On Certain Continuous and Equicontinuous Collections of Compact Continua

By
Tadashi Tanaka
(Received September 20, 1958)

Introduction

In this paper we shall prove some theorems concerning the continuous and equicontinuous collections of compact continua in a separable metric space. In § 1 we shall prove a theorem on the cross-sections of a continuous and equicontinuous collection of arcs which is a generalization of the case of R. L. Moore (see Proposition 1 in §2). In § 2 we shall apply the theorems in §1 to the set-theoretical characterization of closed n-cells $(n \leqq 3)$. From the same standpoint as in $\S 2$, the closed n-cells were considered by M. E. Hamstrom and E. Dyer (see [4] ${ }^{11}$). In the final section we shall consider the topological properties of the sum of all the sets of a continuous and equicontinuous collection of compact continua which are induced from the properties of the decomposition space and each set of the collection.

Throughout this paper all spaces are separable and metric, and the distance functions are denoted by ρ^{22}.

§ 1. Theorems on the cross-sections of a continuous and equicontinuous collection of arcs

Definition. A collection $\{Q\}$ of compact sets is said to be continuous if, for each $Q \in\{Q\}$ and each $\varepsilon>0$ there exists a $\delta>0$ such that $Q^{\prime} \frown U_{\dot{j}}(Q) \neq \phi$ implies both

$$
Q^{\prime} \subset U_{\iota}(Q) \quad \text { and } \quad Q \subset U_{\iota}\left(Q^{\prime}\right), \quad Q^{\prime} \in\{Q\} .
$$

Definition. A collection $\{Q\}$ of compact continua is said to be equicontinuous if, for each $\varepsilon>0$ there exists a $\delta>0$ such that if x and y are two points belonging to a Q of $\{Q\}$ and with $\rho(x, y)<\delta$ then there exists an arc $x y$ of Q of diameter less than ε.

[^0]The following proposition is an immediate consequence of a theorem of R. L. Moore (Cf. [1], p. 397).

Proposition 1. Suppose a, b, c and d are four distinct points, $a b, b c$, $c d, d a$ are arcs of which no two have any point in common other than a common end point and f is a topological mapping of ab onto dc. Suppose $\left\{l_{\alpha}\right\}$ is a collection of mutually exclusive arcs l_{α} with x_{α} and $f\left(x_{\alpha}\right)$ as its end points, $x_{\alpha} \in a b$, such that
(1) $\left\{l_{\alpha}\right\}$ is continuous and equicontinuous,
(2) bc and ad are arcs of $\left\{l_{\alpha}\right\}$.

Let M denote the set which is the sum of all the arcs of $\left\{l_{\alpha}\right\}$.
Then there exists a collection $\left\{m_{\beta}\right\}$ of mutually exclusive arcs m_{β} with y_{β} and $g\left(y_{\beta}\right)$ as its end points, where $y_{\beta} \in b c$ and g is a topological mapping of bc onto ad, such that
(a) $\left\{m_{\beta}\right\}$ is continuous and equicontinuous,
(b) ab and cd are arcs of $\left\{m_{\beta}\right\}$,
(c) M is the sum of all the arcs of $\left\{m_{\beta}\right\}$,
(d) if $l_{\alpha} \in\left\{l_{\alpha}\right\}$ and $m_{\beta} \in\left\{m_{\beta}\right\}$, then $l_{\alpha} \frown m_{\beta}$ is exactly one point.

Corollary 1. The set M is a closed 2-cell.
Proof. Let S be the solid square with vertices $\mathrm{A}(0,1), \mathrm{B}(0,0), \mathrm{C}(1,0)$, $D(1,1)$ in Euclidean 2 -space, let φ be a topological mapping of the arc $a b$ onto the straight line interval $A B$ and ψ be a topological one of the arc $b c$ onto the interval $B C$. Let $\left\{m_{\beta}^{\prime}\right\}$ be the collection of all the intervals of S which have the end points on $B C \smile A D$ and are parallel to $A B$, and let $\left\{l_{\alpha}^{\prime}\right\}$ be the collection of all the intervals of S which have the end points on $A B \smile C D$ and are parallel to $B C$. Then ψ induces the one-to-one transformation Ψ of $\left\{m_{\beta}\right\}$ onto $\left\{m_{\beta}^{\prime}\right\}$ under which each m_{β} of $\left\{m_{\beta}\right\}$ is transformed to the interval m_{β}^{\prime} of $\left\{m_{\beta}^{\prime}\right\}$ having the image of $m_{\beta} \frown b c$ under ψ as one end point; and, in the same way, φ induces the one-to-one transformation Φ of $\left\{l_{\alpha}\right\}$ onto $\left\{l_{\alpha}^{\prime}\right\}$. Moreover, for each point $l_{\alpha} \frown m_{\beta}$ of M if we make correspond the point $\Phi\left(l_{\alpha}\right) \frown \Psi\left(m_{\beta}\right)$ of S, then the correspondence h between M and S is one-to-one. Since $\left\{l_{\alpha}\right\},\left\{l_{\alpha}^{\prime}\right\},\left\{m_{\beta}\right\},\left\{m_{\beta}^{\prime}\right\}$ are continuous and φ and ψ are topological, it is easily known that h is topological.

Thus Corollary 1 is proved.
It is known by the above corollary that Proposition 1 is a result for 2-dimensional sets. Next we shall prove the following theorem for 3dimensonal sets which corresponds to Proposition 1.

Theorem 1. Suppose D_{0} and D_{1} are two disjoint closed 2-cells and f is a topological mapping of D_{0} onto D_{1}. Suppose $\left\{n_{\alpha}\right\}$ is a collection of mutually exclusive arcs n_{α} with x_{α} and $f\left(x_{\alpha}\right)$ as its end points, $x_{\alpha} \in D_{0}$, such that $\left\{n_{\alpha}\right\}$ is continuous and equicontinuous. Let N denote the set which is the sum of all the arcs of $\left\{n_{a}\right\}$.

Then there exists a collection $\left\{D_{\beta}\right\}$ of mutually exclusive closed 2-cells
such that
(a) $\left\{D_{\beta}\right\}$ is continuous and equicontinuous,
(b) D_{0} and D_{1} are closed 2-cells of $\left\{D_{\beta}\right\}$,
(c) N is the sum of all the closed 2-cells of $\left\{D_{\beta}\right\}$,
(d) if n_{α} and D_{β} are an arc of $\left\{n_{\alpha}\right\}$ and a closed 2-cell of $\left\{D_{\beta}\right\}$, respectively, then $n_{\alpha} \frown D_{\beta}$ is exactly one point.

