:12Þ

which results in the former equality in (4.9) when combined with (4.11).

Because of (4.8), relation (4.12) takes the form km 0k2a ¼ kaðm; m 0Þ, and the

former equality in (4.9) implies the latter. r

Lemma 4.3. Assume that m A MðDÞ has compact support S
m
D. Then

m A EgðDÞ if and only if its extension belongs to EaðRnÞ.11

Proof. According to Lemma 4.2, it is enough to establish the ‘only if ’

part of the lemma. We may clearly assume that m is positive. Since kað�; m 0Þ
is continuous on D and hence bounded on the compact set S

m
D, we have

kaðm; m 0Þ < y: ð4:13Þ

But gðm; mÞ is finite by assumption, and therefore likewise as in the preceding

proof relation (4.11) holds. Combining (4.11) with (4.13) yields m A EaðRnÞ.
r

5. Minimum a-Riesz energy problems for generalized condensers

5.1. An unconstrained weighted minimum a-Riesz energy problem. Consider a

generalized condenser A ¼ ðAiÞi A I in Rn with p :¼ Card I d 2 such that Iþ :¼
f1; . . . ; p� 1g and I� :¼ fpg (see Section 3.1). Also require that the negative

plate Ap is closed in Rn, while all the positive plates Aj, j A Iþ, are relatively

closed subsets of the (open) set D :¼ Ac
p ¼ RnnAp.12 For the sake of sim-

plicity, in all that follows assume that D is a domain.

Recall that, by convention (3.1), caðAiÞ > 0 for all i A I .

When speaking of an external field f ¼ ð fiÞi A I acting on the vector

measures of the class Eþ
a ðA;RnÞ, we shall always tacitly assume that either

Case I or Case II holds, where:

11 If the measure in question is positive, then Lemma 4.3 can be generalized to any bounded

m A MþðDÞ such that the Euclidean distance between S
m
D and qD is > 0, see [16, Lemma 3.4].

12By [2, Chapter I, Section 3, Proposition 5], this is in agreement with our general requirement

that the sets Ai, i A I , be locally closed in Rn (see the beginning of Section 3.1).
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I. fi A CðRnÞ for every i A I , and moreover

fp ¼ 0 n:e: on Ap: ð5:1Þ

II. fi ¼ sikað�; z� z 0Þ for every i A I , where z is an extendible (signed)

measure on D with kaðz; zÞ < y.

Observe that (5.1) holds also in Case II (see (4.2)). Since a set with

cað�Þ ¼ 0 carries no (nonzero) measure with finite a-Riesz energy [11, Lemma

2.3.1], we thus see that under the stated assumptions no external field acts

on the measures from Eþ
a ðAp;RnÞ. Furthermore, Dc is n-negligible for any

n A MþðAj ;RnÞ, j A Iþ (see Section 2). We are thus led to the following

conclusion.

Lemma 5.1. The f-weighted a-Riesz energy Ga; fðmÞ of m A Eþ
a ðA;RnÞ can

(equivalently) be defined by the formula13

Ga; fðmÞ ¼ kaðm; mÞ þ 2hf; mi ¼ kaðm; mÞ þ 2hfþ; mþi; ð5:2Þ

where fþ :¼ ð fjjDÞj A I þ and mþ :¼ ðm jÞj A I þ .

If Case II holds, then for every m A Eþ
a ðA;RnÞ we get from (3.4) and (3.8)

Ga; fðmÞ ¼ kRmk2a þ 2
X
i A I

sikaðz� z 0; m iÞ ¼ kRmk2a þ 2kaðz� z 0;RmÞ;

and hence

y > Ga; fðmÞ ¼ kRmþ z� z 0k2a � kz� z 0k2a d�kz� z 0k2a > �y: ð5:3Þ

Thus, in either Case I or Case II

Ga; fðmÞd�M > �y for all m A Eþ
a ðA;RnÞ;

which is clear from (3.8) and (5.2) if Case I holds, or from (5.3) otherwise.

Fix a numerical vector a ¼ ðaiÞi A I with ai > 0, i A I . Using the notations

of Section 3.4 with X ¼ Rn and k ¼ ka, we obtain from the preceding display

Ga; fðA; a;RnÞ :¼ inf
m AEþ

a; f
ðA;a;RnÞ

Ga; fðmÞ > �y: ð5:4Þ

If Eþ
a; fðA; a;RnÞ is nonempty, or equivalently if Ga; fðA; a;RnÞ < y, then we can

consider Problem 3.1 on the existence of lA A Eþ
a; fðA; a;RnÞ with

Ga; fðlAÞ ¼ Ga; fðA; a;RnÞ:

The following theorem shows that, in general, this problem has no solution.

13Cf. (3.13) with X ¼ Rn and k ¼ ka.
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Theorem 5.1. Let Dc be not a-thin at infinity, Iþ ¼ f1g, cg a
D
ðA1Þ ¼ y, and

let a ¼ 1 and f ¼ 0, where 1 :¼ ð1; 1Þ. Then

Ga; fðA; a;RnÞ ¼ ½cga
D
ðA1Þ��1 ¼ 0;

hence Ga; fðA; a;RnÞ cannot be an actual minimum because 0 B Eþ
a; fðA; a;RnÞ.

Proof. Since Ga; fðmÞ ¼ kaðm; mÞ because of f ¼ 0, Problem 3.1 reduces

to the problem of minimizing kaðm; mÞ over Eþ
a ðA; a;RnÞ. Thus by (3.8)

Ga; fðA; a;RnÞd 0: ð5:5Þ

Consider compact sets Kl � A1, l A N, such that Kl " A1 as l ! y. By

(2.3),

cgðKlÞ " cgðA1Þ ¼ y as l ! y; ð5:6Þ

and hence there is no loss of generality in assuming that cgðKlÞ > 0 for every

l A N. Furthermore, since the a-Green kernel g is strictly positive definite

and moreover perfect (Remark 2.1), we see from (2.2) that cgðKlÞ < y and,

by Remark 2.3, there exists a (unique) g-capacitary measure ll on Kl, i.e.

ll A Eþ
g ðKl; 1;DÞ with

kllk2g ¼ 1=cgðKlÞ < y:

According to Lemma 4.3 with ll in place of m, kaðll; llÞ is finite along with

gðll; llÞ. Hence, by Lemma 4.2,

kllk2g ¼ kll � l 0
lk

2
a :

Applying Theorem 4.1, we get ml :¼ ðll; l 0
lÞ A Eþ

a; fðA; a;RnÞ, which together

with the two preceding displays and (3.8) and (5.5) gives

1=cgðKlÞ ¼ kll � l 0
lk

2
a ¼ kaðml; mlÞdGa; fðA; a;RnÞd 0:

