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ABsTRACT. For a finite collection A = (4;),., of locally closed sets in R”, n > 3, with
the sign s; = +1 prescribed such that the oppositely charged plates are mutually dis-
joint, we consider the minimum energy problem relative to the o-Riesz kernel |x — y|*™",
a e (0,2], over positive vector Radon measures g = (u');., such that each u', iel, is
carried by A4; and normalized by u'(4;) = a; € (0,00), while the interaction between
w', i€l is determined by the matrix (s;s;); ;.;. We show that, though the closures of
oppositely charged plates may intersect each other even in a set of nonzero capacity,
this problem has a solution 5 = (21),.; (also in the presence of an external field) if we
restrict ourselves to u with u’ < &' iel, where the constraint & = (&' )ies is properly
chosen. We establish the sharpness of the sufficient conditions on the solvability thus
obtained, provide descriptions of the weighted vector a-Riesz potentials of the solutions,
single out their characteristic properties, and analyze the supports of the AA, iel. Our
approach is based on the simultaneous use of the vague topology and an appropriate
semimetric structure defined in terms of the «-Riesz energy on a set of vector measures
associated with A, as well as on the establishment of an intimate relationship between
the constrained minimum o-Riesz energy problem and a constrained minimum «-Green
energy problem, suitably formulated. The results are illustrated by examples.

1. Introduction

The purpose of this paper is to study minimum energy problems with
external fields (also known as weighted minimum energy problems or as the
Gauss variational problems) relative to the o-Riesz kernel r,(x,y) = |x — y|*™"
of order o € (0,2] on R”, n >3, where |x — y| denotes the Euclidean distance
between x, y € R” and the infimum is taken over classes of vector measures
pu=(u'),.,; associated with a generalized condenser A = (4;);,.; in R” and
normalized by u(A4;) =a;€(0,0), iel. More precisely, an ordered finite
collection A of locally closed sets A; C R”, i eI, termed plates, with the sign
s; = +1 prescribed is said to be a generalized condenser if the oppositely signed
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plates are mutually disjoint, while a vector measure u = (u');., is said to be
associated with A if each pu', i eI, is a positive scalar Radon measure (charge)
on R”, carried by 4;. In accordance with an electrostatic interpretation of a
condenser, we say that the interaction between the components u’, i € I, of such
u is determined by the matrix (s;s;) so that the f-weighted o-Riesz energy
of u is defined by

i,jel>

o) i= 3 55 [ = 31" @ ), 3) + 23 [ i

i,jel iel

where f = (f;),.;, each f; : R" — [—00, 0] being a universally measurable func-
tion treated as an external field acting on the charges carried by the A;.

The difficulties appearing in the course of our investigation are caused
by the fact that a short-circuit may occur between 4; and 4; with s;5; = —1,
because these conductors may have zero Euclidean distance. See Theorem 5.1
below providing an example of a generalized condenser with no o-Riesz energy
minimizer. It is therefore meaningful to ask what kinds of additional require-
ments on the objects in question will prevent this blow-up effect, and secure
that a solution to the corresponding f-weighted minimum «-Riesz energy
problem does exist.

We show that, though the closures of oppositely charged plates may inter-
sect each other even in a set of nonzero a-Riesz capacity, such minimum energy
problem is nevertheless solvable (no short-circuit occurs) if we restrict ourselves
to u with u' < &', i eI, where the constraint & = (¢'),_; is properly chosen (see
Sections 3.5 and 5.2 for a formulation of the constrained problem). Sufficient
conditions for the existence of solutions A5 = (14),., to the constrained mini-
mum «-Riesz energy problem are established in Theorems 7.1 and 7.6; those
conditions are shown in Theorem 7.2 to be sharp. The uniqueness of solutions
is studied in Lemma 3.6 and Corollary 3.1. We also provide descriptions of
the f-weighted vector a-Riesz potentials of the solutions 25, single out their
characteristic properties, and analyze the supports of the components /11’;, iel
(Theorems 7.3, 7.4 and 7.5). The results are illustrated in Examples 10.1 and
10.2.

In particular, let A = (A4;, A,) be a generalized condenser with the positive
plate A := D and the negative plate 4, := R"\D, D being an (open connected)
bounded domain in IR” with m,(D) > 1, m, being the Lebesgue measure
on R”, and let f =0. Then inf G,, () over all u= (u', ) associated with
A and normalized by u’(4;) =1, i=1,2, is an actual minimum (although
Ay NClgr A; = 0D) if we require additionally that u' < &= my|, and
W2 < &, where &2 is a positive Radon measure carried by A4, and possessing
the property &2 = (m,|,)™ (cf. Theorems 7.1 and 7.6). Here m,|, is the
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restriction of m, on D, and (m,| D)A2 the o-Riesz balayage of my|, onto As.
Throughout the paper dQ denotes the boundary of a set Q C R” in the
topology of R”".

The approach developed below is mainly based on the simultaneous use of
the vague topology and an appropriate (semi)metric structure defined in terms
of the «-Riesz energy on a set of vector measures associated with a generalized
condenser (see Section 3.2 for a definition of such a (semi)metric structure'), as
well as on the establishment of an intimate relationship between the constrained
minimum o-Riesz energy problem and a constrained minimum «-Green energy
problem, suitably formulated. Regarding the latter problem, crucial to the
arguments applied in its investigation is the perfectness of the a-Green kernel g7},
on an arbitrary open set D, established recently by the present authors [15],
which amounts to the completeness in the topology determined by the energy
norm ||v||,. := +/g%(v,v) of the cone of all positive scalar Radon measures v on
D wit}|~|1 |I|igrfite oc-GrlZ:E:n gnergy gp(v,v) = [g3(x, »)d(v ® v)(x,y) < .

2. Preliminaries

Let X be a locally compact (Hausdorff) space [2, Chapter I, Section 9,
n° 7], to be specified below, and 9i(X) the linear space of all real-valued scalar
(signed) Radon measures x# on X, equipped with the wvague topology, i.e.
the topology of pointwise convergence on the class Cy(X) of all continuous
functions® on X with compact support. We refer to [3, 10] for the theory of
measures and integration on X, to be used throughout the paper (see also [11]
for a short survey).

For the purposes of the present study it is enough to assume that X is
metrizable and countable at infinity, where the latter means that X can be
represented as a countable union of compact sets [2, Chapter I, Section 9,
n° 9]. Then the vague topology on Mi(X) satisfies the first axiom of count-
ability [14, Remark 2.4], and the vague convergence is entirely determined by
convergence of sequences. The vague topology on Mi(X) is Hausdorff; hence,
a vague limit of any sequence in 9(X) is wumique (whenever it exists).

Let 4t and u~ denote the positive and negative parts of a measure
1 eM(X) in the Hahn—Jordan decomposition, |u| := u™ + u~ its total varia-

1A key observation behind that definition is the fact that there corresponds to every positive
vector measure u = (u'),.; of finite energy associated with A a scalar (signed) Radon measure
Rp:=Y, ;siu' on R" and the mapping R : +— Rpu preserves the corresponding energy semimetric
(see Theorem 3.1). This approach extends that from [22]-[26] where the closures of the oppositely
charged plates were assumed to be mutually disjoint.

2When speaking of a continuous numerical function we understand that the values are finite real
numbers.
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tion, and S(u) =S} its support. A measure u is said to be bounded if
(X)) < 0.

Let M (X) stand for the (convex, vaguely closed) cone of all positive
1neM(X), and let ¥(X) consist of all lower semicontinuous (l.s.c.) functions
W : X — (—o0, 0], nonnegative unless X is compact.

Lemma 2.1 (see e.g. [11, Section 1.1]). For any Y€ W(X) the mapping
w Yoy = [ du is vaguely Ls.c. on M*(X).

We define a (function) kernel on X as a symmetric positive function
from P(X x X). Given u,veIMM(X), we denote by x(u,v) and x(-,u) the
mutual energy and the potential relative to the kernel x, respectively, i.e.3

K(u,v) = Jk(x, Y)d(u®v)(x, ),

() = (v (), xex.

Note that r(x, u) is well defined provided that x(x,u™) or x(x, ™) is finite, and
then x(x,u) = x(x,u") — x(x, 7). In particular, if e MM (X), then x(x,u)
is defined everywhere and represents a ls.c. positive function on X (see
Lemma 2.1). Also observe that r(u,v) is well defined and equal to x(v,u)
provided that r(ut,vt)+x(u=,v") or x(ut,v")+x(p~,v") is finite. For
w=v, x(u,v) becomes the energy r(u,u) of pu. Let &.(X) consist of all
e M(X) whose energy r(u, ) is finite, which by definition means that the
kernel x is (Ju| ® |u|)-integrable, ie. x(|u|,|u]) < oo, and let &7 (X):=
& (X) N (X).

Given a set Q C X, let M*(Q; X) consist of all ue M (X) carried by
0O, which means that X\Q is locally wu-negligible, or equivalently that Q is
u-measurable and u = u|y, where ulo=1¢g-u is the restriction of x on Q
[3, Chapter V, Section 5, n° 3, Example]. (Here 1o denotes the indicator
function of Q.) If Q is closed, then u is carried by Q if and only if it
is supported by Q, ie. S(u) C Q. It follows from the countability of X
at infinity that the concept of local p-negligibility coincides with that of
u-negligibility; and hence peIM*(Q;X) if and only if u*(X\Q) =0, u*(-)
being the outer measure of a set. Denoting by u,(+) the inner measure of a set,
for any ue M (Q; X) we thus get

w(Q) = 1. (0Q) =: u(Q).

3 When introducing notation about numerical quantities we assume the corresponding object on
the right to be well defined (as a finite real number or +co).
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Write 6.7(0; X) := 6(X)NMT(Q; X), M (Q,q; X) := {ue M (Q; X) : u(Q)
=gq} and &7(0,¢; X) == (X)) NMT(Q,¢; X), where g e (0, 00).

Among the variety of potential-theoretic principles investigated for ex-
ample in the comprehensive work by Ohtsuka [21] (see also the references
therein), in the present study we shall only need the following two:

* A kernel x is said to satisty the complete maximum principle (intro-
duced by Cartan and Deny [6]) if for any xe & (X) and ve M (X)
such that x(x,u) < k(x,v)+c¢ p-ae., where ¢ >0 is a constant, the
same inequality holds everywhere on X.

* A kernel « is said to be positive definite if xk(u,u) = 0 for every (signed)
measure u € M(X) for which the energy is well defined; and x is said
to be strictly positive definite, or to satisfy the emergy principle if in
addition r(u,u) > 0 except for u=0.