Theorem 1 will be proved with the help of some lemmas. These lemmas will be proved first. In this section we suppose that N, D_{0}, D_{1} and $\left\{n_{\alpha}\right\}$ are as defined in Theorem 1.

Notations. Let S be the solid square defined in the proof of Corollary 1 , and T be a topological mapping of S onto D_{0}. In the following of this section we shall use the notations as follows:
$n_{\beta}^{\prime}, 0 \leqq \beta \leqq 1,\left(n_{r}^{\prime \prime}, 0 \leqq \gamma \leqq 1\right)$ denotes the image of the interval from $(\beta, 0)$ to $(\beta, 1)$ (from $(0, \gamma)$ to $(1, \gamma)$) under T,
$n_{(\beta, r)}$ denotes the arc of $\left\{n_{\alpha}\right\}$ with the point $n_{\beta}^{\prime} \frown n_{r}^{\prime \prime}$ as one end point,
$D_{\beta}^{\prime}\left(D_{\gamma}^{\prime \prime}\right)$ denotes the sum of all the arcs of $\left\{n_{\alpha}\right\}$ whose one end point lies on $n_{\beta}^{\prime}\left(n_{r}^{\prime \prime}\right)$.

We remark here that, by Corollary 1 , the sets D_{β}^{\prime} and $D_{r}^{\prime \prime}$ are closed 2 -cells. Then the following lemma holds.

Lemma 1.1. Each one of $\left\{D_{\beta}^{\prime}\right\}$ and $\left\{D_{r}^{\prime \prime}\right\}$ is a continuous and equicontinuous collection of mutually exclusive closed 2-cells ${ }^{3}$.

Proof. We shall only prove that $\left\{D_{\beta}^{\prime}\right\}$ has the above properties. Let x_{0} be any point and let $\left\{x_{i}\right\}$ be any sequence of points converging to x_{0}, where $x_{0} \in n_{\alpha_{0}} \subset D_{\beta_{0}}^{\prime}$ and $x_{i} \in n_{\alpha_{i}} \subset D_{\beta_{i}}^{\prime}$. Then, by the continuity of $\left\{n_{\alpha}\right\}$, we have $\lim n_{\alpha_{i}}=n_{\alpha_{0}}$. Hence, by the continuity of $\left\{n_{\beta}^{\prime}\right\}$, we have $\lim n_{\beta_{i}}^{\prime}=n_{\beta_{0}}^{\prime}$. Again by the continuity of $\left\{n_{\alpha}\right\}$ we have $\lim D_{\beta_{i}}^{\prime}=D_{\beta_{0}}^{\prime}$. Thus $\left\{D_{\beta}^{\prime}\right\}$ is continuous.

Now to prove the equicontinuity of $\left\{D_{\beta}^{\prime}\right\}$, suppose, on the contrary, that $\left\{D_{\beta}^{\prime}\right\}$ is not so. Then for some $\varepsilon>0$ there exist two sequences of points $\left\{x_{i}^{1}\right\}$ and $\left\{x_{i}^{2}\right\}$ such that (1) for each $i \rho\left(x_{i}^{1}, x_{i}^{2}\right)<\frac{1}{i}$ and (2) there is no arc $x_{i}^{1} x_{i}^{2}$ of $D_{\beta_{i}}^{\prime}$ of diameter less than ε, where $x_{i}^{1} \in n_{\alpha_{i}^{1}} \subset D_{\beta_{i}}^{\prime}$ and $x_{i}^{2} \in n_{\alpha_{i}^{2}} \subset D_{\beta_{i}}^{\prime}$. We may suppose $\left\{x_{i}^{1}\right\}$ and $\left\{x_{i}^{2}\right\}$ converge to the same point $x_{0} \in n_{\alpha_{0}}$. On the other hand, by the continuity of $\left\{n_{\alpha}\right\}$ we have $\lim n_{\alpha_{i}^{1}}=n_{\alpha_{0}}$ and $\lim n_{\alpha_{i}^{3}}=n_{\alpha_{0}}$. Hence, by the continuity and equicontinuity of $\left\{n_{a}\right\}$, for i sufficiently large there exists a points $y_{i}^{1} \in n_{\alpha_{i}^{1}}$ such that y_{i}^{1} can be joined to x_{i}^{1} and x_{i}^{2} by arcs of $n_{\alpha_{i}^{1}}$ and $D_{\beta_{i}}^{\prime}$ of diameter less than $\frac{1}{2} \varepsilon$, respectively. Therefore x_{i}^{1} and x_{i}^{2} can be joined by an arc of $D_{\beta_{i}}^{\prime}$ of diameter less than ε, contrary to the

[^1]condition (2) of x_{i}^{1} and x_{i}^{2}. Thus $\left\{D_{\beta}^{\prime}\right\}$ is equicontinuous.
Lemma 1.2. Suppose $x_{0} y_{0}$ is an arc of $D_{\beta_{0}}^{\prime},\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ are two sequences of points converging to the end points x_{0} and y_{0} respectively, where $x_{i}, y_{i} \in D_{\beta_{i}}^{\prime}$, and ε is any positive number. Then there exists an integer N such that for each $i>N$ we can take an arc $x_{i} y_{i}$ of $D_{\beta_{i}}^{\prime}$ joining x_{i} to y_{i} and lying in the ε-neighborhood of $x_{0} y_{0}$.

Proof. By the equicontinuity of $\left\{D_{\beta}^{\prime}\right\}$, there exists a $\delta>0$ such that every two points of a D_{β}^{\prime} of $\left\{D_{\beta}^{\prime}\right\}$ whose distance apart is less than δ can be joined by an arc of D_{β}^{\prime} of diameter less than $\frac{1}{3} \varepsilon$. Let $z_{0}^{1}, \cdots, z_{0}^{m}$ be a finite number of points on $x_{0} y_{0}$ such that all the distances $\rho\left(x_{0}, z_{0}^{1}\right), \rho\left(z_{0}^{1}, z_{0}^{2}\right)$, $\cdots, \rho\left(z_{0}^{m-1}, z_{0}^{m}\right), \rho\left(z_{0}^{m}, y_{0}\right)$ are less than $\frac{1}{3} \delta$. By the continuity of $\left\{D_{\beta}^{\prime}\right\}$ we have $\lim D_{\beta_{i}}^{\prime}=D_{\beta_{0}}^{\prime}$. Therefore there exist an integer N and points z_{N}^{1}, \cdots, z_{N}^{m} of $D_{\beta_{N}}^{\prime}$ such that all the distances $\rho\left(x_{0}, x_{N}\right), \rho\left(z_{0}^{1}, z_{N}^{1}\right), \rho\left(z_{0}^{2}, z_{N}^{2}\right), \cdots, \rho\left(z_{0}^{m}, z_{N}^{m}\right)$ and $\rho\left(y_{0}, y_{N}\right)$ are less than $\frac{1}{3} \delta$. Hence all the distances $\rho\left(x_{N}, z_{N}^{1}\right), \rho\left(z_{N}^{1}, z_{N}^{2}\right)$, $\cdots, \rho\left(z_{N}^{m}, y_{N}\right)$ are less than δ. Therefore, there exist in $D_{\beta_{N}}^{\prime} \operatorname{arcs} x_{N} z_{N}^{1}, z_{N}^{2} z_{N}^{9}$, $\cdots, z_{N}^{m-1} z_{N}^{m}, z_{N}^{m} y_{N}$ each of which is of diameter less than $\frac{1}{3} \varepsilon$. It is easy to see that the sum of the arcs $x_{N} z_{N}^{1} \smile z_{N}^{1} z_{N}^{3} \smile \cdots \smile z_{N}^{m} y_{N}$ contains an arc desired in Lemma 1.2. Thus Lemma 1.2 is proved.