Letting here l ! y, we obtain the theorem from (5.6). r

Using the electrostatic interpretation, which is possible for the Coulomb

kernel jx� yj�1 on R3, we say that under the hypotheses of Theorem 5.1 a

short-circuit occurs between the oppositely signed plates of the generalized

condenser A. It is therefore meaningful to ask what kinds of additional

requirements on the objects in question will prevent this blow-up e¤ect, and

secure that a solution to the corresponding minimum a-Riesz energy problem

does exist. To this end we have succeeded in working out a substantive

theory by imposing a proper vector constraint on the vector measures under

consideration.
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5.2. A constrained weighted minimum a-Riesz energy problem. Let A, a and f

be as at the beginning of Section 5.1. In the rest of the paper we assume

additionally that Ap ð¼ DcÞ is not a-thin at infinity and

ap ¼
X
j A I þ

aj: ð5:7Þ

Using notation of Section 3.5, fix x ¼ ðx iÞi A I with

x j A CðAj;RnÞ \ Eþ
a ðAj;RnÞ for all j A Iþ; and xp ¼ y: ð5:8Þ

Unless explicitly stated otherwise, for these A, a, f, and x we shall always

require that

G x
a; fðA; a;RnÞ < y: ð5:9Þ

The main purpose of this paper is to analyze Problem 3.2 on the existence

of lx
A A Ex

a; fðA; a;RnÞ with Ga; fðlx
AÞ ¼ G x

a; fðA; a;RnÞ. Recall that Sx
a; fðA; a;RnÞ

denotes the class of all solutions to this problem (provided these exist).

According to Lemma 3.6, any two solutions are R-equivalent; hence, by Cor-

ollary 3.1, Sx
a; fðA; a;RnÞ reduces to a single element whenever all the Aj ,

j A Iþ, are mutually essentially disjoint, i.e. with caðAi \ AjÞ ¼ 0 for all i; j A Iþ,

i0 j.

Conditions on A, f and x which guarantee that (5.9) holds are given in the

following Lemma 5.2. Write

A�
j :¼ fx A Aj : j fjðxÞj < yg; j A Iþ: ð5:10Þ

Lemma 5.2. The (permanent) requirement (5.9) holds if either Case II

takes place, or (in the presence of Case I) if

x jðA�
j Þ > aj for all j A Iþ: ð5:11Þ

Proof. Assume first that (5.11) holds. Then there is for every j A Iþ a

compact set Kj � A�
j such that x jðKjÞ > aj and j fj jcMj < y on Kj for some

constant Mj (see (5.10)). Define m :¼ ðm iÞi A I , where m j :¼ ajx
j jKj

=x jðKjÞ for

all j A Iþ and mp is any measure from Eþ
a ðAp; ap;RnÞ (such mp exists since

caðApÞ > 0). Noting that x j jKj
A Eþ

a ðKj;RnÞ for all j A Iþ by (5.8), we get

m A Ex
a; fðA; a;RnÞ, which yields (5.9). To complete the proof, it is left to

observe that (5.11) holds automatically if Case II takes place, because then

kað�; z� z 0Þ is finite n.e. on Rn, hence x j-a.e. for all j A Iþ by [11, Lemma

2.3.1]. r

The theory developed in the present study includes su‰cient and/or nec-

essary conditions for the existence of solutions lx
A ¼ ðl i

AÞi A I to Problem 3.2

with A, a, f and x chosen above (see Theorems 7.1 and 7.2). We also provide
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descriptions of the f-weighted a-Riesz vector potentials of the solutions lx
A,

single out their characteristic properties, and analyze the supports of the l i
A,

i A I (see Theorems 7.3, 7.4 and 7.5). These results are illustrated in Examples

10.1 and 10.2. See also Section 7.2 for an extension of the theory to the case

where xp 0y. The proofs of Theorems 7.1–7.5 are given in Sections 8 and 9;

they are substantially based on Theorem 6.1 which is a subject of the next

section.

Remark 5.1. Under the (permanent) assumption (5.9), G x
a; fðA; a;RnÞ is

actually finite, because G x
a; fðA; a;RnÞ > �y follows from (5.4) in view of the

inclusion Ex
a; fðA; a;RnÞ � Eþ

a; fðA; a;RnÞ.

6. Relations between constrained minimum a-Riesz and a-Green energy

problems

Throughout this section, A, a, f and x are as indicated at the beginning

of Section 5.2, except for (5.9) which is temporarily not required. The aim of

Theorem 6.1 below is to establish a relationship between, on the one hand, the

solvability (or the non-solvability) of Problem 3.2 for Rn, ka, A, a, f, x and, on

the other hand, that for D, g ¼ ga
D, Aþ, aþ, fþ and xþ, where

Aþ :¼ ðAjÞj A I þ ; aþ :¼ ðajÞj A I þ ; fþ :¼ ð fjjDÞj A I þ ; xþ :¼ ðx jÞj A I þ :

(Note that Aþ is a standard condenser in X ¼ D consisting of only positive

plates.) Observe that since for every given j A Iþ we have

MþðAj;RnÞ � MþðAj ;DÞ; ð6:1Þ

the measure x j can certainly be thought of as an element of CðAj;DÞ.
For any m ¼ ðm iÞi A I A MþðA;RnÞ write mþ :¼ ðm jÞj A I þ ; then mþ belongs

to MþðAþ;DÞ by (6.1). If moreover kaðm; mÞ < y, then mþ belongs to

Eþ
a ðAþ;RnÞ; and also to Eþ

g ðAþ;DÞ which is clear from (4.7).

Theorem 6.1. Under the just mentioned assumptions on A, a, f and x,

G x
a; fðA; a;RnÞ ¼ G xþ

g; fþ
ðAþ; aþ;DÞ: ð6:2Þ

If moreover these (equal) extremal values are finite, then the class Sx
a; fðA; a;RnÞ

is nonempty if and only if so is Sxþ

g; fþ
ðAþ; aþ;DÞ, and in the a‰rmative case the

following two assertions are equivalent for any lA ¼ ðl i
AÞi A I A MþðA;RnÞ:

( i ) lA A Sx
a; fðA; a;RnÞ.

(ii) lþA ¼ ðl j
AÞj A I þ A Sxþ

g; fþ
ðAþ; aþ;DÞ and, in addition,

l
p
A ¼

X
j A I þ

l
j
A

 !0
: ð6:3Þ
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Proof. We begin by establishing the inequality

G xþ

g; fþ
ðAþ; aþ;DÞdG x

a; fðA; a;RnÞ: ð6:4Þ

Assuming G xþ

g; fþ
ðAþ; aþ;DÞ < y, choose m ¼ ðm jÞj A I þ A Exþ

g; fþ
ðAþ; aþ;DÞ. Ac-

cording to (3.8) and (3.13) with X ¼ D and k ¼ g, then

Gg; fþðmÞ ¼ gðm; mÞ þ 2hfþ; mi ¼ kRAþmk2g þ 2hfþ; mi:

Being bounded, each of the m j, j A Iþ, is extendible (see Section 4). Fur-

thermore, the extension in question has finite a-Riesz energy, for so does the

extension of the constraint x j by (5.8). Applying (4.9) to RAþm A Eþ
a ðAþ;RnÞ

in place of m, we thus get

Gg; fþðmÞ ¼ kRAþm� ðRAþmÞ0k2a þ 2hfþ; mi:

Since Ap ð¼ DcÞ is not a-thin at infinity, we conclude from (4.5) and (5.7) that

ðRAþmÞ0 A Eþ
a ðAp; ap;RnÞ, and therefore ~mm ¼ ð~mm iÞi A I A Ex

a ðA; a;RnÞ where

~mmþ ¼ m and ~mm p ¼ ðRAþmÞ0 ¼
X
j A I þ

m j

 !0

: ð6:5Þ

Here we have used the (permanent) assumption that xp ¼ y. Furthermore,

hf; ~mmi ¼ hfþ; mi < y;

the equality being valid because f p ¼ 0 n.e. on Ap (see Section 5.1), hence

~mm p-a.e. by [11, Lemma 2.3.1], and also because Dc is m j-negligible for every

j A Iþ. Thus actually ~mm A Ex
a; fðA; a;RnÞ; and moreover Ga; fð ~mmÞ ¼ Gg; fþðmÞ, the

latter being clear from the three preceding displays. This yields

Gg; fþðmÞ ¼ Ga; fð ~mmÞdG x
a; fðA; a;RnÞ:

Letting here m range over Exþ

g; fþ
ðAþ; aþ;DÞ results in (6.4).

On the other hand, in view of (4.7) and (5.2) for any n A Ex
a; fðA; a;RnÞ

we have nþ A Exþ

g; fþ
ðAþ; aþ;DÞ. Thus, by (3.8), (4.4), (4.9) and (5.2),

Ga; fðnÞ ¼ kaðn; nÞ þ 2hfþ; nþi ¼ kRAn
þ � npk2a þ 2hfþ; nþi

d kRAn
þ � ðRAn

þÞ0k2a þ 2hfþ; nþi ¼ kRAn
þk2g þ 2hfþ; nþi

¼ gðnþ; nþÞ þ 2hfþ; nþi ¼ Gg; fþðnþÞdGxþ

g; fþ
ðAþ; aþ;DÞ: ð6:6Þ

Letting here n vary over Ex
a; fðA; a;RnÞ and then combining the inequality thus

obtained with (6.4), we arrive at (6.2).

Now suppose that there exists m ¼ ðm jÞj A I þ A Sxþ

g; fþ
ðAþ; aþ;DÞ. Define

~mm ¼ ð~mm iÞi A I as in (6.5). Then the same arguments as those applied in the first
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paragraph of this proof enable us to see that ~mm A Ex
a; fðA; a;RnÞ and also that

Ga; fð ~mmÞ ¼ Gg; fþðmÞ. The latter yields

Ga; fð ~mmÞ ¼ G xþ

g; fþ
ðAþ; aþ;DÞ:

Substituting (6.2) into the last display shows that, actually, ~mm A Sx
a; fðA; a;RnÞ,

which in view of the latter relation in (6.5) proves that, indeed, (ii) implies

(i).

As for the converse implication, let there be n ¼ ðn iÞi A I A Sx
a; fðA; a;RnÞ.

Then nþ A Exþ

g; fþ
ðAþ; aþ;DÞ (see the second paragraph of the proof ) and (6.6)

holds. Since for this n the first term in (6.6) equals G x
a; fðA; a;RnÞ, we see from

(6.2) that equality prevails in either of the two inequalities in (6.6). Thus,

nþ A Sxþ

g; fþ
ðAþ; aþ;DÞ and also np ¼ ðRnþÞ0, the latter being clear from (4.4).

r

7. Main results

Throughout Section 7 we keep all the assumptions on A, a, f and x

imposed at the beginning of Section 5.2, except for (5.9).14

7.1. Formulations of the main results.

Theorem 7.1. Suppose moreover that (5.9) is fulfilled and also

x jðAjÞ < y for all j A Iþ: ð7:1Þ

Then the class Sx
a; fðA; a;RnÞ of all solutions to Problem 3.2 is nonempty, and

for any one of its elements lx
A ¼ ðl i

AÞi A I we have l
p
A ¼ ð

P
j A I þ l

j
AÞ

0
.

Theorem 7.1 is sharp in the sense that it no longer holds if (7.1) is omitted

from its hypotheses (see the following Theorem 7.2).

Theorem 7.2. Condition (7.1) is in general also necessary for the solv-

ability of Problem 3.2. More precisely, suppose that Iþ ¼ f1g, caðA1Þ ¼ y
and that Case II holds with zd 0. Then there is a constraint x1 A CðA1;RnÞ \
Eþ
a ðA1;RnÞ with x1ðA1Þ ¼ y such that the corresponding Problem 3.2 is

unsolvable.

The following three assertions provide descriptions of the f-weighted

a-Riesz potentials W
lx
A

a; f , cf. (3.12), of the solutions lx
A ¼ ðl i

AÞi A I A Sx
a; fðA; a;RnÞ

(whenever these exist), single out their characteristic properties, and analyze the

supports of the l i
A, i A I .

14Under the hypotheses of any of Theorems 7.2–7.5, (5.9) holds in consequence of Lemma 5.2.
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Theorem 7.3. Let (5.11) hold, and let each fj, j A Iþ, be lower bounded

on Aj. Fix lA A Ex
a; fðA; a;RnÞ (which exists). Then the following two asser-

tions are equivalent:

( i ) lA A Sx
a; fðA; a;RnÞ.

(ii) There exists a vector ðcjÞj A I þ A Rp�1 such that for all j A Iþ

W
lA; j
a; f d cj ðx j � l

j
AÞ-a:e:; ð7:2Þ

W
lA; j
a; f c cj l

j
A-a:e:; ð7:3Þ

and in addition we have

W
lA;p
a; f ¼ 0 n:e: on Ap: ð7:4Þ

If moreover Case II takes place, then relation (7.4) actually holds for

every W
lA; i
a; f , i A I , and it takes now the form

W
lA; i
a; f ¼ 0 on ApnIa;Ap

; i A I ; ð7:5Þ

where Ia;Ap
denotes the set of all a-irregular (boundary) points of

Ap.

Remark 7.1. The lower boundedness of fj, j A Iþ, required in Theorem

7.3, holds automatically provided that Case I takes place. Furthermore, in

Case I relation (7.3) is equivalent to the following apparently stronger assertion:

W
lA; j
a; f c cj on S

l
j

A

D :

Let �QQ denote the ka-reduced kernel of Q � Rn [19, p. 164], which is the

set of all x A Q such that caðBðx; rÞ \QÞ > 0 for any r > 0.

For the sake of simplicity of formulation, in the following Theorem 7.4

we assume that in the case a ¼ 2 the domain D is simply connected.