Unless explicitly stated otherwise, in all that follows we assume a kernel x
to satisfy the energy principle. Then &,(X) forms a pre-Hilbert space with
the inner product x(u,v) and the energy norm |y, := +/x(u, p) (see [11]).
The (Hausdorft) topology on &.(X) determined by the norm | - ||, is termed
strong.

In contrast to [12, 13] where capacity has been treated as a functional
acting on positive numerical functions on X, in the present study we use the
(standard) concept of capacity as a set function. Thus the (inner) capacity of a
set QO C X relative to the kernel x, denoted c¢.(Q), is defined by

-1
(Q) == ”inf (i, 1) (2.1)
nes (9, 1;X)
(see e.g. [11, 21]). Then 0 < ¢(Q) < 0. (As usual, here and in the sequel
the infimum over the empty set is taken to be +00. We also set 1/(4+00) =0
and 1/0 = +4o0.) Because of the strict positive definiteness of the kernel r,

ce(K) < 0 for every compact K C X. (2.2)
Furthermore, by [11, p. 153, Eq. 2],
¢ (Q) = sup ¢ (K) (K C Q, K compact). (2.3)

We shall often use the fact that ¢,(Q) =0 if and only if «,(Q) =0 for
every pe &5 (X), see [11, Lemma 2.3.1].

As in [19, p. 134], we call a measure ue M(X) c,-absolutely continuous
if #(K)=0 for every compact set K C X with ¢.(K)=0. It follows from
(2.3) that for such u, |u|,(Q) =0 for every Q C X with ¢,(Q) =0. Hence,
every u € 6,.(X) is c.-absolutely continuous; but not conversely [19, pp. 134-
135].
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DeriniTION 2.1, Following [11], we call a (strictly positive definite) kernel
Kk perfect if every strong Cauchy sequence in & (X) converges strongly to any
of its vague cluster points®.

REMARK 2.1. On X = R", n > 3, the a-Riesz kernel r,(x, y) = |x — y|*",
o € (0,n), is strictly positive definite and moreover perfect [7, 8]; thus so is the
Newtonian kernel x5 (x, ) = [x — y|*™ [5]. Recently it has been shown by the
present authors that if X = D where D is an open set in R”, n > 3, and g3,
o€ (0,2], is the a-Green kernel on D [19, Chapter IV, Section 5|, then x = g%
likewise is strictly positive definite and moreover perfect [15, Theorems 4.9,
4.11]. See also [14, Remark 2.2] for some other examples of perfect kernels.

THEOREM 2.1 (see [11]). If a kernel k on a locally compact space X is
perfect, then the cone & (X) is strongly complete and the strong topology on
EX(X) is finer than the (induced) vague topology on & (X).

K

REMARK 2.2. In contrast to Theorem 2.1, for a perfect kernel x the whole
pre-Hilbert space &,(X) is in general strongly incomplete, and this is the case
even for the o-Riesz kernel of order « e (1,n) on R”, n >3 (see [5] and [19,
Theorem 1.19]). When speaking of a completion of & (R"), one needs to
consider e.g. tempered distributions of finite Deny-Schwartz energy defined with
the aid of the Fourier transform [7]. Recently it has also been shown that
if we restrict ourselves to v e &, (R") such that Sy, C D, D being a bounded
domain in R”, then the pre-Hilbert space of all those v can be isometrically
imbedded into its completion, the Sobolev space H *?(D), see [18, Corollary
3.3].

RemARrk 2.3. The concept of perfect kernel is an efficient tool in mini-
mum energy problems over classes of positive scalar Radon measures with finite
energy. Indeed, if Q C X is closed, ¢,(Q) € (0, ), and « is perfect, then the
minimum energy problem (2.1) has a unique solution Ay, termed the (inner)
r-capacitary measure on Q [11, Theorem 4.1]. Later the concept of perfectness
has been shown to be efficient also in minimum energy problems over classes
of vector measures associated with a standard condenser (see [22]-[26]; see also
Remarks 3.1 and 3.2 below for a short survey). The approach developed in
[22]-[26] substantially used the assumption of the boundedness of the kernel on
the product of the oppositely charged plates of a condenser (see requirement
(3.16) below), which made it possible to extend Cartan’s proof [5] of the strong
completeness of the cone & (IR") of all positive measures on R” with finite
Newtonian energy to an arbi_trary perfect kernel x on a locally compact space

“It follows from Theorem 2.1 that, in fact, for a perfect kernel such a vague cluster point exists
and is unique.
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X and suitable classes of (signed) measures u € 8,.(X); compare with Remark
2.2 above.

3. Minimum energy problems for a generalized condenser in a locally
compact space

3.1. Vector measures associated with a generalized condenser. A subset L of a
topological space Y is said to be locally closed if for every x € L there is a
neighborhood V" of x in Y such that V' N L is a closed subset of the subspace V'
[2, Chapter I, Section 3, Definition 2], or equivalently if L is the intersection of
an open and a closed subset of Y [2, Chapter I, Section 3, Proposition 5].

In a locally compact (Hausdorff) space X we consider an ordered finite
collection A = (4;),.; of nonempty, locally closed sets 4; C X with the sign
s; :=sign A; = +1 prescribed. Denote It :={iel:s;=+1}, I" :=I\I" and
p:=Card I, where p>1 and I~ is allowed to be empty.

DEerINITION 3.1.  We call A a generalized condenser in X if ATNA™ = (&,
where
A= {4 and A =[] 4,

ielt jel~

The sets A;, ielI*, and A4;, jel~, are termed the positive and negative
plates of the (generalized) condenser A. To avoid trivialities, we shall always
assume that

ce(4:) >0 for all iel, (3.1)

the (strictly positive definite) kernel ¥ on X being given. Note that any two
equally signed plates may intersect each other or even coincide. Also note
that, though 4; and A4; are disjoint for any ie " and je I, their closures
in X may intersect each other even in a set with ¢.(-) > 0. The concept of
generalized condenser thus defined generalizes that introduced recently in [14,
Section 3].

DEerINITION 3.2. A generalized condenser A is said to be standard if all
the (locally closed) sets A4;, i e[, are closed in X.

Unless explicitly stated otherwise, in all that follows we assume A to
be a generalized condenser in X. Let M'(A; X) consist of all positive vector
measures u = (u');., where each u', i€, is a positive scalar Radon measure
on X that is carried by 4;, i.e.

M (A; X) = [0 (455 X).

iel
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Elements of MT(A; X) are said to be (vector) measures associated with A.
If a measure we M (A;X) and a vector-valued function w= (u;);., with
u'-measurable components u; : X — [—o00, 0] are given, then we write

oy i= S oy = 3 [ (32)

iel iel

(of course, provided that each {u;, u’>, i € I, as well as their sum over I is well
defined—as a finite number or +c0).

Being the intersection of an open and a closed subset of X [2, Chapter I,
Section 3, Proposition 5], each (locally closed) set A;, ie I, is universally
measurable, and hence M (4;; X) consists of all the restrictions x|, where x
ranges over M (X). On the other hand, according to [2, Chapter I, Section 9,
Proposition 13], A4; itself can be thought of as a locally compact subspace
of X. Thus M (4;; X) consists, in fact, of all those ve M"(4;) for each of
which there exists v e ™' (X) with the property

W(p) = <ol V> for every ¢ € Co(X). (3.3)

We say that such ¥ extends ve MM (4;) by 0 off 4; to all of X. A sufficient
condition for (3.3) to hold is that v be bounded.

Since A4t N A~ = (&, there corresponds to each ue M" (A; X) a (signed)
scalar Radon measure Rap:= Y, ;siu' € M(X), the ‘resultant’ of m, whose
positive and negative parts in the Hahn—Jordan decomposition are given by

(Rap)™ =D 4" and  (Rap)” =) w/. (34)

ielt jel~

For the sake of brevity we shall use the short notation R instead of Ry if this
will not cause any misunderstanding.

The mapping " (A; X) s u— RueM(X) is in general non-injective.
We shall call u,ve M (A; X) R-equivalent if Ru= Rv. Note that the rela-
tion of R-equivalence on M™(A; X) is that of identity (u =v) if and only if
all the A4;, iel, are mutually disjoint. Also observe that e IMM*(A;X) is
R-equivalent to 0 (if and) only if x#=0.

3.2. A (semi)metric structure on classes of vector measures. For a given
(strictly positive definite) kernel x on X and a given (generalized) condenser A,
let &1(A; X) consist of all geIMM™*(A;X) such that x(u’, u') < co for all i e[,
in other words,

55 X) =[] 6 (45 x).

iel
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In view of [11, Lemma 2.3.1], we see from (3.1) that & (A;X) # {0}; and
moreover & (A4; X) # {0} for every iel.

In accordance with an electrostatic interpretation of a condenser, we
say that the interaction between the components ', i€, of e &5 (A;X) is
determined by the matrix (s;s;) Given p,ve & (A;X), we define the
mutual energy

i,jel*

K(p,v) == Z sisire (' v7) (3.5)

ijel
and the vector potential k* = (xk*'),_;, where
KM (x) = Zs[sjlc(x, uw), xeX. (3.6)
jel
LEMMA 3.1. For any p,ve & (A; X) we have
r(p,v) = k(Ru, Rv) € (— o0, o0). (3.7)
Proor. This is obtained directly from (3.4) and (3.5). O

For p=ve & (A; X) the mutual energy «(u,v) becomes the energy x(u, u)
of u. Due to the strict positive definiteness of the kernel x, (3.7) yields

K(p,p) = k(Rp, Ru) € [0,00)  for all pe &7 (A; X), (3.8)

where x(pu,u) =0 if and only if u=0.

An assertion %(x) involving a variable point xe€ X is said to hold
ce-nearly everywhere (c-n.e.) on Q C X if ¢(N)=0 where N consists of
all x e Q for which %(x) fails.

LEMMA 3.2. For any pe &5 (A; X) all the k™', i € I, are well defined and
finite c,-n.e. on X. Moreover,

kM) = sixc(-, Rp) ¢e-ne. on X. (3.9)

PrROOF. Since u'e & (X) for every iel, x(-,u') is finite ¢,-n.e. on X
[11, p. 164]. Furthermore, the set of all x € X with x(x,u’) = oo is universally
measurable, for x(-, ') is Ls.c. on X. Combined with the fact that the inner
capacity ¢, (-) is subadditive on universally measurable sets [11, Lemma 2.3.5],
this implies that «#' is well defined and finite ¢,-n.e. on X. Finally, (3.9) is
obtained directly from (3.4) and (3.6). O

In order to introduce a (semi)metric structure on &/ (A;X), we set

I vl any = |Ru— Ryl for all mve &7 (A X).  (3.10)
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Based on (3.7), we see by straightforward calculation that, in fact,

= VI ey = D syl = v, = V7). (3.11)
i,jel

Hence, & (A; X) forms a semimetric space with the semimetric ||u— Vligsaix
defined by either of the (equivalent) relations (3.10) or (3.11). Similarly to the
terminology for the pre-Hilbert space &,.(X), we therefore call the topology
of the semimetric space &' (A;X) strong. We say that m,ve & (A; X) are
equivalent in & (A; X) if [l# =] s+(a,x) =0, or equivalently if Ru= Rv, the
latter being clear from (3.10) in view of the strict positive definiteness of the
kernel.