Lemma 1.3. Suppose $x_{0} y_{0}$ and $x_{i} y_{i}(i=1,2, \cdots)$ are subarcs of arcs $n_{\alpha_{0}}$ and $n_{\alpha_{i}}$ of $\left\{n_{\alpha}\right\}$, respectively, such that the two sequences of end points of them $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ converge to the end points x_{0} and y_{0} respectively. Then the sequence of arcs $\left\{x_{i} y_{i}\right\}$ converges to the arc $x_{0} y_{0}$.

Proof. First we shall show that in the case $x_{0}=y_{0}$ Lemma 1.3 holds. Let ε be any positive number and let δ be a number defined for ε by the equicontinuity of $\left\{n_{\alpha}\right\}$. Now, since $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ converge to the same point x_{0}, there exists an integer N such that for each $i>N \rho\left(x_{i}, x_{0}\right)<\frac{1}{3} \varepsilon, \rho\left(y_{i}, x_{0}\right)<\frac{1}{3} \varepsilon$ and $\rho\left(x_{i}, y_{i}\right)<\delta$. Therefore each arc $x_{i} y_{i}, i>N$, lies in the ε-neighborhood of x_{0}. Thus we have lim $x_{i} y_{i}=x_{0}=x_{0} y_{0}$.

Next, to show that in general Lemma 1.3 holds, suppose, on the contrary, that there exists a point $z_{0} \in n_{\alpha_{0}}$ belonging to $\lim \sup x_{i} y_{i}$ but not to $x_{0} y_{0}$. We may suppose, without loss of generality, that we have the order z_{0}, x_{0}, y_{0} on $n_{\alpha_{0}}$, Let $\left\{z_{i^{\prime}}\right\}$ be a sequence of points converging to z_{0}, where $z_{i^{\prime}} \in x_{i^{\prime}} y_{i^{\prime}}$. Let us take a sequence $\left\{y_{i^{\prime}}^{\prime}\right\}$ of points converging to x_{0}, where each $y_{i^{\prime}}^{\prime}$ belongs to the subarc $z_{i^{\prime}} y_{i^{\prime}}$ of $n_{\alpha_{i}{ }^{\prime}}$. Then, by the result of the preceding paragraph, we have $\lim x_{i^{\prime}} y_{i^{\prime}}^{\prime}=x_{0}$, contrary to the assumption that $\left\{z_{i^{\prime}}\right\}$ converges to z_{0}. Thus Lemma 1.3 is proved.

Definitions. A set K is said to be a simple set of type 1 if there exists a number $\beta_{0}, 0 \leqq \beta_{0} \leqq 1$, such that
(1) K is a connected subset of $D_{\beta_{0}}^{\prime}$ which is open in $D_{\beta_{0}}^{\prime}$,
(2^{\prime}) for any $\gamma, 0 \leqq \gamma \leqq 1$, if x and y are any two points of $K \frown n_{\left(\beta_{0}, r\right)}$, K contains the subarc $x y$ of $n_{\left(\beta_{0}, r\right)}$,
(3') $K \frown n_{\left(\beta_{0}, i\right)}$ contains a non-vacuous open arc $(i=0,1)$.
A set K is said to be a simple set of type 2 if there exist two numbers β_{1} and $\beta_{2}, 0 \leqq \beta_{1}<\beta_{2} \leqq 1$, such that
($1^{\prime \prime}$) K is a connected open subset of N which lies between $D_{\beta_{1}}^{\prime}$ and $D_{\beta_{2}}^{\prime}$,
($2^{\prime \prime}$) for any pair (β, γ), $\beta_{1}<\beta<\beta_{2}$ and $0 \leqq \gamma \leqq 1$, if x and y are any two points of $K \frown n_{(\beta, r)}, K$ contains the subarc $x y$ of $n_{(\beta, r)}$,
($3^{\prime \prime}$) for any $\beta, \beta_{1}<\beta<\beta_{2}, K \frown D_{\beta}^{\prime}$ is a simple set of type 1 ,
(4") $\bar{K} \frown D_{\beta_{i}}^{\prime}$ contains a simple set K^{i} of type 1 such that no point of K^{i} is a limit point of any set which lies between $D_{\beta_{1}}^{\prime}$ and $D_{\beta_{2}}^{\prime}$ and contains no point of $K(i=1,2)$.

The simple set K^{1} of type 1 will be called the upper base, and the simple set K^{2} of type 1 called the lower base of K.

A simple set K of type 1 or 2 is said to be of rank n if, for each n_{α} of $\left\{n_{\alpha}\right\}$, the diameter of $K \frown n_{\alpha}$ is less than $\frac{1}{n}$.

If there exists a simple set of type 2 and of rank n whose upper base contains one of two arcs and whose lower base contains another one, then we say that the two arcs can be joined by a simple set of type 2 and of rank n.

An arc t lying in D_{β}^{\prime} will be called an S-arc if for each $\gamma, 0 \leqq \gamma \leqq 1$, $t \sim n_{(\beta, r)}$ is exactly one point.

Lemma 1.4. Let s be an S-arc of $D_{\beta_{1}}^{\prime}$ and n be any positive integer. Then there exists a simple set K of type 2 and of rank n whose upper base (or lower base) contains the arc s.