Theorem 7.4. If a solution lx
A ¼ ðl i

AÞi A I A Sx
a; fðA; a;RnÞ exists, then

S
l
p

A

Rn ¼
�AAp if a < 2;

qD if a ¼ 2:

�
ð7:6Þ

Suppose now that Iþ ¼ f1g, a ¼ 1, f ¼ 0, and let there exist a solution

lx
A ¼ ðl1A; l

2
AÞ A Sx

a; fðA; 1;RnÞ. (According to Corollary 3.1, under the stated

assumption Iþ ¼ f1g the solution lx
A is unique.) Then, equivalently, l :¼

RAl
x
A ¼ l1A � l2A is a (unique) solution to the minimum a-Riesz energy problem

inf kaðm; mÞ; ð7:7Þ

where m ranges over all (signed scalar Radon) measures with mþ A Ex1

a ðA1; 1;

RnÞ and m� A Eþ
a ðA2; 1;RnÞ. Since f ¼ 0, we also see from (3.9) and (3.12)

423Condensers with touching plates



that

kað�; lÞ ¼ sik
lx
A
; i

a ð�Þ ¼ siW
lx
A
; i

a; f ð�Þ n:e: on Rn; i ¼ 1; 2: ð7:8Þ

Theorem 7.5. With these assumptions and notations, we have

kað�; lÞ ¼
ga
Dð�; l

þÞ n:e: on D;

0 on DcnIa;Dc :

�
ð7:9Þ

Furthermore, assertion (ii) of Theorem 7.3 holds, where (7.2) and (7.3) take now

the form

kað�; lÞ ¼ c1 ðx1 � lþÞ-a:e:; ð7:10Þ

kað�; lÞc c1 on Rn ð7:11Þ

with 0 < c1 < y. In addition, (7.10) and (7.11) together with kað�; lÞ ¼ 0 n.e.

on Dc (cf. (7.9)) determine uniquely the solution to the problem (7.7) among the

admissible measures m. If moreover kað�; x1Þ is (finitely) continuous on D, then

also

kað�; lÞ ¼ c1 on S x1�lþ

D ; ð7:12Þ

cg a
D
ðS x1�lþ

D Þ < y: ð7:13Þ

Omitting now the requirement of the continuity of kað�; x1Þ, assume further that

a < 2 and mnðDcÞ > 0. Then

S lþ

D ¼ S x1

D ; ð7:14Þ

kað�; lÞ < c1 on DnS x1

D ð¼ DnS lþ

D Þ: ð7:15Þ

7.2. An extension of the theory. Parallel with Problem 3.2 for a constraint

x given by (5.8) and acting only on measures carried by the positive plates Aj ,

j A Iþ, of the generalized condenser A ¼ ðAiÞi A I , consider also Problem 3.2 for

s ¼ ðs iÞi A I A MþðA;RnÞ (in place of x) defined as follows:

s j ¼ x j for all j A Iþ; sp
d

X
j A I þ

s j

 !0
¼

X
j A I þ

x j

 !0" #
: ð7:16Þ

Since in consequence of (4.5), (5.7) and (7.16) we have spðApÞ > ap, the mea-

sure s thus defined can be thought of as an element of CðA;RnÞ. In contrast

to x, the constraint s is acting on all the components of m A Eþ
a ðA; a;RnÞ. Also

note that spðApÞ and kaðsp; spÞ may both be infinite.

Theorem 7.6. The following identity holds:

Gs
a; fðA; a;RnÞ ¼ G x

a; fðA; a;RnÞ: ð7:17Þ
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If moreover these (equal) extremal values are finite, then Problem 3.2 for A, a, f

and x is solvable if and only if so is that for A, a, f and s, and in the a‰rmative

case

Ss
a; fðA; a;RnÞ ¼ Sx

a; fðA; a;RnÞ: ð7:18Þ

Proof. Indeed, Gs
a; fðA; a;RnÞdG x

a; fðA; a;RnÞ follows from the relation

Es
a; fðA; a;RnÞ � Ex

a; fðA; a;RnÞ: ð7:19Þ

To establish the converse inequality, assume that G x
a; fðA; a;RnÞ < y and fix

n A Ex
a; fðA; a;RnÞ. Define ~nn ¼ ð~nn iÞi A I A MþðA;RnÞ by the equalities

~nnþ ¼ nþ and ~nnp ¼ ðRAn
þÞ0: ð7:20Þ

Clearly ~nn A Eþ
a ðA;RnÞ, and moreover ~nn A Eþ

a ðA; a;RnÞ which follows from (4.5),

(5.7) and (7.20) since Ap is not a-thin at infinity. By the linearity of balayage

and (7.16) we actually have ~nn A Es
a ðA; a;RnÞ, and finally ~nn A Es

a; fðA; a;RnÞ by

(5.2). In consequence of (4.4), (5.2) and (7.20) we therefore obtain

Ga; fðnÞ ¼ kaðn; nÞ þ 2hfþ; nþi ¼ kRAn
þ � npk2a þ 2hfþ; nþi

d kRAn
þ � ðRAn

þÞ0k2a þ 2hfþ; nþi ¼ Ga; fð~nnÞdGs
a; fðA; a;RnÞ;

which establishes (7.17) in view of the arbitrary choice of n A Ex
a; fðA; a;RnÞ.

Assuming now that (5.9) holds, we next prove (7.18). It is clear from

(7.17) and (7.19) that Ss
a; fðA; a;RnÞ � Sx

a; fðA; a;RnÞ. As for the converse

inclusion, fix l ¼ ðl iÞi A I A Sx
a; fðA; a;RnÞ. Then lp ¼ ðRAl

þÞ0 by (6.3), and in

the same manner as in the preceding paragraph we get l A Es
a; fðA; a;RnÞ.

Hence, l A Ss
a; fðA; a;RnÞ, for Ga; fðlÞ ¼ G x

a; fðA; a;RnÞ ¼ Gs
a; fðA; a;RnÞ by (7.17).

r

Thus, the theory of weighted minimum a-Riesz energy problems with a

constraint x given by (5.8) and acting only on measures carried by the Aj, j A Iþ,

developed in Section 7.1, remains valid in its full generality for the constraint s,

defined by (7.16) and acting on all the components of m A Eþ
a ðA; a;RnÞ.

8. Proofs of Theorems 7.1 and 7.2

Observe that, if Case II takes place, then

z A EgðDÞ; ð8:1Þ

fj ¼ kað�; z� z 0Þ ¼ gð�; zÞ cg-n:e: on D for all j A Iþ: ð8:2Þ

Indeed, (8.1) is obvious by (4.7), and (8.2) holds by Lemma 4.1 and Remark

4.1. By (8.1) and (8.2), in Case II for every n A Eþ
g ðAþ;DÞ we get
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Gg; fþðnÞ ¼ kRAþnk2g þ 2
X
j A I þ

gðz; n jÞ

¼ kRAþnk2g þ 2gðz;RAþnÞ ¼ kRAþnþ zk2g � kzk2g : ð8:3Þ

8.1. Proof of Theorem 7.1. By Theorem 6.1, Theorem 7.1 will be proved

once we have established the following assertion.

Theorem 8.1. Under the assumptions of Theorem 7.1, Problem 3.2 for D,

g, Aþ, aþ, fþ and xþ is solvable, i.e. there is m A Exþ

g; fþ
ðAþ; aþ;DÞ with

Gg; fþðmÞ ¼ G xþ

g; fþ
ðAþ; aþ;DÞ:

Proof. Note that Problem 3.2 for D, g, Aþ, aþ, fþ and xþ makes sense

since by assumption (5.9) and identity (6.2) we have

G xþ

g; fþ
ðAþ; aþ;DÞ < y: ð8:4Þ

Actually, G xþ

g; fþ
ðAþ; aþ;DÞ is finite, which is clear from (6.2) (cf. Remark 5.1).