LEMMA 3.3.  The relation of equivalence on & (A;X) amounts to that of
identity if and only if all the A;, i € I, are mutually essentially disjoint, i.e. with
ce(4inNA4;) =0 for all i # j.

PrOOF. Since a nonzero positive scalar measure of finite energy does
not charge any set of zero capacity [11, Lemma 2.3.1], the sufficiency part of
the lemma is obvious. To prove the necessity part, assume on the contrary
that there are two equally signed plates 4y and A, k # /, with ¢, (Ax N Ay)
>0. By [11, Lemma 2.3.1], there exists a nonzero positive scalar measure
te &7 (AxNAs). Choose u= (u');.; € £F(A) such that u*|, , —7>0, and
define g, = (1!,),c; € 65 (A), m= 1,2, where uf := % — v and u! := u' for all
i#k, while @f :=pu’ +7 and g :=u' for all i #¢. Then Ru; = Ru,, and
hence u; and u, are equivalent in & (A;X), but u; # p,. O

Summarizing what we have observed, we are led to the following con-
clusion.

TueoreM 3.1. &1 (A; X) is a semimetric space with the semimetric defined
by either of the (equivalent) relations (3.10) or (3.11), and this space is isometric
to its R-image in &c(X). The semimetric || —v|s+ . y) is actually a metric if
and only if all the A;, i€ l, are mutually essentially disjoint.

3.3. The vague topology on i (A; X). In Section 3.3 we consider a standard
condenser A (see Definition 3.2). The set of all (vector) measures associated
with A can be endowed with the vague topology defined as follows.

DEerINITION 3.3. The vague topology on M"(A; X), A = (4;);., being a
standard condenser in X, is the topology of the product space [],.; D" (4;; X)
where each of the M ™ (4;; X) is endowed with the vague topology induced from
M(X). Namely, a sequence {g }on C M (A; X) converges to g e M (A; X)
vaguely if for every iel, puf — ' vaguely in M(X) as k — .
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Since all the A4;, iel, are closed in X, MT(A;X) is vaguely closed in
M(X)”. Besides, since every M"(4;; X) is Hausdorff in the vague topology,
so is M (A; X) [2, Chapter I, Section 8, Proposition 7]. Hence, a vague limit
of any sequence in MM (A; X) belongs to M (A; X) and is unique (whenever it
exists). We call a set § C M (A; X) vaguely bounded if for every g € Co(X),

sup |u'(p)] < for all iel.
HET
LemMMA 3.4. A vaguely bounded set § C M (A;X) is vaguely relatively
compact.

Proor. It is clear from the above definition that for every ie [l the
set

§ = {1 e M (A5 X) = (1);e; €5}

is vaguely bounded in M*(X); and hence, by [3, Chapter III, Section 2,
Proposition 9], &' is vaguely relatively compact in M(X). Since & C [[,.; &,
the lemma follows from Tychonoff’s theorem on the product of compact spaces
[2, Chapter I, Section 9, Theorem 3]. O

3.4. An unconstrained weighted minimum energy problem for vector measures.
Let a (generalized) condenser A = (A4;);,., and a (strictly positive definite)
kernel x on X be given. Fix a vector-valued function f = (f;);.,, where each
fi: X — [~o0,00] is w-measurable for every ue &5 (4;X) and f; is treated
as an external field acting on the charges (measures) from & (A4;;X). The
f-weighted vector potential and the f-weighted energy of me &F(A;X) are
(formally) defined by

W ="+, (3.12)

K,

G t(p) == x(p, ) + 24K, ), (3.13)

respectively.” Thus W%, = (W), ,, where W/ :=1r!+ f; (see (3.6)).
Let &7:(A;X) consist of all ue & (A;X) such that each f, iel, is
u'-integrable. For every ue & (A;X), both Gy ¢(u) and <f,u) are finite.

LeMmA 3.5, Suppose that a set € C & (A;X) is convex. Then there
exists A e € with

Ge.t(2) = min Gyr(p) (3.14)
, mig Gy,

5 G,.1(+) is also known as the Gauss functional (see e.g. [21]; compare with [17]). Note that when
defining Gy ¢(-), we have used the notation (3.2).
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if and only if
S AWE W =020 for all peG. (3.15)
iel '
Proor. By direct calculation, for any u,ve € and any /€ (0, 1] we get
Grc,f(h:u + (1 - h)v) - Grc,f(v) = 2hz <VV1cv,’f[7,ui - vi> + hz”:u - szf,*(AX)
iel

If v = A satisfies (3.14), then the left (hence, also the right) side of this display
is = 0, which leads to (3.15) by letting # — 0. Conversely, if (3.15) holds,
then the preceding formula with v =4 and & = 1 gives G, f(u) = G, () for all
ne €, and (3.14) follows. O

Fix a numerical vector a = (a;),.; with 0 <a; < 00, i€, and write
M (A a; X) = {ueM (A X) : 1'(4;) =a; for all iel},
ES(A 2 X) = 65 (A X) NIMT(A, 2, X),
éa,(ff(A,a;X) = é”,:f(A; X)NMT (A a; X).

If the class &

M(A, a; X) is nonempty, or equivalently if

Get(A 2, X) = inf G t(p) < 0,
nesl (A2 X)

then the following unconstrained weighted minimum energy problem makes
sense.

PrOBLEM 3.1. Given X, k, A, a and f, does there exist A € é”,jf(A,a;X)
with G,{A’f(lA) = GKﬁf(A,a;X)?

IfI=1I"={1}, A is closed, a; = 1 and f; = 0, then Problem 3.1 reduces
to problem (2.1), solved in [11, Theorem 4.1] (see Remark 2.3 above).

REMARK 3.1. Let A be a standard condenser in X such that
sup  x(x,y) < 0. (3.16)
(x,y)edrxA~

Under these assumptions, in [25, 26] an approach has been worked out based
on both the vague and the strong topologies on &.(A;X) which made it
possible to provide a fairly complete analysis of Problem 3.1. In more detail,
it was shown that if the kernel x is perfect and if for all i € I either f; € ¥(X)
or f; =sx(-,{) for some (signed) { € &.(X), then the requirement

(ATUAT) < (3.17)
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is sufficient for Problem 3.1 to be solvable for every vector a [25, Theorem
8.1]. However, if (3.17) fails, then in general there exists a vector a’ such that
the problem has no solution (see [25]).° Therefore, it was interesting to give a
description of the set of all vectors a for which Problem 3.1 is nevertheless
solvable. Such a characterization has been established in [26] (cf. the footnote
to Remark 3.2 below). On the other hand, if assumption (3.16) is omitted,
then the approach developed in [25, 26] breaks down, and (3.17) does not
guarantee anymore the existence of a solution to Problem 3.1. This has been
illustrated by [14, Theorem 4.6], pertaining to the Newtonian kernel |x — y|2_”
on R" n>=3.

3.5. A constrained weighted minimum energy problem for vector measures. A
measure o' € M (A4;; X) is said to be a constraint for elements of M ™" (A4;, a;; X)
if 6/(4;) > a;. Let €(4;X) consist of all these o', and let

C(A; X) =[] €(4; X).
iel

Consider &= (¢'),.; such that for each iel either ¢' =o'e€(4;X) or
&' = oo, where the formal notation &' = co means that no upper constraint
on the elements of M™(4;,a;; X) is imposed, and define

ME(A; X) :={me M (A X): ' <& for all iel}.

(In the case where &' =o' e €(4;; X) the expression u' < &' means that the
measure &' — ' is positive, while we are making the obvious convention that
any positive scalar Radon measure is < o0.) Also write

ME(A,2; X) := M (A, a; X) NIME(A; X),
(A a; X) == 65 (A, a; X) N ME(A; X),
65 (A aX) =67 (A 2, X) NME(A; X).
If the class (Ef ((A,a; X) is nonempty, or equivalently if

Gie(Aa; X) =  inf Gt(p) < o0,
: HEES (A,a;X)
then the following constrained weighted minimum energy problem makes
sense.

°In the case of the o-Riesz kernels of order 1 < <2 on IR?, some of the (theoretical) results on
the solvability or unsolvability of Problem 3.1 established in [25] have been illustrated in [18, 20] by
means of numerical experiments.
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PrOBLEM 3.2. Given X, k, A, a, f and &, does there exist a vector measure
15 € 62 (Aa; X) with Gye(A5) = GE ((A,2;X)?

ReEMARK 3.2. Assume for a moment that (3.16) holds, the condenser A
is standard, the kernel x is perfect, and the external field f is as described in
Remark 3.1. It has been shown in [24, Theorem 6.2] that condition (3.17) then
guarantees the existence of a solution to Problem 3.2 for any & and any vector
a.” Recently it has been shown by the present authors [14, Theorem 6.1(i)]
that this assertion on the solvability of Problem 3.2 remains valid if instead of

(3.17) it is assumed that & = ¢ € €(A; X) is bounded, i.e. with Y, , 0'(A4;) < .

REeMARK 3.3. In our recent work [14], Problem 3.2 has also been analyzed
for an ordered finite collection of compact sets with the sign s; = +1 prescribed
such that oppositely charged sets intersect each other in a set of zero x-capacity,
K being any positive definite (not necessarily perfect) kernel. It has been shown
that if x is regular® and each of the potentials x(-,&") is (finitely) continuous on
the support S(¢7), then a solution to Problem 3.2 exists [14, Theorems 6.1(ii)].

Let Sfyf(A,a;X ) consist of all solutions to Problem 3.2 (if these exist).
LEMMA 3.6. Any two elements ide Sif(A,a;X) are R-equivalent.

Proor. This can be established by standard methods based on the con-
vexity of the class 55 ((A,a; X), the isometry between this class and its R-image
in &,(X), and the pre-Hilbert structure on the space &,(X). Indeed, in view of
the convexity of é”f_f(A, a; X), relations (3.8) and (3.13) imply

A+

4GS (A, 2 X) < 4Gy ( ) = | RA+ RAl|; + 448, 2+ 2).