Proof. Let S be any point of s and let $D_{r}^{\prime \prime}$ be the closed 2-cell of $\left\{D_{r}^{\prime \prime}\right\}$ containing S. Let δ be the minimum of $\frac{1}{4 n}$ and a positive number defined for $\frac{1}{2 n}$ by the equicontinuity of $\left\{n_{\alpha}\right\}$, and let $U_{\dot{\delta}}(S)$ and $U_{\frac{1}{2 n}}(S)$ be the δ - and $\frac{1}{2 n}$-neighborhoods of S in $D_{r}^{\prime \prime}$, respectively. Then for each β, $0 \leqq \beta \leqq 1, U_{\delta}(S) \frown n_{(\beta, r)}$ is contained in one component of $U_{\frac{1}{2} n}(S) \frown n_{(\beta, \gamma)}$. If $c_{(\beta, r)}$ denotes the component of $U_{\frac{1}{i n}}(S) \frown n_{(\beta, r)}$ containing $U_{\dot{\delta}}(S) \frown n_{(\beta, r)}, V(S)$ is the component of $U_{\delta}(S)$ containing S and $W(S)$ is the sum of all sets $c_{(\beta, r)}$ such that $c_{(\beta, \gamma)}$ intersects $V(S)$, then $W(S)$ has the following properties: (i') $W(S)$ is connected, (ii') for each $\beta, 0 \leqq \beta \leqq 1, W(S) \frown n_{(\beta, \gamma}$, is
either an open arc of diameter less than $\frac{1}{n}$ or an empty set and (iii') $W(S)$ is open in $D_{r}^{\prime \prime}$. (i') and (ii') are obvious. To prove (iii'), suppose, on the contrary, that $W(S)$ is not open in $D_{r}^{\prime \prime}$. Then there exist a point $x_{0} \in W(S)$ and a sequence $\left\{x_{i}\right\}$ of points in $D_{r}^{\prime \prime}-W(S)$ converging to x_{0}. Let $n_{\left(\beta_{0}, r\right)}$ and $n_{\left(\beta_{i}, r\right)}$ be the arcs of $\left\{n_{\alpha}\right\}$ containing x_{0} and x_{i} respectively. Let y_{0} be a point of $V(S) \frown n_{\left(\beta_{0}, r\right)}$ and $\left\{y_{i}\right\}$ be a sequence of points in $D_{r}^{\prime \prime}$ converging to y_{0}, where $y_{i} \in n_{\left(\beta_{i}, r\right)}$. By the continuity of $\left\{n_{\alpha}\right\}$, such a sequence $\left\{y_{i}\right\}$ exists. Since $V(S)$ is open in $D_{r}^{\prime \prime}$, we may suppose that every point of $\left\{y_{i}\right\}$ is in $V(S)$. By Lemma 1.3 we have $\lim x_{i} y_{i}=x_{0} y_{0}$, where $x_{0} y_{0}$ and $x_{i} y_{i}$ are the subarcs of $n_{\left(\beta_{0}, r\right)}$ and $n_{\left(\beta_{i}, r\right)}$ respectively. Hence, it is readily seen by the definition of $W(S)$ that for each i sufficiently large the arc $x_{i} y_{i}$ lies in $W(S)$, contrary to the assumption that $x_{i} \in D_{r}^{\prime \prime}-W(S)$. Thus (iii') is proved.

For every point S of s, we construct the sets $V(S)$ and $W(S)$ described above, and denote by V and W the sum of $V(S)$ and the sum of $W(S)$, respectively. Then the set V is a connected open set in N. For, suppose, on the contrary, that V is not open in N, then there exist a point z_{0} and a sequence $\left\{z_{i}\right\}$ converging to z_{0}, where $z_{0} \in V\left(S_{0}\right) \subset V$ and $z_{i} \in N-V$. Let $D_{r_{i}}^{\prime \prime}$ be the closed 2-cell of $\left\{D_{r}^{\prime \prime}\right\}$ containing z_{i} and S_{i} be the point $s \subset D_{r_{i}}^{\prime \prime}$. Let $z_{0} S_{0}$ be an arc of $V\left(S_{0}\right)$ joining z_{0} to S_{0}. Now, by Lemma 1.2, we can take $\operatorname{arcs} z_{i} S_{i}$ of $D_{r_{i}}^{\prime \prime}$ joining z_{i} to S_{i} such that lim $z_{i} S_{i}=z_{0} S_{0}$. Hence, it is easily known that for i sufficiently large, the arc $z_{i} S_{i}$ lies in $V\left(S_{i}\right)$, contrary to the assumption that $z_{i} \in N-V$. Thus V is open in N.

The set W also has the following properties: ($\mathrm{i}^{\prime \prime}$) W is connected, (ii") for each n_{α} of $\left\{n_{\alpha}\right\}, W \frown n_{\alpha}$ is either an open arc of diameter less than $\frac{1}{n}$ or an empty set and (iii") W is open in N. For, ($\mathrm{i}^{\prime \prime}$) and (ii") are obvious, and (iii") can be proved by the same method as in (iii') since V is open in N.

Now, by virtue of Lemma 1.1 together with the fact that V is open in N, we can choose a set $D_{\beta_{2}}^{\prime}$ of $\left\{D_{\beta}^{\prime}\right\}$ near to $D_{\beta_{1}}^{\prime}$, so that for any pair $(\beta, \gamma), \beta_{1} \leqq \beta \leqq \beta_{2} \quad\left(\right.$ or $\left.\beta_{2} \leqq \beta \leqq \beta_{1}\right)$ and $0 \leqq \gamma \leqq 1, V \frown n_{(\beta, r)}$ is not empty. Finally, let K denote the common part of W and the part of N lying between $D_{\beta_{1}}^{\prime}$ and $D_{\beta_{2}}^{\prime}$. Then it is easily shown that K satisfies all the conditions required in the statement of Lemma 1.4. Thus Lemma 1.4 is proved.

Lemma 1.5. Suppose K is a simple set of type 2 whose bases lie in $D_{\beta_{1}}^{\prime}$ and $D_{\beta_{2}}^{\prime}, s_{1}$ and s_{2} are S -arcs in the bases of K lying in $D_{\beta_{1}}^{\prime}$ and $D_{\beta_{2}}^{\prime}$ respectively, and n is a positive integer. Then there exists a simple set K_{n} of type 2 and of rank n such that (1) \bar{K}_{n} lies in the sum of K and its bases and (2) K_{n} joins s_{1} to s_{2}.