In view of (8.4), there is a sequence fmkgk AN � Exþ

g; fþ
ðAþ; aþ;DÞ such that

lim
k!y

Gg; fþðmkÞ ¼ G xþ

g; fþ
ðAþ; aþ;DÞ: ð8:5Þ

Since the a-Green kernel g satisfies the energy principle [15, Theorem 4.9],

EgðDÞ forms a pre-Hilbert space with the inner product gðn; n1Þ and the energy

norm knkg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðn; nÞ

p
. Furthermore, Exþ

g; fþ
ðAþ; aþ;DÞ is convex and RAþ is an

isometric mapping between the semimetric space Eþ
g ðAþ;DÞ and its RAþ -image

into EgðDÞ (see Theorem 3.1). We are therefore able to apply to the set

fmk : k A Ng arguments similar to those in the proof of Lemma 3.6, and we

get

0c kRAþmk � RAþmlk
2
g c�4G xþ

g; fþ
ðAþ; aþ;DÞ þ 2Gg; fþðmkÞ þ 2Gg; fþðmlÞ:

Letting here k; l ! y and combining the relation thus obtained with (8.5),

we see in view of the finiteness of G xþ

g; fþ
ðAþ; aþ;DÞ that fRAþmkgk AN forms

a strong Cauchy sequence in the metric space Eþ
g ðDÞ. In particular, this

implies

sup
k AN

kRAþmkkg < y: ð8:6Þ

Since the sets Aj, j A Iþ, are (relatively) closed in D, the cones Mx j

ðAj;DÞ,
j A Iþ, are vaguely closed in MðDÞ, and therefore MxþðAþ;DÞ is vaguely

closed in MðDÞp�1 (cf. Definition 3.3). Furthermore, Mxþ
ðAþ; aþ;DÞ is

vaguely bounded, hence vaguely relatively compact by Lemma 3.4. Thus,

there is a vague cluster point m of the sequence fmkgk AN chosen above, which
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belongs to MxþðAþ;DÞ. Passing to a subsequence and changing notations, we

assume that

mk ! m vaguely as k ! y: ð8:7Þ

We assert that the m is a solution to Problem 3.2 for D, g, Aþ, aþ, fþ and xþ.

Fix j A Iþ. Applying Lemma 2.1 to 1D A CðDÞ, we obtain from (8.7)

m jðDÞc lim
k!y

m
j
kðDÞ ¼ aj:

We proceed by showing that equality prevails in the inequality here, and hence

m A MxþðAþ; aþ;DÞ: ð8:8Þ

Consider an exhaustion of Aj by an increasing sequence fKlgl AN of com-

pact subsets of D. Since 1Kl
is upper semicontinuous on D (and of course

bounded), we get from Lemma 2.1 (with c ¼ �1Kl
)

aj d m jðDÞ ¼ lim
l!y

m jðKlÞd lim
l!y

lim sup
k!y

m
j
kðKlÞ

¼ aj � lim
l!y

lim inf
k!y

m
j
kðAjnKlÞ:

Thus, (8.8) will follow if we show that

lim
l!y

lim inf
k!y

m
j
kðAjnKlÞ ¼ 0: ð8:9Þ

By (7.1),

y > x jðDÞ ¼ lim
l!y

x jðKlÞ

and therefore

lim
l!y

x jðAjnKlÞ ¼ 0:

Combined with m
j
kðAjnKlÞc x jðAjnKlÞ for all k; l A N, this implies (8.9), and

consequently (8.8).

Furthermore, since RAþmk ! RAþm vaguely in MþðDÞ, it is seen from

[3, Chapter III, Section 5, Exercise 5] that RAþmk nRAþmk ! RAþmnRAþm

vaguely in MþðD�DÞ. Applying Lemma 2.1 to X ¼ D�D and c ¼ g, we

get

gðRAþm;RAþmÞc lim inf
k!y

kRAþmkk
2
g < y;

the latter inequality being valid by (8.6). Hence, m A Eþ
g ðAþ;DÞ (cf. (3.8)).

Combined with (8.8), this yields m A Exþ

g ðAþ; aþ;DÞ. Note that Gg; fþðmÞ >
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�y, which is clear from (8.3) if Case II takes place, and otherwise (in the

presence of Case I) it is obvious by fj d 0, j A Iþ. The claimed assertion

m A Sxþ

g; fþ
ðAþ; aþ;DÞ will therefore be established once we have shown that

Gg; fþðmÞc lim
k!y

Gg; fþðmkÞ: ð8:10Þ

Since the kernel g is perfect [15, Theorem 4.11], the sequence fRAþmkgk AN,
being strong Cauchy in Eþ

g ðDÞ and vaguely convergent to RAþm, converges to

the same limit strongly in Eþ
g ðDÞ, i.e.

lim
k!y

kRAþmk � RAþmkg ¼ 0;

which in view of (3.8) and (3.10) is equivalent to the relation

lim
k!y

kmk � mkEþ
g ðAþ;DÞ ¼ 0: ð8:11Þ

Also note that the mapping n 7! Gg; fþðnÞ is vaguely l.s.c., resp. strongly

continuous, on Eþ
g; fþ

ðAþ;DÞ if Case I, resp. Case II, takes place. In fact, since

gðn; nÞ is vaguely l.s.c. on Eþ
g ðAþ;DÞ, the former assertion follows from Lemma

2.1. As for the latter assertion, it is obvious by (8.3). In view of this obser-

vation, (8.7) and (8.11) result in (8.10). r

Corollary 8.1. Suppose that the assumptions of Theorem 7.1 are fulfilled.

Then the (nonempty) class Sxþ

g; fþ
ðAþ; aþ;DÞ of all solutions to Problem 3.2 for

D, g, Aþ, aþ, fþ and xþ is vaguely compact in MðDÞp�1
.

Proof. Any mk A Sxþ

g; fþ
ðAþ; aþ;DÞ, k A N, form a strong Cauchy se-

quence in Eþ
g ðAþ;DÞ according to Lemma 3.6. Furthermore, the set

fmk : k A Ng is vaguely closed and relatively compact in MðDÞp�1 (see Section

3.3 with X ¼ D). Therefore in the same manner as in the proof of Theorem

8.1 we see that any vague cluster point of fmkgk AN belongs to Sxþ

g; fþ
ðAþ; aþ;DÞ.

r

8.2. Proof of Theorem 7.2. Assume that the requirements of the theorem

are fulfilled. Since Case II with zd 0 takes place, we get from (8.1) and

(8.2)