On the other hand, applying the parallelogrvam identity in &,(X) to R4 and RJ
and then adding and subtracting 4<{f, 1+ 4> we get
|RA — RA||> = —||RA+ RA||> — 4<F, 4+ 2> + 2G 1(2) + 2G,1(A).
When combined with the preceding relation, this yields
0 < |[RA— RA||; < 4GS (A, 2, X) + 2Gye1(2) + 2Ges(4) = 0,

which establishes the lemma because of the strict positive definiteness of x.

O

7 Actually, this result and those described in Remark 3.1 have been obtained in [24]-[26] even for
infinite dimensional vector measures.

8 A kernel « is said to be regular if for any u e M (X) with compact S(u), the potential (-, u) is
continuous throughout X whenever its restriction to S(u) is continuous, see e.g. [21].
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COROLLARY 3.1. [If the class Sf +(A,a; X) is nonempty, then it reduces to
a single element whenever all the A;, i €1, are mutually essentially disjoint.

Proor. This is obtained directly from Lemmas 3.6 and 3.3. O

4. o-Riesz balayage and o-Green kernel

In all that follows fix n>3, a€(0,2] and a domain D C R" with
¢, (D) > 0, where D°:=R"\D, and assume that either x(x,y) = r,(x, y) :=
|x — y|*" is the a-Riesz kernel on X = R”", or x(x, y) = g}(x, y) is the o-Green
kernel on X = D. For the definition of g}, see [19, Chapter 1V, Section 5] or
see below.

For given xeR" and re (0,00) write B(x,r):={yeR":|y—x|<r},
S(x,r):=={yeR":|y—x|=r} and B(x,r) := B(x,r) U S(x,r).

We simply write o instead of x, if x, serves as an index, and we use
the short form ‘n.e.’ instead of ‘c,-n.e.” if this will not cause any misunder-
standing. When speaking of a positive scalar Radon measure € 9" (R"), we
always assume that for the given o, x,u is not identically infinite. This implies
that

du(y)
J|y>l |y‘n*‘1 = (41)

(see [19, Eq. 1.3.10]), and consequently that x,(-, ) is finite (¢,-)n.e. on R” [19,
Chapter III, Section 1]; these two implications can actually be reversed.

DEeriNITION 4.1. A (signed) measure v € M (D) is called extendible if there
exist v+ and v~ extending v* and v~ respectively, by 0 off D to R” (see (3.3)),
and if these v+ and v~ satisfy (4.1). We identify such v € 0i(D) with its exten-
sion := vt — v—, and we therefore write ¥ = v.

Every bounded measure v e M (D) is extendible. The converse holds if
D is bounded, but not in general (e.g. not if D¢ is compact). The set of all
extendible measures consists of all the restrictions u|, where u ranges over
M(R").

The o-Green kernel g =g} on D is defined by

gp(x, ») = Ku(X, &) — 1,(X, 6}1,)() for all x,ye D,

where ¢, denotes the unit Dirac measure at a point y and &° its o-Riesz
balayage onto the (closed) set D¢ determined uniquely in the frame of the
classical approach by [15, Theorem 3.6] pertaining to positive Radon measures
on R”. See also the book by Bliedtner and Hansen [1] where balayage is
studied in the setting of balayage spaces.
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We shall simply write x’ instead of uP° when speaking of the o-Riesz
balayage of 1 e M (D;R") onto D¢. According to [15, Corollaries 3.19, 3.20],
for any ue M (D;R") the balayage u' is c,-absolutely continuous and it is
determined uniquely by relation

Ky(, i) =1,(-, ) ne. on D€ (4.2)

among the cy-absolutely continuous measures supported by D¢. Furthermore,
there holds the integral representation’

W = [ dut» (4.3)

(see [15, Theorem 3.17]). If moreover u € &, (D;R"), then the balayage u' is
in fact the orthogonal projection of p onto the convex cone &, (D R") (see [13,
Theorem 4.12] or [15, Theorem 3.1]), i.e. ' € &, (D*;R") and

le—"0|,> lu—p'|l, forall 0e& (DR, 0 u'. (4.4)
If now ve (D) is an extendible (signed) measure, then
V=P =Y = ()

is said to be a balayage of v onto D¢ It follows from [19, Chapter III,
Section 1, n° 1, Remark] that the balayage v’ is determined uniquely by (4.2)
with v in place of u among the c,-absolutely continuous measures supported
by D°.

The following definition goes back to Brelot [4, Theorem VII.13].

DerINITION 4.2. A closed set F C IR” is said to be a-thin at infinity if
either F is compact, or the inverse of F relative to S(0,1) has x =0 as an
o-irregular boundary point (cf. [19, Theorem 5.10]).

THEOREM 4.1 (see [15, Theorem 3.22]). The set D¢ is not o-thin at infinity
if and only if for every bounded measure ue M (D) we have

W (R") = u(R"). (4.5)

As noted in Remark 2.1 above, the o-Riesz kernel x, on IR” and the
o-Green kernel g}, on D are both strictly positive definite and moreover perfect.
Furthermore, the «-Riesz kernel x, (with o€ (0,2]) satisfies the complete

°In the literature the integral representation (4.3) seems to have been more or less taken
for granted, though it has been pointed out in [3, Chapter V, Section 3, n° 1] that it requires that
the family (¢;),.p be p-adequate in the sense of [3, Chapter V, Section 3, Definition 1] (see also
counterexamples (without u-adequacy) in Exercises 1 and 2 at the end of that section). A proof of
this adequacy has therefore been given in [15, Lemma 3.16].
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maximum principle in the form stated in Section 2 (see [19, Theorems 1.27,
1.29]). Regarding a similar result for the o-Green kernel g, the following
assertion holds.

THEOREM 4.2 (see [15, Theorem 4.6]). Let pe &, (D), let ve M (D)
be extendible, and let w be a positive o-superharmonic function on R" [19,
Chapter 1, Section 5, n°® 20]. If moreover g(-,u) < g(-,v) +w(-) p-a.e. on D,
then the same inequality holds on all of D.

The following three lemmas establish relations between potentials and
energies relative to the kernels x, and g = g}.

LemMA 4.1. For any extendible measure pe (D) the a-Green potential
g(-, ) is finite (cy-)n.e. on D and given by

g p) = ey, — ) n.e. on D. (4.6)

Proor. It is seen from Definition 4.1 that (-, ) is (well defined and)
finite n.e. on R”, and hence so is x,(-,#’). Applying (4.3) to u*, we get by
[3, Chapter V, Section 3, Theorem 1]

g(- ) = J[Kot('vey) — 10 e )ldp(y) = ra (-, 1) — wu (-, 1)

n.e. on D, as was to be proved. O

REMARK 4.1. Lemma 4.1 is valid with ‘c,-n.e.” in place of ‘(c,-)n.e.” since,
by [9, Lemma 2.6], for any Q C D, ¢,(Q) =0 ¢,(Q) =0.

LemMmaA 4.2.  Suppose that € (D) is extendible and the extension belongs
to &(R™).  Then

ne gé/(D)> (47)
u—u' e &(R"), (4.8)
lally = e =15 = llully = 11e'l;- (4.9)

PrOOF. In view of the definition of a (signed) measure of finite energy
(see Section 2), we obtain (4.7) from the inequality!'®

gh(x,y) < Ky(x,p) for all x,ye D, (4.10)

while (4.8) from [15, Corollary 3.7] (or [15, Theorems 3.1 and 3.6]). According
to Lemma 4.1 and Remark 4.1, g(-, ) is finite ¢;-n.e. on D and given by (4.6),

10The strict inequality in (4.10) is caused by our convention c¢,(D¢) > 0.
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while by (4.7) the same holds |y|-a.e. on D (see [11, Lemma 2.3.1]). Integrat-
ing (4.6) with respect to u*, we therefore get by subtraction

0 > g(p, 1) = rex(p1— pt', ). (4.11)

Since x,(-,u— ') =0 n.e. on D¢ by (4.2), we see from the c,-absolute con-
tinuity of u’ that

ro(p—p' 1) =0, (4.12)

which results in the former equality in (4.9) when combined with (4.11).
Because of (4.8), relation (4.12) takes the form ||u/||2 = ry(u,4'), and the
former equality in (4.9) implies the latter. O

LEMMA 4.3. Assume that pe (D) has compact support Sp. Then
we 6y(D) if and only if its extension belongs to &,(R").'!

PrOOF. According to Lemma 4.2, it is enough to establish the ‘only if’
part of the lemma. We may clearly assume that u is positive. Since (-, u')
is continuous on D and hence bounded on the compact set S5, we have

ra(p, 1) < 0. (4.13)

But g(u, 1) is finite by assumption, and therefore likewise as in the preceding
proof relation (4.11) holds. Combining (4.11) with (4.13) yields u € &,(R").

O

5. Minimum co-Riesz energy problems for generalized condensers

5.1. An unconstrained weighted minimum o-Riesz energy problem. Consider a
generalized condenser A = (4;),.,; in R” with p := Card I > 2 such that I* :=
{l,...,p—1} and I~ := {p} (see Section 3.1). Also require that the negative
plate A, is closed in IR", while all the positive plates A;, jeI", are relatively
closed subsets of the (open) set D:= A5 =R"\4,."? For the sake of sim-
plicity, in all that follows assume that D is a domain.

Recall that, by convention (3.1), ¢4(A4;) >0 for all iel.

When speaking of an external field f = (f;),., acting on the vector
measures of the class &, (A;R"), we shall always tacitly assume that either
Case I or Case II holds, where:

1 1f the measure in question is positive, then Lemma 4.3 can be generalized to any bounded
1eM* (D) such that the Euclidean distance between S5 and 0D is > 0, see [16, Lemma 3.4].

2By [2, Chapter I, Section 3, Proposition 5], this is in agreement with our general requirement
that the sets A4;, i € I, be locally closed in IR" (see the beginning of Section 3.1).
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I. fie ¥(R") for every i€ I, and moreover
fr=0 n.e. on A,. (5.1)

1. f; =siy(-,C =) for every iel, where { is an extendible (signed)

measure on D with 1,({,{) < co.

Observe that (5.1) holds also in Case II (see (4.2)). Since a set with
¢y(-) = 0 carries no (nonzero) measure with finite a-Riesz energy [11, Lemma
2.3.1], we thus see that under the stated assumptions no external field acts
on the measures from &, (4,;R"). Furthermore, D¢ is v-negligible for any
ve M (4;R"), jel" (see Section 2). We are thus led to the following
conclusion.