Proof. Without loss of generality we may suppose that $\beta_{1}<\beta_{2}$. The
proof of the lemma will be divided into the following two steps.
(I) Suppose t^{\prime} is an S-arc such that (1) t^{\prime} lies either in K or in the base of K not containing s_{1} and (2) t^{\prime} and s_{1} can be joined by a simple set of type 2 and of rank n whose closure lies in the sum of K and its bases, and suppose $t^{\prime \prime}$ is any S-arc of D_{β}^{\prime} lying in the sum of K and its bases, where D_{β}^{\prime} is the closed 2 -cell of $\left\{D_{\beta}^{\prime}\right\}$ containing t^{\prime}. Then $t^{\prime \prime}$ and s_{1} also can be joined by a simple set of type 2 and of rank n whose closure lies in the sum of K and its bases.

For, let $\left\{t_{x}\right\}, 0 \leqq x \leqq 1$, be a continuous deformation from t^{\prime} to $t^{\prime \prime}$ in the common part of D_{β}^{\prime} and the sum of K and its bases such that each t_{x} is an S -arc, $t_{0}=t^{\prime}$ and $t_{1}=t^{\prime \prime}$. Now suppose, on the contrary, that s_{1} and $t^{\prime \prime}$ can not be joined by a set satisfying the conditions in (I). Let $\left\{t_{x^{\prime}}\right\}$ be the collection of all S-arcs of $\left\{t_{x}\right\}$ which can be joined to s_{1} by a set satisfying the conditions of (I), and let $\left\{t_{x^{\prime \prime}}\right\}$ be the collection $\left\{t_{x}\right\}-\left\{t_{x^{\prime}}\right\}$. Furthermore, let $\left\{x^{\prime}\right\}$ and $\left\{x^{\prime \prime}\right\}$ be the sets of indices of all the arcs of $\left\{t_{x^{\prime}}\right\}$ and $\left\{t_{x^{\prime \prime}}\right\}$, respectively. Then it follows at once from the definition of joining two S-arcs by a simple set that $\left\{x^{\prime}\right\}$ is open in the unit interval [0,1]. Hence, by the connectedness of intervals, there exist a point $x^{\prime \prime} \in\left\{x^{\prime \prime}\right\}$ and a sequence $\left\{x_{i}^{\prime}\right\}$ in $\left\{x^{\prime}\right\}$ converging to $x^{\prime \prime}$. By Lemma 1.4, we can take a simple set $K_{n}^{(1)}$ of type 2 and of rank n such that the lower base of $K_{n}^{(1)}$ contains $t_{x^{\prime \prime}}$ and $\bar{K}_{n}^{(1)}$ lies in the sum of K and its bases. Then, for i sufficiently large, $t_{x_{i}^{\prime}}$ lies in the lower base of $K_{n}^{(1)}$. Now let $K_{n}^{(2)}$ be a simple set of type 2 and of rank n such that $\bar{K}_{n}^{(2)}$ lies in the sum of K and its bases and $K_{n}^{(2)}$ joins s_{1} to $t_{x_{i}^{\prime}}$. By Lemma 1.2, we can take a $\gamma, \beta_{1}<\gamma<\beta$, such that D_{γ}^{\prime} contains an S-arc in $K_{n}^{(1)} \frown K_{n}^{(2)}$. Let $K_{n}^{(3)}$ denote the sum of the part of $K_{n}^{(2)}$ lying between $D_{\beta_{1}}^{\prime}$ and D_{r}^{\prime}, the part of $K_{n}^{(1)}$ lying between D_{r}^{\prime} and D_{β}^{\prime} and the part of $K_{n}^{(1)} \frown K_{n}^{(3)}$ lying on D_{r}^{\prime}. Then it is easily shown that $K_{n}^{(3)}$ is a simple set of type 2 and of rank n such that $K_{n}^{(3)}$ joins s_{1} to $t_{x^{\prime \prime}}$ and $K_{n}^{(3)}$ lies in the sum of K and its bases, contrary to the assumption that $t_{x^{\prime \prime}} \in\left\{t_{x^{\prime \prime}}\right\}$. Thus (I) is proved.
(II) If we denote by δ the least upper bound of the set of all indices $\beta, \beta_{1} \leqq \beta \leqq \beta_{2}$, such that each D_{β}^{\prime} contains an S-arc which can be joined to s_{1} by a simple set satisfying the conditions required in (I), then δ is equal to β_{2}.

For, suppose, on the contrary, that δ is not equal to β_{2}. Then, it results from Lemma 1.4 together with (I) that any S-arc in $K \frown D_{\delta}^{\prime}$ can not be joined to s_{1} by a simple set satisfying the conditions required in (I). On the other hand, let t be an S -arc in $K \frown D_{\dot{\delta}}^{\prime}$ and let $K_{n}^{(4)}$ be a simple set of type 2 and of rank n such fhat $\bar{K}_{n}^{(4)}$ lies in the sum of K and its bases and the lower base of $K_{n}^{(4)}$ contains t. For any S-arc s in the upper base of $K_{n}^{(4)}$, there exists a simple set $K_{n}^{(5)}$ of type 2 and of rank n which joins s_{1} to s and whose closure lies in the sum of K and its bases. So it is
easily seen that the set $K_{n}^{(6)}$, where $K_{n}^{(6)}=K_{n}^{(4)} \smile K_{n}^{(5)} \smile$ (the common part of the upper base of $K_{n}^{(5)}$ and the lower base of $K_{n}^{(4)}$), is a simple set of type 2 and of rank n which joins s_{1} to t and whose closure in the sum of K and its bases. Therefore (II) is proved.

Now, we have Lemma 1.5 from (II) and Lemma 1.4.
Proof of Theorem 1. Let s_{0} and s_{1} be any two S-arcs of D_{0}^{\prime} and D_{1}^{\prime}, respectively, each of which is disjoint from $D_{0} \cup D_{1}$. Clearly the set $N-\left(D_{0}^{\prime} \cup D_{1}^{\prime}\right)$ is a simple set of type 2. Hence, applying Lemma 1.5 repeatedly, we obtain a sequence $\left\{K_{n}\right\}$ of simple sets such that
(i) for each n, K_{n} is a simple set of type 2 and of rank n which joins s_{0} to s_{1},
(ii) $N-\left(D_{0} \smile D_{1}\right) \supset \bar{K}_{1} \supset$ (the sum of K_{1} and its bases) $\supset \bar{K}_{2} \supset$ (the sum of K_{2} and its bases) $\supset \bar{K}_{3} \frown \cdots$.
Now, if we denote by K_{0} the intersection of all the simple sets of $\left\{K_{n}\right\}$, then K_{0} has the following properties:
(1) $K_{0} \frown n_{\alpha}$ is one point,
(2) K_{0} is a closed 2-cell whose boundary contains both s_{0} and s_{1},
(3) $N-K_{0}$ consists of two components such that the intersection of the closures of them is K_{0} and each closure of them has the same properties as are assumed for N.