Gg; f1jDðnÞ ¼ knk2g þ 2gðz; nÞ A ½0;yÞ for all n A Eþ
g ðA1;DÞ: ð8:12Þ

Consider numbers rl > 0, l A N, such that rl " y as l ! y, and write

Brl :¼ Bð0; rlÞ, A1; rl :¼ A1 \ Brl . Since caðA1Þ ¼ y by assumption and since

caðBrlÞ < y for every l A N, we infer from the subadditivity of cað�Þ on

universally measurable sets [11, Lemma 2.3.5] that caðA1nBrlÞ ¼ y. Hence
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for every l A N there is xl A Eþ
a ðA1nBrl ; a1;R

nÞ of compact support S
xl
D such

that

kxlka c l�2: ð8:13Þ

Clearly, the rl can be chosen successively so that A1; rl [ S
xl
D � A1; rlþ1

. Any

compact set K � Rn is contained in a ball Brl0
with l0 large enough, and hence

K has points in common with only finitely many S
xl
D . Therefore, x1 defined

by

x1ðjÞ :¼
X
l AN

xlðjÞ for any j A C0ðRnÞ

is a positive Radon measure on Rn carried by A1. Furthermore, x1ðA1Þ ¼ y
and x1 A Eþ

a ðRnÞ. To prove the latter, note that hk :¼ x1 þ � � � þ xk A Eþ
a ðRnÞ,

which is clear from (8.13) and the triangle inequality in EaðRnÞ. Also ob-

serve that hk ! x1 vaguely because for any j A C0ðRnÞ there is k0 such that

x1ðjÞ ¼ hkðjÞ for all kd k0. As khkka cL :¼
P

l AN l�2 < y for all k A N,

Lemma 2.1 with X ¼ Rn �Rn and c ¼ ka yields kx1ka cL.

Each xl belongs to Eþ
g ðA1; a1;DÞ and moreover, by (4.10) and (8.13),

kxlkg c kxlka c l�2: ð8:14Þ

As Case II with zd 0 takes place, xl A Ex1

g; f1jD
ðA1; a1;DÞ for all l A N by

(8.12). Therefore, by the Cauchy–Schwarz (Bunyakovski) inequality in EgðDÞ,

0cG x1

g; f1jD
ðA1; a1;DÞc lim

l!y
½kxlk2g þ 2gðz; xlÞ�c 2kzkg lim

l!y
kxlkg ¼ 0;

where the first and the second inequalities hold by (8.12), and the third

inequality and the equality are valid by (8.14). Hence, G x1

g; f1jD
ðA1; a1;DÞ ¼ 0.

As seen from (8.12), such infimum can be attained only at zero measure, which

is impossible because 0 B Ex1

g; f1jD
ðA1; a1;DÞ. Application of Theorem 6.1 com-

pletes the proof.

9. Proofs of Theorems 7.3, 7.4 and 7.5

Throughout this section we maintain all the requirements on A, a, f, and x

imposed at the beginning of Section 5.2, except for (5.9) which follows auto-

matically from the hypotheses of the assertions under proving in view of

Lemma 5.2.

9.1. Proof of Theorem 7.3. Fix lA A Eþ
a; fðA; a;RnÞ. Then each l i

A, i A I , has

finite a-Riesz energy, and hence it is ca-absolutely continuous. Note that, since
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fp ¼ 0 n.e. on Ap, (7.4) can alternatively be rewritten as klA;p
a ¼ 0 n.e. on Ap,

which by (3.9) (with X ¼ Rn and k ¼ ka) is equivalent to the relation

kað�;RAl
þ
A � lpÞ ¼ 0 n:e: on Ap:

In view of the characteristic property (4.2) of the swept measures, this shows

that for the given lA, (7.4) and (6.3) are equivalent. On account of Theorem

6.1, we thus see that when proving the equivalence of assertions (i) and (ii) of

Theorem 7.3, there is no loss of generality in assuming lA to satisfy (6.3).

Substituting (6.3) into (3.9), we therefore get for every i A I

klA; i
a ð�Þ ¼ sikað�;RAl

þ
A � ðRAl

þ
A Þ

0Þ n:e: on Rn: ð9:1Þ

In particular, for every j A Iþ we have

klA; j
a ð�Þ ¼ gð�;RAþlþA Þ ¼ glþ

A
; jð�Þ n:e: on D ð9:2Þ

and hence, by (3.12),

W
lA; j
a; f ¼ W

lþ
A
; j

g; fþ
n:e: on D:

(Note that (9.2) has been obtained from (9.1) with the aid of (4.6), applied to

RAþlþA in place of m, and (3.9), the latter with X ¼ D and k ¼ g.)

If Case II holds, then for every i A I we also get from (9.1) and

(3.12)

W
lA; i
a; f ð�Þ ¼ sikað�; ðRAl

þ
A þ zÞ � ðRAl

þ
A þ zÞ0Þ n:e: on Rn:

By [15, Corollary 3.14], the function on the right (hence, also that on the left)

in this relation takes the value 0 at every a-regular point of Ap, which gives

(7.5).

By Theorem 6.1, what has been shown just above yields that Theorem 7.3

will be proved once the following theorem has been established.

Theorem 9.1. Under the hypotheses of Theorem 7.3 the following two

assertions are equivalent for any l A Exþ

g; fþ
ðAþ; aþ;DÞ:

( i 0 ) l A Sxþ

g; fþ
ðAþ; aþ;DÞ.

(ii 0) There is a vector ðcjÞj A I þ A Rp�1 such that for every j A Iþ

W
l; j

g; fþ
d cj ðx j � l jÞ-a:e:; ð9:3Þ

W
l; j

g; fþ
c cj l j -a:e: ð9:4Þ

Proof. Suppose first that (i 0) holds. To verify (ii 0), fix j A Iþ. For

every m ¼ ðmlÞl A I þ A Exþ

g; fþ
ðAþ; aþ;DÞ write mj :¼ ðml

j Þl A I þ , where ml
j :¼ ml for

all l0 j and m
j
j ¼ 0; then mj A Eþ

g; fþ
ðAþ;DÞ. Also define ~ffj :¼ fjjD þ glj ; j; by
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substituting (3.6) with k ¼ g we then obtain

~ffj ¼ fjjD þ
X

l A I þ;l0j

gð�; llÞ: ð9:5Þ

Since gð�; llÞ > 0 on D for all l A Iþ according to [15, Lemma 4.1] and since

fj is lower bounded on Aj by assumption, the function

W l j

g; ~ffj
:¼ gð�; l jÞ þ ~ffj; j A Iþ; ð9:6Þ

is likewise lower bounded on Aj. Furthermore, both ~ffj and W l j

g; ~ffj
are finite

n.e. on the set A�
j , which is clear from (5.10) and Lemma 3.2.

Applying (3.7) and (3.13), we get for any m A Exþ

g; fþ
ðAþ; aþ;DÞ with the

additional property that mj ¼ lj (in particular for m ¼ l)

Gg; fþðmÞ ¼ Gg; fþðljÞ þ Gg; ~ffj
ðm jÞ:

Combined with Gg; fþðmÞdGg; fþðlÞ, this yields Gg; ~ffj
ðm jÞdGg; ~ffj

ðl jÞ. Hence,

l j is the (unique) solution to the problem of minimizing Gg; ~ffj
ðnÞ, where n ranges

over Ex j

g; ~ffj
ðAj; aj;DÞ. This enables us to show that there is cj A R such that

W l j

g; ~ffj
d cj ðx j � l jÞ-a:e:; ð9:7Þ

W l j

g; ~ffj
c cj l j-a:e: ð9:8Þ

In doing this we shall use permanently the fact that both x j and l j have finite

a-Riesz energy, and hence they are ca-absolutely continuous.