LEMMA 5.1.  The f-weighted a-Riesz energy G, t(p) of me &, (A;R") can
(equivalently) be defined by the formula'®

Got() = Ko () + 248, 1) = 15 (u, ) + 2485, 1), (5.2)
where £ = (fj'-|D)j€1+ and pt = (:uj)jeI*‘

If Case II holds, then for every u € &, (A;R") we get from (3.4) and (3.8)

o) = [|Rull; + 2 " sircy (( = Lot = || Rutll; + 24(C = ', Ru),
iel
and hence
0> Gyur(w) = |[Ru+ =17 = 1=y = =L =7 > =0, (53)
Thus, in either Case I or Case II

Gut(p) = —-M > -0 for all pe & (A;R"),

which is clear from (3.8) and (5.2) if Case I holds, or from (5.3) otherwise.
Fix a numerical vector a = (a;),.; with ¢; >0, ieI. Using the notations
of Section 3.4 with X = R” and x = x,, we obtain from the preceding display

Goi(A R =  inf  Gyi() > —oo. (5.4)
uned (A a;R") '

If (fyff(A, a;R") is nonempty, or equivalently if G, ¢(A,a;R") < oo, then we can
consider Problem 3.1 on the existence of 45 € &,;(A,a;R") with

Gy 1(2a) = Gy 1(A, a; R").

The following theorem shows that, in general, this problem has no solution.

3Cf. (3.13) with X =R” and x = k,.
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THEOREM S.1. Let D€ be not a-thin at infinity, I'* = {1}, ¢;2(41) = o0, and
let a=1 and £ =0, where 1:= (1,1). Then

Gut(A, a5 R") = [cs (41)] ' = 0;
hence G, (A, a;R") cannot be an actual minimum because 0 ¢ (S‘fyff(A,a;IR").

Proor. Since G, ¢(u) = r,(u,u) because of f =0, Problem 3.1 reduces
to the problem of minimizing r,(u, u) over &, (A,a;R"). Thus by (3.8)

G.t(A,a;R") > 0. (5.5)

Consider compact sets K, C A;, £ €N, such that K, 7 4, as / — . By
(2.3)

cg(Kr) T ¢g(A1) = o0 as / — oo, (5.6)

and hence there is no loss of generality in assuming that ¢,(K,) > 0 for every
¢ € N. Furthermore, since the a-Green kernel ¢ is strictly positive definite
and moreover perfect (Remark 2.1), we see from (2.2) that ¢,(K,) < oo and,
by Remark 2.3, there exists a (unique) g-capacitary measure A, on K/, i.e.
As € @(Z;(K/, 1; D) with

2112 = 1/¢y(K/) < 0.

According to Lemma 4.3 with 1, in place of u, x,(As, /) is finite along with
g(As,47). Hence, by Lemma 4.2,

A

2 2
g =14 =215

Applying Theorem 4.1, we get u, := (1, 7)) e(o@aff(A,a; R"), which together
with the two preceding displays and (3.8) and (5.5) gives

1/eo(Kr) = N14r = 413 = alptyspty) > Gui(A, a5 R") > 0.
Letting here / — oo, we obtain the theorem from (5.6). O

Using the electrostatic interpretation, which is possible for the Coulomb
kernel |x — y|71 on R?, we say that under the hypotheses of Theorem 5.1 a
short-circuit occurs between the oppositely signed plates of the generalized
condenser A. It is therefore meaningful to ask what kinds of additional
requirements on the objects in question will prevent this blow-up effect, and
secure that a solution to the corresponding minimum «-Riesz energy problem
does exist. To this end we have succeeded in working out a substantive
theory by imposing a proper vector constraint on the vector measures under
consideration.
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5.2. A constrained weighted minimum o-Riesz energy problem. Let A, a and f
be as at the beginning of Section 5.1. In the rest of the paper we assume
additionally that A, (= D) is not o-thin at infinity and

a, = Z a;. (5.7)

jelt
Using notation of Section 3.5, fix &= (&), with
EeC(4; R NE (4R for all jel', and & = oo. (5.8)

Unless explicitly stated otherwise, for these A, a, f, and ¢ we shall always
require that

G: (A a;R") < 0. (5.9)

The main purpose of this paper is to analyze Problem 3.2 on the existence
of A5 € 65 (A, a;R") with Gy ¢(A5) = G5 ((A,a;R"). Recall that S ((A,a;R")
denotes the class of all solutions to this problem (provided these exist).
According to Lemma 3.6, any two solutions are R-equivalent; hence, by Cor-
ollary 3.1, fo(A,a;]R”) reduces to a single element whenever all the A4,
j e I't, are mutually essentially disjoint, i.e. with ¢,(4; N A;)=0foralli,jel",
i#].

Conditions on A, f and & which guarantee that (5.9) holds are given in the
following Lemma 5.2. Write

A7 = {xed;:|fi(x)| < o}, jelt. (5.10)

LemMmA 5.2. The (permanent) requirement (5.9) holds if either Case 11
takes place, or (in the presence of Case 1) if

(A7) >a;  for all jel®. (5.11)

ProOF. Assume first that (5.11) holds. Then there is for every jelIt a
compact set K; C A7 such that ENK;) > a; and |f;| < Mj < © on K; for some
constant M; (see (5.10)). Define u:= (u'),.;, where p/ := ai¢’ | /& (K;)) for
all jelI™ and u” is any measure from &, (4,,a,;R") (such u” exists since
¢(A4p) > 0). Noting that éj|Kf € & (K;;R") for all jel™ by (5.8), we get
,ueéaff(A, a;R"), which yields (5.9). To complete the proof, it is left to
observe that (5.11) holds automatically if Case II takes place, because then
Kky(-,{ —{') is finite n.e. on IR”, hence &ae. for all jelt by [11, Lemma
2.3.1]. O

The theory developed in the present study includes sufficient and/or nec-
essary conditions for the existence of solutions i; = (1,);.; to Problem 3.2
with A, a, f and & chosen above (see Theorems 7.1 and 7.2). We also provide
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descriptions of the f-weighted «-Riesz vector potentials of the solutions 25,
single out their characteristic properties, and analyze the supports of the ZL,
i el (see Theorems 7.3, 7.4 and 7.5). These results are illustrated in Examples
10.1 and 10.2. See also Section 7.2 for an extension of the theory to the case
where &” # oo.  The proofs of Theorems 7.1-7.5 are given in Sections 8 and 9;
they are substantially based on Theorem 6.1 which is a subject of the next
section.

REMARK 5.1. Under the (permanent) assumption (5.9), Gf ((A,a;R") is
actually finite, because Gx ¢(A,a;R") > —oo follows from (5.4) in view of the
inclusion (51 ((A,a;R") C @‘;f(A a;R").

6. Relations between constrained minimum o-Riesz and «-Green energy
problems

Throughout this section, A, a, f and & are as indicated at the beginning
of Section 5.2, except for (5.9) which is temporarily not required. The aim of
Theorem 6.1 below is to establish a relationship between, on the one hand, the
solvability (or the non-solvability) of Problem 3.2 for R", k,, A, a, f, ¢ and, on
the other hand, that for D, g = g%, A", a*, {7 and &, where

A= (Aj)jeﬁa al = (aj)jeﬁv = (.]HD)/'EI" &= (5‘/)/e1+~

(Note that A" is a standard condenser in X = D consisting of only positive
plates.) Observe that since for every given je It we have

M (4;;R") C MT(4;; D), (6.1)
the measure ¢/ can certainly be thought of as an element of C(4;; D).

For any pu= (u'),.; € M (A;R") write ¥ := (u/); ;.5 then u" belongs
to MY(AT;D) by (6.1). If moreover ,(m,u) < co, then u™ belongs to
& (A*;R"); and also to &(A™; D) which is clear from (4.7).

THEOREM 6.1. Under the just mentioned assumptions on A, a, f and &,

GEo(A,aR") = G5 (AT 2% D). (6.2)

If moreover these (equal) extremal values are finite, then the class Cé ((A,a;R")
is nonempty if and only if so is S (AJr at: D), and in the aﬁ?rmatlve case the
Sfollowing two assertlons are equwalem for any Ax = (24),c; € MT(A;R"):

(i) 4a€C; f(A a; IR")

(i) 45 = (4] )ier+ € C - (AT,a";D) and, in addition,

= ( > x;)l. (6.3)

jel+
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PrOOF. We begin by establishing the inequality
t
G: . (AT,a%;D) > G} ((A,a;R"). (6.4)
Assuming Gg (A",a%;D) < oo, choose p= (1), ;. € (o@;; (A*,a™; D). Ac-
cording to (3 8) and (3.13) with X = D and x =g, then
G, oo (1) = g(mm) + 28 1y = | Ryl + 248, ).
Being bounded, each of the u/, jel*, is extendible (see Section 4). Fur-
thermore, the extension in question has finite «-Riesz energy, for so does the
extension of the constraint &/ by (5.8). Applying (4.9) to Ry~ue &, (AT;R")
in place of u, we thus get
G+ () = [|Ry-st = (Rypt)' |17 + 2K, o).

Since 4, (= D¢) is not a-thin at infinity, we conclude from (4.5) and (5.7) that
(Ry+p)' € 6 (A4y,a,;R"), and therefore = ('), € 65(A,a;R") where

A"=p and i@’ = (Ryp) =<Zﬂ> (6.5)
jert
Here we have used the (permanent) assumption that £” = oo. Furthermore,
Ky =<1 < o,

the equality being valid because f” =0 n.e. on 4, (see Section 5.1), hence
fP-a.e. by [11, Lemma 2.3. 1] and also because D¢ is u/-negligible for every
jelIt. Thus actually ge & f(A a;R"); and moreover G, ¢(ft) = G, +(p), the
latter being clear from the three preceding displays. This yields

G, e+ (@) = Gop(lt) > Gif(A,a; R").

Letting here u range over 55 (A",a™; D) results in (6.4).
On the other hand, in Vlew of (4.7) and (5.2) for any ve &° "¢(A,a;R")
we have vt eéf_ﬁ(A*,aJr,D). Thus, by (3.8), (4.4), (4.9) and (5.2),

Got(v) = 15, (v,v) + 207, vy = ||Ravt — v”||§ + 24T vy
> [Ravt — (Rav?)'||; +2<E7 0" = | Rav™ |7 +2<E7 0"
=g V) 2T = G (V) 2GS (A% D). (6.6)

Letting here v vary over é"ff(A, a;IR") and then combining the inequality thus
obtained with (6.4), we arrive at (6.2).

Now suppose that there exists p= (/) ;+ e@ij}(A*,a*;D). Define
A= ("), asin (6.5). Then the same arguments as those applied in the first
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paragraph of this proof enable us to see that ge (p@ff(A,a;]R”) and also that
Gyi(#t) = G, ¢+ (1). The latter yields

_ st
Gyi(f) = G (A", 2" D).

Substituting (6.2) into the last display shows that, actually, sie Gf‘f(A,a; R"),
which in view of the latter relation in (6.5) proves that, indeed, (ii) implies
(i).