For, (1) is obvious and (2) results from the fact that the transformation of D_{0} onto K_{0} under which a point $D_{0} \frown n_{\alpha}$ is transformed to a point $K_{0} \frown n_{\alpha}$ is topological. And it is easily shown that two components of $N-K_{0}$ containing D_{0} and D_{1}, respectively, satisfy all the conditions of (3).

Next, by the help of the manner used to construct the closed 2-cell K_{0}, we shall construct the collection $\left\{D_{\beta}\right\}$ required in Theorem 1. Let $\left\{x_{i}\right\}$ be a countable subset of N which is dense in N, i_{1} the smallest integer such that the point $x_{i_{1}}$, is not contained in $D_{0} \cup D_{1}$, and $D_{\beta_{i_{1}}}^{\prime}$ the closed 2-cell of $\left\{D_{\beta}^{\prime}\right\}$ containing $x_{i_{1}}$. And let t_{1} be an S-arc through $x_{i_{1}}$ and not intersecting $D_{0} \cup D_{1}$, and let t_{1}^{\prime} and $t_{1}^{\prime \prime}$ be two S-arcs of D_{0}^{\prime} and D_{1}^{\prime} not intersecting $D_{0} \cup D_{1}$, respectively. If $N_{i_{1}}^{\prime}$ and $N_{i_{1}}^{\prime \prime}$ denote the closures of components of $N-D_{\beta_{i_{1}}}^{\prime}$ containing t_{1}^{\prime} and $t_{1}^{\prime \prime}$ respectively, then $N_{i_{1}}^{\prime}$ and $N_{i_{1}}^{\prime \prime}$ have the same properties as are assumed for N. Hence, by the same manner as in the construction of K_{0} we obtain a closed 2 -cell S_{1}^{\prime} of $N_{i_{1}}^{\prime}$ whose boundary contains t_{1}^{\prime} and t_{1}, and a closed 2 -cell $S_{1}^{\prime \prime}$ of $N_{i_{1}}^{\prime \prime}$ whose boundary contains t_{1} and $t_{1}^{\prime \prime}$. Let S_{1} denote the sum of S_{1}^{\prime} and $S_{1}^{\prime \prime}$. Then S_{1} has the following properties:
(1') $S_{1} \frown n_{\alpha}$ is one point,
(2') S_{1} is a closed 2-cell containing $x_{i_{1}}$,
(3') $N-S_{1}$ consists of two components such that the intersection of the closures of them is S_{1} and each of the closures of them has the same properties as are assumed for N.

Let i_{2} be the smallest integer such that $x_{i_{2}}$ is not contained in $D_{0} \smile D_{1} \smile S_{1}$. By applying the manner used to construct S_{1} for $x_{i_{1}}$ and N, to $x_{i_{2}}$ and the closure of the component of $N-S_{1}$ containing $x_{i_{2}}$, we have a closed 2-cell S_{2}. Continuing this process indefinitly, we obtain a collection $\left\{S_{i}\right\}$ of mutually exclusive closed 2-cells S_{i} such that for any i and $\alpha, S_{i} \frown n_{\alpha}$ is one point and the sum of all the sets of $\left\{S_{i}\right\}$ is dense in N. Moreover, it is easily shown that each component T_{α} of $N-\smile S_{i}$ is a closed 2-cell. The collection $\left\{D_{\beta}\right\}$, which is composed of S_{i} and T_{α}, satisfies all the conditions required in the statement of Theorem 1.

Thus Theorem 1 is proved.
Corollary 2. The set N is a closed 3-cell.
The corollary is proved in the same way as in the proof of Corollary 1.

§ 2. A set-theoretical characterization of closed cells

Theorem 2. In order that a separable metric space C be a closed n-cell ($n \leqq 3$) it is necessary and sufficient that there exists a collection $\left\{l_{\alpha}\right\}$ of mutually exclusive arcs such that:
(1) $\left\{l_{\alpha}\right\}$ is continuous and equicontinuous,
(2) the sum of all the arcs of $\left\{l_{\alpha}\right\}$ is C,
(3) the decomposition space of $\left\{l_{\alpha}\right\}$ is a closed ($n-1$)-cell.

Theorem 2 will be proved with the help of three lemmas.
Lemma 2.1. Suppose $\left\{m_{\alpha}\right\}$ is a collection of mutually exclusive arcs such that (1) the sum of all the arcs of $\left\{m_{\alpha}\right\}$ is a compact, connected set, (2) $\left\{m_{\alpha}\right\}$ is continuous and equicontinuous.

Then the set E of end points of all the arcs of $\left\{m_{\alpha}\right\}$ consists of at most two components.

Proof. First, we see that from the condition (2) of the lemma, any limit point of any subset of E also belongs to E, and hence E is compact. Let f be the transformation of E onto itself which transforms one of two end points of each arc of $\left\{m_{\alpha}\right\}$ to another. For any subset K of E, K^{\prime} denotes the image of K under f. If a subset K of E is connected, then K^{\prime} is also connected. Hence, if K_{1} is a component of E, then K_{1}^{\prime} is also a component of E. To prove this lemma, suppose, on the contrary, that E contains a component K_{2} distinct from both K_{1} and K_{1}^{\prime}. Then there exists a separation $E=A_{1} \smile A_{2}$, where $K_{1} \smile K_{1}^{\prime} \subset A_{1}$ and $K_{2} \smile K_{2}^{\prime} \subset A_{2}$. Let A_{12} denote the sum of all components K_{β} of E such that $K_{\beta} \subset A_{2}$ and $K_{\beta}^{\prime} \subset A_{1}$, and let B_{1} and B_{2} denote the sets $A_{1} \smile A_{12}$ and $A_{2}-A_{12}$, respectively. Next we shall show that the decomposition $E=B_{1} \smile B_{2}$ is a separation. If, on the contrary, the decomposition $E=B_{1} \smile B_{2}$ were not a separation, we would have a sequence $\left\{x_{i}\right\}$ of points converging to a point to x_{0}, where either
$x_{0} \in B_{1}$ and $x_{i} \in B_{2}$ or $x_{0} \in B_{2}$ and $x_{i} \in B_{1}$. In the case $x_{0} \in B_{1}$ and $x_{i} \in B_{2}$, it results at once from the fact that $E=A_{1} \smile A_{2}$ is a separation, that $x_{0} \in A_{2}$, $x_{0}^{\prime} \in A_{1}, x_{i} \in A_{2}$ and $x_{i}^{\prime} \in A_{2}$. Furthermore, in the same way as in the proof of Lemma 1.3, it is readily shown that the sequence $\left\{x_{i}^{\prime}\right\}$ coverges to x_{0}^{\prime}, contrary to the fact that $E=A_{1} \smile A_{2}$ is a separation. Hence the decomposition $E=B_{1} \smile B_{2}$ is a separation.