Indeed, (9.7) holds with

cj :¼ Lj :¼ supft A R : W l j

g; ~ffj
d t ðx j � l jÞ-a:e:g:

In turn, (9.7) with cj ¼ Lj implies that Lj < y because W l j

g; ~ffj
< y holds n.e. on

A�
j and hence ðx j � l jÞ-a.e. on A�

j , while ðx j � l jÞðA�
j Þ > 0 by (5.11). Also

Lj > �y, for W l j

g; ~ffj
is lower bounded on Aj (see above).

We next establish (9.8) with cj ¼ Lj. To this end, write for any w A R

Aþ
j ðwÞ :¼ fx A Aj : W

l j

g; ~ffj
ðxÞ > wg; A�

j ðwÞ :¼ fx A Aj : W
l j

g; ~ffj
ðxÞ < wg:

On the contrary, let (9.8) with cj ¼ Lj fail, i.e. l jðAþ
j ðLjÞÞ > 0. Since W l j

g; ~ffj
is l j-measurable and Lj is finite, one can choose wj A ðLj;yÞ so that

l jðAþ
j ðwjÞÞ > 0. At the same time, as wj > Lj, it follows from the defini-

tion of Lj that ðx j � l jÞðA�
j ðwjÞÞ > 0. Therefore, there exist compact sets

K1 � Aþ
j ðwjÞ and K2 � A�

j ðwjÞ such that

0 < l jðK1Þ < ðx j � l jÞðK2Þ: ð9:9Þ
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Write t j :¼ ðx j � l jÞjK2
; then gðt j ; t jÞ < kaðt j ; t jÞ < y, where the former

inequality holds by (4.10). As hW l j

g; ~ffj
; t jicwjt

jðK2Þ < y, we therefore

get h ~ffj; t
ji < y. Define y j :¼ l j � l jjK1

þ bjt
j, where bj :¼ l jðK1Þ=t jðK2Þ A

ð0; 1Þ by (9.9). Straightforward verification then shows that y jðAjÞ ¼ aj and

y j
c x j , and hence y j A Ex j

g; ~ffj
ðAj; aj;DÞ. On the other hand,

hW l j

g; ~ffj
; y j � l ji ¼ hW l j

g; ~ffj
� wj; y

j � l ji

¼ �hW l j

g; ~ffj
� wj; l

j jK1
iþ bjhW

l j

g; ~ffj
� wj; t

ji < 0;

which is impossible by (the scalar version of ) Lemma 3.5 with the (convex)

set E ¼ Ex j

g; ~ffj
ðAj; aj ;DÞ. This contradiction establishes (9.8).

Substituting (9.5) into (9.6) and then comparing the result obtained with

(3.6) and (3.12), we see that

W l j

g; ~ffj
¼ W

l; j

g; fþ
: ð9:10Þ

Combined with (9.7) and (9.8), this establishes (9.3) and (9.4), thus completing

the proof that (i 0) implies (ii 0).

Conversely, let (ii 0) hold. On account of (9.10), for every j A Iþ relations

(9.7) and (9.8) are then fulfilled with ~ffj defined by (9.5). This yields

l jðAþ
j ðcjÞÞ ¼ 0 and ðx j � l jÞðA�

j ðcjÞÞ ¼ 0:

For any n A Exþ

g; fþ
ðAþ; aþ;DÞ we therefore get

hW l; j

g; fþ
; n j � l ji ¼ hW l j

g; ~ffj
� cj; n

j � l ji

¼ hW l j

g; ~ffj
� cj; n

jjAþ
j
ðcjÞiþ hW l j

g; ~ffj
� cj; ðn j � x jÞjA�

j
ðcjÞid 0:

Summing up these inequalities over all j A Iþ, we conclude from Lemma 3.5

with the (convex) set E ¼ Exþ

g; fþ
ðAþ; aþ;DÞ that l satisfies (i 0). r

9.2. Proof of Theorem 7.4. For any x A D consider the inverse Kx of ClRn Ap

relative to Sðx; 1Þ, Rn being the one-point compactification of Rn. Since Kx is

compact, there exists the (unique) ka-equilibrium measure gx A Eþ
a ðKx;RnÞ on

Kx, possessing the properties kgxk
2
a ¼ gxðKxÞ ¼ caðKxÞ,

kað�; gxÞ ¼ 1 n:e: on Kx; ð9:11Þ

and kað�; gxÞc 1 on Rn. Note that gx 0 0, for caðKxÞ > 0 in consequence of

caðApÞ > 0 (see [19, Chapter IV, Section 5, n� 19]). We assert that, under the
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stated requirements,

S
gx
Rn ¼

�KKx if a < 2;

qRnKx if a ¼ 2:

�
ð9:12Þ

The latter equality in (9.12) follows from [19, Chapter II, Section 3, n� 13].

To establish the former equality,15 we first note that S
gx
Rn � �KKx by the

ca-absolute continuity of gx. As for the converse inclusion, assume on

the contrary that there is x0 A �KKx such that x0 B S
gx
Rn . Choose r > 0 with

the property Bðx0; rÞ \ S
gx
Rn ¼ q. But caðBðx0; rÞ \ �KKxÞ > 0, hence by (9.11)

there exists y A Bðx0; rÞ such that kaðy; gxÞ ¼ 1. The function kað�; gxÞ is

a-harmonic on Bðx0; rÞ [19, Chapter I, Section 5, n� 20], continuous on

Bðx0; rÞ, and takes at y A Bðx0; rÞ its maximum value 1. Applying [19,

Theorem 1.28] we obtain kað�; gxÞ ¼ 1 mn-a.e. on Rn, hence everywhere on
�KK c
x by the continuity of kað�; gxÞ on ðS gx

RnÞc 	 �KK c
x , and altogether n.e. on Rn

by (9.11). This means that gx serves as the a-Riesz equilibrium measure on

the whole of Rn, which is impossible.

Based on (6.3) and the integral representation (4.3), we then arrive at the

claimed relation (7.6) in view of the fact that, for every x A D, e 0x is the Kelvin

transform of the equilibrium measure gx [15, Section 3.3].

9.3. Proof of Theorem 7.5. Combining (7.5) (with z ¼ 0) and (7.8) yields

the first line in (7.9), while the second line is given by (9.2). Substituting the

first relation from (7.9) into (7.3) shows that under the stated assumptions the

number c1 from Theorem 7.3 is > 0, while (7.2) now takes the (equivalent)

form

kað�; lÞd c1 > 0 ðx1 � lþÞ-a:e: ð9:13Þ

Having rewritten (7.3) as

kað�; lþÞc kað�; l�Þ þ c1 lþ-a:e:;

we infer from [19, Theorems 1.27, 1.29, 1.30] that the same inequality holds

on all of Rn, which amounts to (7.11). In turn, (7.11) yields (7.10) when

combined with (9.13). It follows directly from Theorem 7.3 that (7.10) and

(7.11) together with the relation kað�; lÞ ¼ 0 n.e. on Dc determine uniquely the

solution l to problem (7.7) among the admissible measures.