As for the converse implication, let there be v = (v/),_; € ef‘f(A,a;]R”).
Then v' e é‘f; (AT,a";D) (see the second paragraph of the proof) and (6.6)
holds. Since for this v the first term in (6.6) equals Gf +(A,a;R"), we see from
(6.2) that equality prevails in either of the two inequalities in (6.6). Thus,
vt e 65} (A*,a*"; D) and also v’ = (Rv*")’, the latter being clear from (4.4).

O

7. Main results

Throughout Section 7 we keep all the assumptions on A, a, f and &
imposed at the beginning of Section 5.2, except for (5.9).'*

7.1. Formulations of the main results.

THEOREM 7.1.  Suppose moreover that (5.9) is fulfilled and also

&(A4)) <o forall jel®. (7.1)

Then the class CSf’f(A,a;]R”) of all solutions to Problem 3.2 is nonempty, and

for any one of its elements 15 = (A4),.; we have i} = (Xjer+ 20"

Theorem 7.1 is sharp in the sense that it no longer holds if (7.1) is omitted
from its hypotheses (see the following Theorem 7.2).

THEOREM 7.2. Condition (7.1) is in general also necessary for the solv-
ability of Problem 3.2. More precisely, suppose that IT = {1}, ¢,(4)) = o0
and that Case 11 holds with { > 0. Then there is a constraint &' € €(A;;R™) N
&5 (A R with E'(A)) = oo such that the corresponding Problem 3.2 is
unsolvable.

The following three assertions provide descriptions of the f-weighted
a-Riesz potentials ng‘}, cf. (3.12), of the solutions 45 = (1}),.; € Gf,f(A, a;R")

(whenever these exist), single out their characteristic properties, and analyze the
supports of the 4}, iel.

14 Under the hypotheses of any of Theorems 7.2-7.5, (5.9) holds in consequence of Lemma 5.2.
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THEOREM 7.3.  Let (5.11) hold, and let each f;, jelI*, be lower bounded
on Aj. Fix 25 € éaff(A@;]R”) (which exists). Then the following two asser-
tions are equivalenl:y

(i) 4a€ S (A a;R").

(i) There exists a vector (¢;);c;+ € R”~! such that for all jelI*

Wil zq (& - i)ae, (7.2)
Wof’}’j < ¢ i‘g-a.e., (7.3)

and in addition we have
Wyf’}’p =0  ne on A, (7.4)

If moreover Case 11 takes place, then relation (7.4) actually holds for

every W;}’, iel, and it takes now the form

W' =0 on A\L,4, i€l (7.5)

o,

where I, 4, denotes the set of all a-irregular (boundary) points of
Ap.

REMARK 7.1. The lower boundedness of f;, jeI*, required in Theorem
7.3, holds automatically provided that Case I takes place. Furthermore, in
Case I relation (7.3) is equivalent to the following apparently stronger assertion:

2a,j ;‘/(
Wh'<q on S

Let Q denote the i,-reduced kernel of Q C R" [19, p. 164], which is the
set of all x € Q such that ¢,(B(x,r)N Q) >0 for any r > 0.

For the sake of simplicity of formulation, in the following Theorem 7.4
we assume that in the case o =2 the domain D is simply connected.

THEOREM 7.4. If a solution 25 = (A8)ies € SfJ(A, a;R") exists, then

iel
S,ff;:{Ap if %<2, (7.6)
oD if a=2.

Suppose now that I™ = {1}, a=1, f=0, and let there exist a solution
/Iﬁ = (A3, A3) € Gf_f(A,l;]R”). (According to Corollary 3.1, under the stated
assumption /™ = {1} the solution lﬁ is unique.) Then, equivalently, 1:=
RAli = A}\ — /li is a (unique) solution to the minimum o-Riesz energy problem

inf 16 (1, 1), (7.7)

where u ranges over all (signed scalar Radon) measures with u* e (o“ffl(Al, I;
R") and u~ € &, (42, 1;R"). Since f =0, we also see from (3.9) and (3.12)
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that
, 25,0 28 n .
Kol A) = sirce® (1) =W, 5 () ne. on R i=1,2. (7.8)
THEOREM 7.5. With these assumptions and notations, we have
v .e. D
K1 2) = {QD(’ ) me.on D, (7.9)
0 on DI, pe.

Furthermore, assertion (ii) of Theorem 7.3 holds, where (7.2) and (71.3) take now
the form

Ku(-,2) =c1 (&' =2 )-ae., (7.10)
ki (-, A) < on R" (7.11)
with 0 < ¢ < o0. In addition, (7.10) and (7.11) together with rk,(-,A) =0 n.e.
on D¢ (c¢f (1.9)) determine uniquely the solution to the problem (1.7) among the
admissible measures . If moreover ry(-, ¢ 1) is (finitely) continuous on D, then
also
Ky(-, ) = ¢ on Sgiﬁ, (7.12)
cgs (S ) < 0. (7.13)
Omitting now the requirement of the continuity of K“(-fl), assume further that
o <2 and my(D) > 0. Then

Sit =58, (7.14)

Ka(,4) <e1 on D\S§ (= D\S}). (7.15)

7.2. An extension of the theory. Parallel with Problem 3.2 for a constraint
& given by (5.8) and acting only on measures carried by the positive plates A4;,

Jj eIt of the generalized condenser A = (4;),_,, consider also Problem 3.2 for
o= (d"),.; € M"(A;R") (in place of &) defined as follows:

ol = ¢/ for all jel, o’ = <20j> [: <Zf/>] (7.16)
jel+ Jelt

Since in consequence of (4.5), (5.7) and (7.16) we have ¢”(A4,) > a,, the mea-
sure ¢ thus defined can be thought of as an element of €(A;R"). In contrast
to &, the constraint & is acting on all the components of pe &, (A,a;R").  Also
note that ¢”(4,) and x,(¢”,¢”) may both be infinite.

THEOREM 7.6. The following identity holds:
7e(Aa;R") = G (A, a;R"). (7.17)
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If moreover these (equal) extremal values are finite, then Problem 3.2 for A, a, f
and & is solvable if and only if so is that for A, a, f and o, and in the affirmative
case

S (A2 R") = S ((A,a;R"). (7.18)
Proor. Indeed, G7:(A,a;R") > Gf +(A,a;R") follows from the relation
7oA aRY) C 65 (A, a;R"). (7.19)

To establish the converse inequality, assume that Ga ¢(A,a;R") < oo and fix
ve @ ((A,a;R"). Define v= (v'),.; € M*(A;IR") by the equalities

vT=v"  and 7’ = (Rav")" (7.20)

Clearly v € &, (A;R"), and moreover v € &, (A, a; R") which follows from (4.5),
(5.7) and (7.20) since A4, is not a-thin at infinity. By the linearity of balayage
and (7.16) we actually have ve &7(A,a;R"), and finally v e &7;(A,a;IR") by
(5.2). In consequence of (4.4), (5.2) and (7.20) we therefore obtain

Got(v) = 1, (v,v) + 2{E" vy = ||Ryvt — vai + 24T vty
> |[Rav' — (Rav")'||; + 287, v = Gt (¥) > G (A, a;R"),

which establishes (7.17) in view of the arbitrary choice of v e (p@ff(A,a;]R").
Assuming now that (5.9) holds, we next prove (7.18). It is clear from
(7.17) and (7.19) that G;’f(A a;R") C Cff(A a;R"). As for the converse
inclusion, fix 4 = (1'),_; € 6“ ((A,a;R"). Then * = (Ra4™)’ by (6.3), and in
the same manner as in the preceding paragraph we get e &7(A,a;R").
Hence, A€ S (A, a;R"), for G, ¢(4) = G“ (A a;R") = G7 (A,a;R") by (7.17).
(]

Thus, the theory of weighted minimum o-Riesz energy problems with a
constraint & given by (5.8) and acting only on measures carried by the A;, jeI™,
developed in Section 1.1, remains valid in its full generality for the constraint o,
defined by (7.16) and acting on all the components of pe &, (A, a;R").

8. Proofs of Theorems 7.1 and 7.2
Observe that, if Case II takes place, then
(e é&y(D), (8.1)
fi=ra(-,0=C)=g(-,0) ¢gne. on D for all jel*. (8.2)

Indeed, (8.1) is obvious by (4.7), and (8.2) holds by Lemma 4.1 and Remark
4.1. By (8.1) and (8.2), in Case II for every veé”;(A*;D) we get
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Gy (v) = [Ry-vllg +2 > g(C V)

jel+

2 2 2
= [Ra+vlly +29(0 Ry+v) = [[Ry+v + Ll — IIC1[- (8.3)

8.1. Proof of Theorem 7.1. By Theorem 6.1, Theorem 7.1 will be proved
once we have established the following assertion.

THEOREM 8.1. Under the assumptions of Theorem 7.1, Problem 3.2 for D,
st
g, AT, at, f7 and &' is solvable, i.e. there is pe éa;ﬁ(A*,a*;D) with

(ihf+(!0 = (iif+([\4ivaﬁ_;l))

Proor. Note that Problem 3.2 for D, g, A", a*, fT and &" makes sense
since by assumption (5.9) and identity (6.2) we have

G: L (AT,a%D) < oo, (8.4)

Actually, G{f; (A", a*; D) is finite, which is clear from (6.2) (cf. Remark 5.1).
In view of (8.4), there is a sequence {s;},.n C ﬁ;; (A*,a™; D) such that

lim G, ¢ (m) = G, (A" 2" D). (8.5)

Since the o-Green kernel ¢ satisfies the energy principle [15, Theorem 4.9],
é4(D) forms a pre-Hilbert space with the inner product g(v,v;) and the energy
norm |||, = /g(v,v). Furthermore, @@;} (A" a*; D) is convex and R, is an
isometric mapping between the semimetric space @@g*(A*; D) and its R,+-image
into &;(D) (see Theorem 3.1). We are therefore able to apply to the set
{m; : k e N} arguments similar to those in the proof of Lemma 3.6, and we
get

2 +
0 < [[Ry+py — RA*ﬂ/Hg < —4ij- (A+7 a*;D) + 2Gg,f+ () + ZGg.ﬁ(ﬂ/)'

Letting here k,/ — oo and combining the relation thus obtained with (8.5),
we see in view of the finiteness of G{if* (A" a*; D) that {Ry+m };.n forms
a strong Cauchy sequence in the metric space é”;(D). In particular, this
implies

sup [| Ry el < o0 (8.6)

keN
Since the sets 4;, j e I'", are (relatively) closed in D, the cones ilﬁél(Aj; D),
jeIt, are vaguely closed in M(D), and therefore “JJEF(AJ“;D) is vaguely
closed in M(D)?"' (cf. Definition 3.3). Furthermore, MS (A*,at;D) is
vaguely bounded, hence vaguely relatively compact by Lemma 3.4. Thus,
there is a vague cluster point u# of the sequence {u;}, . chosen above, which
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belongs to M (A"; D). Passing to a subsequence and changing notations, we
assume that

M — p vaguely as k — 0. (8.7)

We assert that the u is a solution to Problem 3.2 for D, g, AT, a*, f* and &%.
Fix jelI*. Applying Lemma 2.1 to 1p e ¥ (D), we obtain from (8.7)

#/(D) < lim (D) = a;.
— 00

We proceed by showing that equality prevails in the inequality here, and hence
pe M (AT a*; D). (8.8)

Consider an exhaustion of 4; by an increasing sequence {K,},_  of com-
pact subsets of D. Since 1k, is upper semicontinuous on D (and of course
bounded), we get from Lemma 2.1 (with ¢y = —1g))

a; = 1/ (D) = lim @/ (K;) > /lim lim sup ,u;é(K/)

(=0 —P k-

=qa; —
/ /— 0

lim lim inf 1l (ANK,).
Thus, (8.8) will follow if we show that
lim liminf uf(4;\K,) = 0. (8.9)

(=0  k—
By (7.1),

o0 >¢&/(D) = Jim & (Ky)

and therefore

lim &/(4,\K;) = 0.
{— 0
Combined with u(4,\K/,) < &/(4,\K,) for all k,/ € N, this implies (8.9), and
consequently (8.8).