On the other hand, it is easily shown by the conditions (1) and (2) in the lemma, that such a decomposition $E=B_{1} \smile B_{2}$, where $B_{1}=B_{1}^{\prime}$ and $B_{2}=B_{2}^{\prime}$, can not be a separation. Therefore we have a contradiction, and for the other case we obtain the same result.

Thus we have Lemma 2.1.
Lemma 2.2. If the collection $\left\{m_{\alpha}\right\}$ in Lemma 2.1 satisfies the additional condition that E consists of exactly two components, then the following two facts hold:
(a) for any arc m_{α} of $\left\{m_{\alpha}\right\}$, the two end points of m_{α} belong to distinct components of E;
(b) each component of E is homeomorphic to the decomposition space of $\left\{m_{a}\right\}$.

Proof. As is obvious from the proof of Lemma 2.1, if K denotes one component of E, another component of E is K^{\prime}, where K^{\prime} is the image of K under f in the proof of Lemma 2.1. Accordingly, if the two end points of some arc of $\left\{m_{\alpha}\right\}$ belong to the same component of E, then we have $K=K^{\prime}$, contrary to the condition that E has exactly two components. Thus (a) is proved.

Next if, to each point of one component of E, we make correspond the arc of $\left\{m_{\alpha}\right\}$ containing the point, then, by (a) together with the definition of neighborhoods of decomposition spaces, this correspondence between one component of E and the decomposition space of $\left\{m_{\alpha}\right\}$ is topological. Thus (b) is proved.

Lemma 2.3. Suppose $\left\{m_{\alpha}\right\}$ is a collection of mutually exclusive arcs such that (1) $\left\{m_{\alpha}\right\}$ is continuous and equicontinuous, and (2) the decomposition space M^{\prime} of $\left\{m_{\alpha}\right\}$ is a closed n-cell. Then the set E of end points of all the arcs of $\left\{m_{\alpha}\right\}$ consists of exactly two components.

Proof. Since M^{\prime} is a closed n-cell, we may suppose without loss of generality that M^{\prime} is the solid ($n-1$)-sphere with center at the origin and radius 1 in Euclidean n-space E^{n}. Hence M^{\prime} is the sum of the sets M_{r}^{\prime}, $0 \leqq r \leqq 1$, where M_{0}^{\prime} is the origin of E^{n} and $M_{r}^{\prime}(0<r \leqq 1)$ is the solid $(n-1)$-sphere with center at the origin and radius r. Let R denote the set of all the numbers r such that, for each $r^{\prime} \leqq r$, the set of end points of all the arcs of $\left\{m_{\alpha}\right\}$ corresponding to points of $M_{r^{\prime}}^{\prime}$ consists of exactly two components. We shall prove the lemma by showing that the least upper bound a of R is equal to 1 . For this purpose, suppose, on the contrary,
that a is not equal to 1 . Then, since R is clearly a non-vacuous open set in the unit interval $[0,1]$ containing $0, a$ does not belong to R. Hence the set of end points of all the arcs of $\left\{m_{\alpha}\right\}$ corresponding to the points of M_{a}^{\prime} has one component, but the set of end points of all the arcs of $\left\{m_{\alpha}\right\}$ corresponding to the points of the interior of M_{a}^{\prime} has exactly two components, which are denoted by A and B in the following. By (i) and (ii) in the proof of Theorem 3, we can define the two topological correspondences between A and B and between A and the interior of M_{a}^{\prime} in the same way as in the proof of Lemma 2.2. Let x_{0} be a limit of both A and B. Clearly such a point x_{0} exists and corresponds to a point of the boundary of M_{a}^{\prime}. It results at once from the assumption (1) of the lemma that if a sequence of points in B converges to x_{0} then the sequence of points in A corresponding to the sequence converges to either x_{0} or another end point y_{0} of the arc of $\left\{m_{a}\right\}$ with x_{0} as one end point. That the first case is impossible, is easily shown in the same way as in the proof of Lemma 1.3. That the second case, where $\bar{A}-A$ contains two end points of some arc of $\left\{m_{\alpha}\right\}$, also is impossible, results at once from the following two facts each of which is easily shown:
(a) each point x of $\bar{A}-A$ is a limit point of the subset l_{x} of A corresponding to the comon part L_{x} of the interior of M_{a}^{\prime} and the radius of M_{α}^{\prime} with the point corresponding to x as one end point;
(b) the set $\bar{l}_{x}-l_{x}$ is connected, and each point of $\bar{l}_{x}-l_{x}$ is one end point of the arc of $\left\{m_{a}\right\}$ with x as one end point.

Therefore a is equal to 1 . Moreover, in the same way as above, it is shown that 1 belongs to R.

Thus Lemma 2.3 is proved.
Proof of Theorem 2. The necessity is obvious. To show the sufficiency, we first note that since, by Theorem 3 in $\S 3$, the set C in Theorem 2 is compact and connected, we may apply Lemmas 2.1, 2.2, 2.3 to the proof of Theorem 2. By Lemma 2.3, the set of end points of all the arcs of $\left\{l_{\alpha}\right\}$ consists of exactly two components. By Lemma 2.2, these two components are closed ($n-1$)-cells, the two end points of each arc of $\left\{l_{\alpha}\right\}$ belong to distinct components respectively, and if, for each point x of one of these components, we make correspond another end point of the arc of $\left\{l_{\alpha}\right\}$ with x as one end point, then this correspondence between two components is topological. Therefore, it results at once from Corollary 1 or Corollary 2 that C is a closed n-cell.

Thus Theorem 2 is proved.
§ 3. Topological relations between spaces and decomposition spaces
As is seen by the example in the paper by R. F. Williams [3], there
exists a compact continuum M of Euclidean 3 -space such that M is the sum of all the arcs of a continuous collection of mutually exclusive arcs whose decomposition space is an arc, but such that M is not locally connected. In connection with the example, the following theorem will be proved.

Theorem 3. Suppose $\left\{m_{\alpha}\right\}$ is a collection of mutually exclusive compact continua such that
(1) $\left\{m_{\alpha}\right\}$ is continuous and equicontinuous,
(2) the decomposition spaces M^{\prime} of $\left\{m_{\alpha}\right\}$ is a locally connected, compact continuum.

Then the sum M of all the compact continua of $\left\{m_{\alpha}\right\}$ is a locally connected, compact continuum.