Assume now that kað�; x1Þ is continuous on D. Then so is kað�; lþÞ.
Indeed, since kað�; lþÞ is l.s.c. and since kað�; lþÞ ¼ kað�; x1Þ � kað�; x1 � lþÞ
with kað�; x1Þ continuous and kað�; x1 � lþÞ l.s.c., it follows that kað�; lþÞ is

15We have brought here this proof, since we did not find a reference for this possibly known

assertion.
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also upper semicontinuous, hence continuous. Therefore, by the continuity of

kað�; lþÞ on D, (7.10) implies (7.12). Thus, by (7.9) and (7.12),

gð�; lþÞ ¼ c1 on S x1�lþ

D ;

which implies (7.13) in view of [11, Lemma 3.2.2] (with X ¼ D and k ¼ g).

Omitting now the requirement of continuity of kað�; x1Þ, assume further

that a < 2 and mnðDcÞ > 0. If on the contrary (7.14) is not fulfilled, then there

is x0 A S x1

D such that x0 B S lþ

D , and therefore one can choose r > 0 so that

Bðx0; rÞ � D and Bðx0; rÞ \ S lþ

D ¼ q: ð9:14Þ

Then ðx1 � lþÞðBðx0; rÞÞ > 0, and hence there exists y A Bðx0; rÞ with the prop-

erty kaðy; lÞ ¼ c1 (cf. (7.10)), or equivalently

kaðy; lþÞ ¼ kaðy; l�Þ þ c1: ð9:15Þ

Since kað�; lþÞ is a-harmonic on Bðx0; rÞ and continuous on Bðx0; rÞ and since

kað�; l�Þ þ c1 is a-superharmonic on Rn, we conclude from (7.11) and (9.15)

with the aid of [19, Theorem 1.28] that

kað�; lÞ ¼ kað�; l�Þ þ c1 mn-a:e: on Rn: ð9:16Þ

This implies c1 ¼ 0, because by (4.2) and (6.3), kað�; lþÞ ¼ kað�; ðlþÞ0Þ ¼
kað�; l�Þ holds n.e. on Dc, and hence mn-a.e. on Dc, which is a contradiction.

Similar arguments enable us to establish (7.15). Indeed, if (7.15) were

not fulfilled at some x1 A DnS lþ

D , then (9.15) would hold with x1 in place of y

(cf. (7.11)) and, furthermore, one could choose r > 0 so that (9.14) would

be valid with x1 in place of x0. Therefore, since kað�; lþÞ is a-harmonic on

Bðx1; rÞ and continuous on Bðx1; rÞ and since kað�; l�Þ þ c1 is a-superharmonic

on Rn, we would arrive again at (9.16) and hence at c1 ¼ 0, which is

impossible.

10. Examples

The purpose of the examples below is to illustrate the assertions from

Section 7.1. Note that in either Example 10.1 or Example 10.2 the set

A2 ¼ Dc is not a-thin at infinity.

Example 10.1. Let nd 3, a < 2, D ¼ Br :¼ Bð0; rÞ, where r A ð0;yÞ, and
let Iþ ¼ f1g, A1 ¼ D, a ¼ 1, f ¼ 0. Define x1 :¼ qlr, where q A ð1;yÞ and lr
is the ka-capacitary measure on Br :¼ Bð0; rÞ (Remark 2.3). As follows from

[19, Chapter II, Section 3, n� 13], x1 A Eþ
a ðA1; q;RnÞ, S x1

D ¼ D and kað�; x1Þ is

continuous on Rn. Since f ¼ 0, Problem 3.2 reduces to problem (7.7) of

minimizing kaðm; mÞ over all m A EaðRnÞ such that mþ A Ex1

a ðA1; 1;RnÞ and m� A
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Eþ
a ðA2; 1;RnÞ, which by Theorem 6.1 is equivalent to the problem of mini-

mizing ga
Dðn; nÞ over Ex1

ga
D
ðA1; 1;DÞ. According to Theorems 7.1, 6.1 and Cor-

ollary 3.1, these two constrained minimum energy problems are uniquely

solvable (no short-circuit occurs between D and Dc), and their solutions,

denoted respectively by la;A ¼ lþ � l� and lg;A1
, are related to each other as

follows:

la;A ¼ lg;A1
� l 0

g;A1
:

Furthermore, by (7.6), (7.13) and (7.14),

S lþ

D ¼ S
lg;A1
D ¼ S x1

D ¼ D; S l�

Rn ¼ Dc;

cg a
D
ðS x1�lþ

D Þ < y; ð10:1Þ

while by (7.9), (7.11) and (7.12),

kað�; la;AÞ ¼ c1 on S x1�lþ

D ;

0 on Dc;

(
ð10:2Þ

kað�; la;AÞc c1 on DnS x1�lþ

D ; ð10:3Þ

where c1 > 0. (In (10.2) we have used the fact that for the given a and D,

Ia;Dc ¼ q.) Moreover, according to Theorem 7.3, relations (10.2) and (10.3)

determine uniquely the solution la;A among the admissible measures.

Example 10.2. Let n ¼ 3, a ¼ 2, f ¼ 0, a ¼ 1. Define D :¼ fx ¼
ðx1; x2; x3Þ A R3 : x1 > 0g and A1 :¼

P
k AN Kk, where

Kk :¼ fðx1; x2; x3Þ A D : x1 ¼ k�1; x2
2 þ x2

3 c k2g; k A N:

Let lk be the k2-capacitary measure on Kk (Remark 2.3); hence lkðKkÞ ¼ 1

and klkk22 ¼ p2=ð2kÞ by [19, Chapter II, Section 3, n� 14]. Define

x1 :¼
X
k AN

k�2lk:

In the same manner as in the proof of Theorem 7.2 one can see that x1 is a

positive Radon measure carried by A1 with k2ðx1; x1Þ < y and x1ðA1Þ A ð1;yÞ.
By Theorem 7.1, Problem 3.2 for the constraint x ¼ ðx1;yÞ and the condenser

A ¼ ðA1;D
cÞ has therefore a (unique) solution la;A ¼ lþ � l� (no short-circuit

occurs between A1 and Dc), although Dc \ ClR3 A1 ¼ qD and hence

c2ðDc \ ClR3 A1Þ ¼ y:

Furthermore, since each k2ð�; lkÞ, k A N, is continuous on Rn and bounded

from above by p2=ð2kÞ, the potential k2ð�; x1Þ is continuous on Rn by the
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uniform convergence of the sequence
P

k AN k�2k2ð�; lkÞ. Hence (10.1), (10.2)

and (10.3) also hold in the present case with a ¼ 2, again with c1 > 0, and

relations (10.2) and (10.3) determine uniquely the solution la;A among the

admissible measures. Also note that S l�

Rn ¼ qD according to (7.6).
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