Furthermore, since R :py — R,-u vaguely in 9T (D), it is seen from
[3, Chapter III, Section 5, Exercise 5] that Ry+m, ® Ry+p — Ro+ @ Ryrpt
vaguely in 91 (D x D). Applying Lemma 2.1 to X =D x D and = g, we
get

.. 2
9(Ry g Ry o) < liminf]| Ry |2 < o0,

the latter inequality being valid by (8.6). Hence, pe & (A";D) (cf. (3.8)).
Combined with (8.8), this yields ge &° (A*,a*;D). Note that G, ¢ (u) >
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—oo, which is clear from (8.3) if Case II takes place, and otherwise (in the
presence of Case I) it is obvious by f; >0, jelI*. The claimed assertion
HE @5‘ o+ (A*,a*; D) will therefore be established once we have shown that

G, (1) < lim G, ¢ (ay). (8.10)
k— o0

Since the kernel g is perfect [15, Theorem 4.11], the sequence {Ry+pm; }y o
being strong Cauchy in é”g+ (D) and vaguely convergent to R,+p, converges to

o 9 .
the same limit strongly in &,"(D), ie.

klim [Ra+s — Ry+pull, =0,

— 00

which in view of (3.8) and (3.10) is equivalent to the relation
klirr} |ty — g+ a+;p) =0 (8.11)
— o0 (]

Also note that the mapping v — G, ¢+(v) is vaguely Ls.c., resp. strongly
continuous, on (fgfﬁ(A*;D) if Case I, resp. Case II, takes place. In fact, since
g(v,v) is vaguely Ls.c. on & (A™; D), the former assertion follows from Lemma
2.1. As for the latter assertion, it is obvious by (8.3). In view of this obser-
vation, (8.7) and (8.11) result in (8.10). O

COROLLARY 8.1.  Suppose that the assumptions of Theorem 7.1 are fulfilled.
Then the (nonempty) class Sfﬁ (A", a™; D) of all solutions to Problem 3.2 for
D, g, A*, at, 7 and & is vaguely compact in MM(D)"".

PrROOF. Any m; € 65} (A" a"; D), keN, form a strong Cauchy se-
quence in é‘j (A";D) according to Lemma 3.6. Furthermore, the set
{m, : k € N} is vaguely closed and relatively compact in M(D)” " (see Section
3.3 with X = D). Therefore in the same manner as in the proof of Theorem
8.1 we see that any vague cluster point of {, }, . belongs to C:'ajﬁ(A*, a®t; D).

O

8.2. Proof of Theorem 7.2. Assume that the requirements of the theorem
are fulfilled. Since Case II with { > 0 takes place, we get from (8.1) and
(8.2)

Gy () = V2 +29(C,v) €[0,00)  for all ve &, (41;D). (8.12)

Consider numbers r, >0, /€ N, such that r, T o0 as / — oo, and write
B, :=B(0,r;), A1, := A NB,. Since c¢,(4;) = co by assumption and since
¢y(B;,) < oo for every /€N, we infer from the subadditivity of ¢,(-) on
universally measurable sets [11, Lemma 2.3.5] that ¢,(A4,\B,) = 0. Hence
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for every / € N there is &, € 8, (A1\B,,,a1; R") of compact support Sg’ such
that

el <272 (8.13)

Clearly, the r, can be chosen successively so that A4; ,, U Sﬁ/ C Ai,y,,,. Any
compact set K C R" is contained in a ball B,, with /; large enough, and hence
K has points in common with only finitely many Sq’ Therefore, ¢! defined
by

=Y &lp)  for any pe Co(R")
/eN

is a positive Radon measure on R” carried by 4. Furthermore, ¢ 1(Al) =
and ¢' € £ (R"). To prove the latter, note that 7, := & 4 --- + & € & (R"),
which is clear from (8.13) and the triangle inequality in &,(R"). Also ob-
serve that 77, — & I vaguely because for any ¢ e Co(R") there is ko such that
ENp) =n(p) for all k =ko. As |, <L:=3,.n¢2< o for all keN,
Lemma 2.1 with X = R” x R" and =, yields ||&'], <L

Each &, belongs to & (41,a1; D) and moreover, by (4.10) and (8.13),

I1Elly < e, <772 (8.14)

As Case II with (>0 takes place, é/e(fgimD(Al,al;D) for all /eN by
(8.12). Therefore, by the Cauchy—Schwarz (Bunyakovski) inequality in &,(D),

0< Gl (Arais D) < lim[1€)12 +29(¢, &) < 20¢ll, Jim [1€/1l, =0,

where the first and the second inequalities hold by (8. 12) and the third
inequality and the equality are valid by (8.14). Hence, G] i (Ay,a1;D) = 0.
As seen from (8.12), such inﬁlmum can be attained only at zero measure, which
is impossible because 0 ¢ (o‘f ﬁID(Al,al;D). Application of Theorem 6.1 com-
pletes the proof.

9. Proofs of Theorems 7.3, 7.4 and 7.5

Throughout this section we maintain all the requirements on A, a, f, and &
imposed at the beginning of Section 5.2, except for (5.9) which follows auto-
matically from the hypotheses of the assertions under proving in view of
Lemma 5.2.

9.1. Proof of Theorem 7.3. Fix i, € é”:f(A,a; R"). Then each /11’;, iel, has
finite a-Riesz energy, and hence it is ¢,-absolutely continuous. Note that, since
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f» =0 ne. on 4,, (7.4) can alternatively be rewritten as x*” =0 n.e. on A,
which by (3.9) (with X =R" and x = k,) is equivalent to the relation

Ky(,Rady —2)=0  ne. on A,

In view of the characteristic property (4.2) of the swept measures, this shows

that for the given Aa, (7.4) and (6.3) are equivalent. On account of Theorem

6.1, we thus see that when proving the equivalence of assertions (i) and (ii) of

Theorem 1.3, there is no loss of generality in assuming Ax to satisfy (6.3).
Substituting (6.3) into (3.9), we therefore get for every i el

kM) = sic, (-, Rady — (Ra4{)')  ne. on R” (9.1)

o

In particular, for every jeI™ we have
KI() =g(- Ry Af) =g*/()  ne on D 9:2)
and hence, by (3.12),

W i
ot = Wqf+ n.e. on D.

(Note that (9.2) has been obtained from (9.1) with the aid of (4.6), applied to
R,+A3 in place of p, and (3.9), the latter with X = D and x =g.)

If Case II holds, then for every iel we also get from (9.1) and
(3.12)

Waf‘}’i(~) = sty (-, (Rady +0) — (Radf +0)) n.e. on R”.

By [15, Corollary 3.14], the function on the right (hence, also that on the left)
in this relation takes the value 0 at every o-regular point of A,, which gives
(7.5).

By Theorem 6.1, what has been shown just above yields that Theorem 7.3
will be proved once the following theorem has been established.

THEOREM 9.1. Under the hypotheses of Theorem 1.3 the following two
assertions are eqtfivalent for any e (Sag‘%fA (AT a*; D):

(i') 2eS: . (AT,a*;D).

(ii") There is a vector (¢f)jer+ e R”"! such that for every jelI*

Wiz (& Pae, 3
Wg’l‘ff+ <¢ M-ae. (9.4)

ProOOF. Suppose first that (i) holds. To verify (ii’), fix jelI*. For
every = (t'),cp- € @‘fﬁ(Aﬂa*;D) write p; == (1), .+, Where uf :=p’ for

all /# j and u/ =0; then u; € é"gfﬁ(A*;D). Also define f/ = filp +g%7; by
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substituting (3.6) with x =g we then obtain

f=ho+ D (4" (9.5)

Celt I #]
Since g(-,A") >0 on D for all / € I according to [15, Lemma 4.1] and since
J;i is lower bounded on 4; by assumption, the function
Wllj" = g('a;"j) +f~7 ] € I+a (96)
9.f; J

is likewise lower bounded on A4;. Furthermore, both f- and W} - are finite
n.e. on the set A7, which is clear from (5.10) and Lemma 3.2. ’

Applying (3.7) and (3.13), we get for any ﬂe(g‘;ﬁ(A ,aT; D) with the
additional property that g; = 4; (in particular for u = 1)

Combined with G, ¢ (u) > G, +(4), this ylelds G, ( N> G, (/l’) Hence,
2 is the (unlque) solution to the problem of mlmmlzmg G, 7 (v ) where v ranges
over (@ (A a;; D). This enables us to show that there is ¢; € R such that

W;} >¢ (¢ —)ae, (9.7)
2 ; J_
qu, M-a.e. (9.8)

In doing this we shall use permanently the fact that both ¢/ and 4/ have finite
a-Riesz energy, and hence they are c,-absolutely continuous.
Indeed, (9.7) holds with

¢j:=L;:=sup{teR: W*{ >t (& —2)ae).

In turn, (9.7) with ¢; = L; implies that L; < oo because W, of < oo holds n.e. on
A7 and hence (&7 — )/)-ae. on Ay, while (& —)’)( )> 0 by (5.11). Also
L > —oo, for W‘~ is lower bounded on A; (see above)

We next estabhsh (9.8) with ¢; = L;. To this end, write for any we R

A (w):={xe4;: Wg’}f;(x) > wh, A7 (w) ={xed;: W’}(x) < w}.