Proof. Let f be the continuous transformation associated with the collection $\left\{m_{\alpha}\right\}$ of M (Cf. [2], p. 125, (3.1)).
(i) M is compact. For, let $\left\{x_{i}\right\}$ be any countable infinite subset of M, and let $m_{\alpha_{i}}$ denote the continuum of $\left\{m_{\alpha}\right\}$ containing x_{i}, then we may suppose without loss of generality that any two points of $\left\{x_{i}\right\}$ do not belong to the same continuum of $\left\{m_{\alpha}\right\}$. Since M^{\prime} is compact and the set $\left\{f\left(x_{i}\right)\right\}$ is infinite, there exists a point $f\left(m_{\alpha_{0}}\right) \in M^{\prime}$ which is a limit point of $\left\{f\left(x_{i}\right)\right\}$. We may suppose that $\left\{f\left(x_{i}\right)\right\}$ converges to $f\left(m_{\alpha_{0}}\right)$. So, by the definition of neighborhoods of decomposition spaces, every neighborhood of $m_{\alpha_{0}}$ contains all but a finite number of continua of $\left\{m_{\alpha_{i}}\right\}$. Hence, there exists a sequence $\left\{y_{i}\right\}$ of points of $m_{\alpha_{0}}$ such that for each $i, \rho\left(x_{i}, y_{i}\right)<\frac{1}{i}$. Since $m_{\alpha_{0}}$ is compact, there exists a point $x_{0} \in m_{\alpha_{0}}$ which is a limit point of $\left\{y_{i}\right\}$. Clearly x_{0} is also a limit point of $\left\{x_{i}\right\}$. Thus (i) is proved.
(ii) M is connected. Since M is compact, M^{\prime} is connected and the transformation f of M onto M^{\prime} is monotone, it follows at once that M is connected (Cf. [2], p. 138, (2,2)).

Here, we note that the equicontinuity of $\left\{m_{\alpha}\right\}$ is not employed in the above proofs (i) and (ii).
(iii) M is locally connected. Let ε be any positive number, and let δ be a positive number such that if x and y are any two points belonging to a compact continuum m_{α} of $\left\{m_{\alpha}\right\}$ and with $\rho(x, y)<2 \delta$ then there exists an art $x y$ of m_{α} of diameter less than $\frac{1}{2} \varepsilon$. By the equicontinuity of $\left\{m_{\alpha}\right\}$, such a $\delta>0$ exists. Now let p be any point of M and let $U_{\varepsilon}(p)$ and $U_{\dot{\delta}}(p)$ be the ε^{-}and δ-neighborhoods of p, respectively. Then, for each m_{a} of $\left\{m_{\alpha}\right\}, U_{\delta}(p) \frown m_{\alpha}$ lies in a component of $U_{s}(p) \frown m_{\alpha}$, which we denote by C_{α}. Let N denote the sum of all the sets C_{α} such that C_{α} intersects $U_{j}(p)$. Clearly, N contains $U_{\delta}(p)$ and $f(N)=f\left(U_{\delta}(p)\right)$. Since M is compact and $\left\{m_{\alpha}\right\}$ is continuous, it follows that f is an open mapping (Cf. [2], p. 130, (4.31)). Therefore $f\left(U_{\dot{j}}(p)\right)$ is open in M^{\prime}. Since M^{\prime} is locally connected, the component W^{\prime} of $f\left(U_{\delta}(p)\right)$ containing $f(p)$ is open in M^{\prime}. Therefore $f^{-1}\left(W^{\prime}\right)$
$\frown U_{\delta}(p)$ is open in M. Hence, we obtain a neighborhood V of p in M which lies in $f^{-1}\left(W^{\prime}\right) \frown U_{\dot{\delta}}(p)$. The common part W of $f^{-1}\left(W^{\prime}\right)$ and N has the two properties as follows: (a) $p \in V \subset W \subset U_{c}(p)$ and (b) W is connected. The truth of (a) is obvious. To prove (b), suppose, on the contrary, that there exists a separation $W=W_{1} \smile W_{2}$. The separation $W=W_{1} \smile W_{2}$ yields the decomposition $f(W)=f\left(W_{1}\right) \smile f\left(W_{\mathrm{z}}\right)$. Then, obviously $f(W)=W^{\prime}$, and $f\left(W_{1}\right)$ and $f\left(W_{2}\right)$ are mutually exclusive. Hence we may suppose that there exist a point $f\left(m_{\alpha_{0}}\right) \in f\left(W_{1}\right)$ and a sequence $\left\{f\left(m_{\alpha_{i}}\right)\right\}$ of points of $f\left(W_{2}\right)$ converging to $f\left(m_{\alpha_{0}}\right)$. Then we have $C_{\alpha_{0}} \frown \lim \inf C_{\alpha_{i}} \neq \phi$. For, let x_{0} be a point of $C_{\alpha_{0}} \frown U_{\dot{\delta}}(p)$ then, since $\left\{f\left(m_{\alpha_{i}}\right)\right\}$ converges to $f\left(m_{\alpha_{0}}\right)$ and hence $\left\{m_{\alpha_{i}}\right\}$ converges to $m_{\alpha_{0}}$, we have a sequence $\left\{x_{i}\right\}$ of points converging to x_{0} such that $x_{i} \in m_{\alpha_{i}} \subset U_{\dot{\delta}}(p) \subset C_{\alpha_{i}}$. This contradicts the assumption that $W=W_{1} \smile W_{\text {e }}$ is a separation. Hence (b) is proved.

It follows from (a) and (b) that M is locally connected at p. Accordingly M is locally connected.

Thus Theorem 3 is proved.
In conclusion I wish to express my hearty thanks to Prof. K. Morinaga for his kind guidance.

> Department of Mathematics,
> Faculty of Science, Hiroshima University

References

[1] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquiums Publications, Vol. 13, New York, 1932.
[2] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquiums Publications, Vol. 28, New York, 1942.
[3] R. F. Williams, Local properties of open mappings, Duke Math. Soc. J. Vol. 22 (1955), pp. 339-346.
[4] M. E. Hamstrom and E. Dyer, Certain completely regular mappings, Bull. Amer. Math. Soc. Vol. 62 (1956) Abstract 544.

[^0]: 1) Numbers in brackets refer to the references at the end of this paper.
 2) Most of the terminologies and notations in this paper are due to R. L. Moore's book [1] and G. T. Whyburn's [2].
[^1]: 3) We note that, by virtue of the compactness of D_{0} together with the continuity of $\left\{n_{\alpha}\right\}, N$ is compact, and hence that the continuity of a collection in N is equivalent to the continuity in the limit sense of the one (Cf. [2], p. 130).