On the contrary, let (9.8) with ¢; = L; fail, ie. 4/ (4;°(L;)) > 0. Since W’
is J/-measurable and L; is finite, one can choose w;e (L;, ) so that
)’(Ajr(w_,)) > 0. At the same time, as w; > L;, it follows from the defini-
tion of L; that (& —/)(4 ~(w;)) > 0. Therefore, there exist compact sets
Ky C A; (w;) and K> C 4; (w;) such that

0 < /(Ky) < (& — M) (K). (9.9)
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Write 7/ := (¢/ — 27)|g; then g(t/,1/) < K,(1/,7/) < 0, where the former
inequality holds by (4.10). As <Wj~},r«’ > < w;t/(K>) < o, we therefore
S . 9 , . ,
get {f;,v/) < oo. Define 0/ := 21" — | +bjt/, where b;:= A/ (K1)/7/(Ka) €
(0,1) by (9.9). Straightforward verification then shows that 6/(A4;) = a; and
0/ <&, and hence 6/ e 5qg}(Aj,aj;D). On the other hand,

9.J;

WP 0 =3y = W — w0 =
= =W —wp e + bW —wy ) <0,

which is impossible by (the scalar version of) Lemma 3.5 with the (convex)
set € = ‘50;}(14./’”./50)- This contradiction establishes (9.8).

Subsfitﬁting (9.5) into (9.6) and then comparing the result obtained with
(3.6) and (3.12), we see that

ij — ng"f’}. (9.10)

Combined with (9.7) and (9.8), this establishes (9.3) and (9.4), thus completing
the proof that (i) implies (ii’).

Conversely, let (ii’) hold. On account of (9.10), for every je I" relations
(9.7) and (9.8) are then fulfilled with f/ defined by (9.5). This yields

)/(A;L(cj)) =0 and (& — /Ij)(Aj_ (¢;) =0.

For any ve ‘gf; (A",a*; D) we therefore get

hjoj j J i qJ
W) =275 = KW = v =00

j . j . .
=W =V Laio) < = e (= Dl > 0.

Summing up these inequalities over all je I, we conclude from Lemma 3.5
with the (convex) set € = (5”ff+ (A",a*; D) that A satisfies (i’). O

9.2. Proof of Theorem 7.4. For any x € D consider the inverse K of Clg 4,
relative to S(x, 1), IR” being the one-point compactification of R”. Since K, is
compact, there exists the (unique) r,-equilibrium measure y, € &, (K,;R") on
K., possessing the properties [|7.]|2 = y.(Ky) = cx(Ky),

Ka(y ) =1 n.e. on K, (9.11)

and x,(-,y,) <1 on R”. Note that y, # 0, for ¢,(K,) > 0 in consequence of
c4(A4p) > 0 (see [19, Chapter IV, Section 5, n° 19]). We assert that, under the
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stated requirements,

Sh, = {K if <2, (9.12)
a]R"Kx if o=2.

The latter equality in (9.12) follows from [19, Chapter II, Section 3, n° 13].
To establish the former equality,'® we first note that Si, C K, by the
cy-absolute continuity of p.. As for the converse inclusion, assume on
the contrary that there is xp e K, such that x ¢Sﬁ;“”. Choose r > 0 with
the property B(xo,r) NSk = &. But c,(B(xo,7) NK,) >0, hence by (9.11)
there exists y € B(xo,r) such that x,(y,y,) =1. The function x,(-,y,) is
o-harmonic on B(xg,r) [19, Chapter I, Section 5, n° 20], continuous on
B(xo,r), and takes at ye B(xp,r) its maximum value 1. Applying [19,
Theorem 1.28] we obtain x,(-,7,) =1 my-a.e. on R", hence everywhere on
K¢ by the continuity of x,(-,7,) on (Ski)¢ D K¢, and altogether n.e. on R”
by (9.11). This means that y,_ serves as the «-Riesz equilibrium measure on
the whole of IR”, which is impossible.

Based on (6.3) and the integral representation (4.3), we then arrive at the
claimed relation (7.6) in view of the fact that, for every x € D, ¢! is the Kelvin
transform of the equilibrium measure y, [15, Section 3.3].

9.3. Proof of Theorem 7.5. Combining (7.5) (with { =0) and (7.8) yields
the first line in (7.9), while the second line is given by (9.2). Substituting the
first relation from (7.9) into (7.3) shows that under the stated assumptions the
number ¢; from Theorem 7.3 is > 0, while (7.2) now takes the (equivalent)
form

Ko(, )= >0 (M= A)ae. (9.13)
Having rewritten (7.3) as
Ko A7) Sacu(-,47) + ¢ itae.,

we infer from [19, Theorems 1.27, 1.29, 1.30] that the same inequality holds
on all of R", which amounts to (7.11). In turn, (7.11) yields (7.10) when
combined with (9.13). Tt follows directly from Theorem 7.3 that (7.10) and
(7.11) together with the relation #,(-,A) = 0 n.e. on D¢ determine uniquely the
solution 4 to problem (7.7) among the admissible measures.

Assume now that x,(-,&') is continuous on D. Then so is (-, A").
Indeed, since ,(-,A") is Ls.c. and since (-, A7) = i, (-, V) — o+, & = 4T
with (-, &') continuous and o, (-,E' — A7) Ls.c., it follows that r,(-,A") is

15We have brought here this proof, since we did not find a reference for this possibly known
assertion.
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also upper semicontinuous, hence continuous. Therefore, by the continuity of
x,(-, A7) on D, (7.10) implies (7.12). Thus, by (7.9) and (7.12),

g(-, A7) = ¢ on Sf)l”ﬁ7

which implies (7.13) in view of [11, Lemma 3.2.2] (with X = D and x = g).
Omitting now the requirement of continuity of (-, & l), assume further

that o < 2 and m,(D¢) > 0. If on the contrary (7.14) is not fulfilled, then there

1S xo € Sf)l such that x, ¢ Sf;, and therefore one can choose r > 0 so that

B(xo,r) C D and  B(xo,r)NS) = (9.14)
Then (&' — 27)(B(xo,7)) > 0, and hence there exists y € B(xo,r) with the prop-
erty x,(y,4) = ¢ (cf. (7.10)), or equivalently

Ky (1, 4) = 10(3, A7) + c1. (9.15)

Since (-, A") is a-harmonic on B(xy,r) and continuous on B(xg,r) and since
Ky(-, A7) 4 ¢ is o-superharmonic on RR”, we conclude from (7.11) and (9.15)
with the aid of [19, Theorem 1.28] that

K (-, A) =k, (-, A7)+ a1 my-a.e. on R”. (9.16)

This implies ¢; =0, because by (4.2) and (6.3), x,(-,A") =w,(-,(A")") =
Ky(-,A7) holds n.e. on D¢, and hence m,-a.e. on D€, which is a contradiction.

Similar arguments enable us to establish (7.15). Indeed, if (7.15) were
not fulfilled at some x; € D\S}", then (9.15) would hold with x; in place of y
(cf. (7.11)) and, furthermore, one could choose r >0 so that (9.14) would
be valid with x; in place of xy. Therefore, since Ka((-,ﬂ+) 1S o«-harmonic on
B(xy,r) and continuous on B(xi,r) and since #,(-,4~) + ¢| is a-superharmonic
on R" we would arrive again at (9.16) and hence at ¢; =0, which is
impossible.

10. Examples

The purpose of the examples below is to illustrate the assertions from
Section 7.1. Note that in either Example 10.1 or Example 10.2 the set
A, = D¢ is not a-thin at infinity.

ExaMpLE 10.1. Let n >3, « <2, D= B, := B(0,r), where r € (0, c0), and
let I"={1}, A, =D,a=1, f=0. Define éli= gl,, where g € (1, o0) and 4,
is the x,-capacitary measure on B, := B(0,r) (Remark 2.3). As follows from
[19, Chapter II, Section 3, n° 13], &' e & (4;,¢;R"), Sf-)l =D and x,(-,&") is
continuous on IR”. Since f=0, Problem 3.2 reduces to problem (7.7) of
minimizing r,(u, 1) over all u e &,(R") such that u* e (5‘751(141, I;R") and u~ €
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& (A42,1;R"), which by Theorem 6.1 is equivalent to the problem of mini-
mizing g} (v,v) over rg@q"g (41,1; D). According to Theorems 7.1, 6.1 and Cor-
ollary 3.1, these two constrained minimum energy problems are uniquely
solvable (no short-circuit occurs between D and D¢), and their solutions,
denoted respectively by 4,4 =47 — A~ and /g,4,, are related to each other as
follows:

. /
Ao, A = )“EI,AI - j'g.Al'

Furthermore, by (7.6), (7.13) and (7.14),

It Qe @&l Y Y4
S =Sk =85 =D, Sk, =D,

cu (S5 H) < oo, (10.1)
while by (7.9), (7.11) and (7.12),
e
Kyl dga) =4 €1 O Sp 7, 10.2
C4e) {O on D¢, 102)
Ko(+y Ana) < €1 on D\Sf,lfﬁ7 (10.3)

where ¢; > 0. (In (10.2) we have used the fact that for the given o and D,
I, pc = J.) Moreover, according to Theorem 7.3, relations (10.2) and (10.3)
determine uniquely the solution 4, » among the admissible measures.

ExampLE 10.2. Let n=3, a=2, f=0, a=1. Define D:={x=
(x1, X2, x3) eR?:x; > 0} and A4y := ), _n Kk, where

K = {(xl,xz,X3)eD:x1:k_l,xg—i—x%ékz}, k e N.

Let A be the kp-capacitary measure on K; (Remark 2.3); hence A;(Kj) =1
and |3 = 7?/(2k) by [19, Chapter II, Section 3, n° 14]. Define

="k

keN

In the same manner as in the proof of Theorem 7.2 one can see that ¢! is a
positive Radon measure carried by 4; with x»(&', ') < oo and £'(4;) e (1, ).
By Theorem 7.1, Problem 3.2 for the constraint & = (¢!, o0) and the condenser
A = (41, D°) has therefore a (unique) solution 4, o = A" — 4~ (no short-circuit
occurs between 4; and D¢), although DN Clgs 4 = 0D and hence

C2(DC ﬁCl]R.x A]) = 0.

Furthermore, since each x»(-,4), k € N, is continuous on IR” and bounded
from above by 7?/(2k), the potential x(-,&') is continuous on R” by the
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uniform convergence of the sequence Y, .k 2#2(, 4). Hence (10.1), (10.2)
and (10.3) also hold in the present case with o =2, again with ¢; >0, and
relations (10.2) and (10.3) determine uniquely the solution 7, A among the
admissible measures. Also note that Sg. = dD according to (7.6).
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