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In his theory of vecter valued distributions ([11], [12]) L. Schwartz in-
troduced the concept of partial summability of a kernel distribution, which
makes it possible to give the precise meaning to the Fourier integral written

formally by S e *"* T(y) dy in his work [8]. For any tempered distribution
T, the distribution e~?** T($) is partially summable with respect to y and the
partial integral S e”*% T(y)dy is the Fourier transform of 7. We show in Sec.

1 below that, for a distribution 7, if e~***/ T($) is partially summable with re-
spect to y, T must be tempered. Consequently the set of distributions 7 for
which e **%7 T(9) is partially summable with respect to y is exactly &', the
space of tempered distributions. We show that the same is also true for
vector valued distributions.

One of the present authors proved [13] that various definitions concern-
ing the convolution of two distributions which are available in the literature
are equivalent to each other. The results established there will be generalized
for kernel distributions K(#, #) on R*x R" [see Sec. 27]: K(£—#, 9) is partially
summable with respect to y if and only if (2 + 9) K(#, ) is summable for any

@ € D. The convolution K is defined by <K, P> =“ @(x+y) K(x, y) dxdy, @

€ D or by S K(z—vy, y) dy. The analogous considerations on <’-convolutions

are given. The concept of &’-convolution of two distributions was first in-
troduced in [5] and its further investigation was carried out in [137]. We
introduce the space (noted by €', ,) of kernel distributions for which the con-
volution is defined. If we €', , take the topology introduced in a natural
manner, then @, , will be a permitted, ultra-bornological, complete space of
distributions on R"x R™, '

Finally Sec. 3 is concerned with the convolution defined by starting with
the tensor product of vector valued distributions. The results obtained for
ordinary distributions [13] will be extended to vector valued distributions,
especially we show that S(#—$)QKR.T($) is partially summable with respect
to y if and only if @p(4+4) (S.QR.T,) is summable. We believe that this
result will be of use for further investigation of Schwartz’ theory of the con-
volutions of vector valued distributions.
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For the most part of this paper we use the notations of L. Schwartz’
papers [117], [12] often without any special mention about them.

§ 1. Partial summability of a kernel distribution
Let R" be an n-dimensional Euclidean space. Let T be a summable distri-
bution on R", that is, 7€ D71, then T is considered as a continuous linear form
on (&.). Following L. Schwartz [11] the integral S T(x)dx is defined as <7,

1>, where 1 is a function on R" identically equal to 1 which belongs to (&.).

A bistribution K(%, ) on R*x R™ is a continuous linear form on 9D, ,
(sometimes called kernel distribution or simply kernel), where x and y denote
the canonical variables of R* and R™ respectively, and O, , denotes the space
of indefinitely differentiable functions with compact supports on R*x R™. L.
Schwartz’ kernel theorem ([7], [11]) states that QD ,, the space of distributions
on R"x R™, is canonically isomorphic to D, & D;. The canonical correspond-
ence of K(#, #) and a continuous linear application & x: 2,>2’', (resp. & 'k:
D,—D) is given by the relations:

< Lx(P), ¥> =<K, pQp> =< L (), p>
for every ¢ € D, and for every € D,

ZLk(p) is also denoted by ¢-K or formally by an integral S @(x)K(x, §)dx,
where ¢(%)K(#, %) is the multiplicative product of ¢ € @, and K. Similarly,
Zk() is denoted by K-+ or formally by an integral S K(%, y)y(y)dy. The
precise meaning of the above integrals is given by the following

DeriniTION (L. Schwartz [11]). A distribution K(%, §) on R"x R™ 1s said
to be partially summable with respect toy, if Kz, 9)€ D,(D1),)or p+Ke
(D1, for every p € D. And the partial integral with respect to y g K(z,y) dy

RIIL
18 defined by the relation:

< Kee, 9y, 90> = - KXy

Sfor every p € D,.

In a similar manner we can define the concept of the partially summa-
bility of K(#, ) with respect to x.

Examples. 1°. For any distribution K(#, 9) and ¢ € 9., the multiplicative
product @(£)K(#, ) is partially summable with respect to x, and the partial

integral S p(2)K(x, $)dx is precisely ¢ « K ([11], p. 91).
2°.  For any distribution K(%, #)on R"x R*and any @ € D., p(& + $)K(%,5)
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€ 8(D)(D)LD}). For if we put Ki(%, $)=qp(&+ K%, §), W(HKi(%,5)
=p(&+ PI(PK(#, 9) for any € D,. p(2+ FW($) is a function of D, ,, there-
fore (9 Ki(#, ) € &.,. Hence K, -y € &,. This implies that K, € &(D;)
and a fortiori K, € (D71).(D)).

3° For any tempered distribution K(z, ) on R*x R™ and any ¢ € &, ¢(&
+ DK, 9) € (0)LD) (D11).(D?). This can be proved as in 2°.

L. Schwartz proved ([10], p. 133) that for any T € &/, the space of tem-
pered distributions on R", the multiplicative product e~*"*4 T(%) is partially

summable with respect to y and its integral S e 2" T(y)dy coincides with the

Fourier-transform (7).
Conversely, we show

Prorosition 1. Let T be any distribution on R™. If the multiplicative prod-
“uet e *#IT($) is partially summable with respect to y, then T € &',

Proor. From our hypothesis, we have .
SR¢(x)e'2"i”7 THdx=F (@)NT($) € Dy for any peD. The application

Zip>F ()T of D to D7 is continuous by Theorem 2 of [14]), since the
application p—>F ()T is continuous from D to D’. Let £ be a relatively
compact open subset of R" containing the origin of R". Since the space Dg
is of type (F) and since the space D7 is of type (DF), the restriction & |Dg
is a bounded application ((11], p. 62) i.e. it transforms a suitable neighbourhood
of zero in D; into a bounded subset 4 in D}:.. We may assume that 4 is an
absolutely convex closed bounded set. Then the application of Dz to (D11,
the subspace of @71 generated by 4, is continuous in the topology induced by
D7 for some positive integer m. We can take a positive integer p such that
a ue Dy is a parametrix of an iterated Laplacian A ([8], p. 47):

@)) d=Afu+n, ne Dy

Since u € D7, we can choose a sequence {u;} such that u; € D¢ and u;—u in D3
as i—>co, Hence S (w)T € D7:. From (1) we have

@) T=(—4x*r** G ()T +F ()T,

where r denotes the length of x. Since FW)T, F ()T € D C Y and 1 € Oy,
it follows from (2) that T ¢ &*’. This completes the proof.

Remark 1°.  If for a fixed x, e™** T(9) € (D}1),, then Te D71 and the
application x—e~***7 T(9) of R" into D71 is continuous. In this case F(7) is
a continuous function and for each x ¢ R*

FIA=| e TGy.

2°. We can show that an analogous statement of Prop. 1 holds for a
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kernal K(z, 9)=2n].;2-12=|%|]$|)/(Su-1|£|"27 | $|"?""), which is the kernel
of the Fourier transformation of tempered distributions invariant under ro-

tation. Here J,,_, denotes a Bessel function of order %—— 1 and S,_; the sur-

face area of unit sphere of R". To begin with, we shall give a brief account
of distributions invariant under rotation. Let O(z) be the Lie group of rota-
tions p around the origin of R*. For any distribution 7, pT stands for the
distribution defined by the relation: )

<pT, p>=<T, p~'¢> forevery p e D.

We put T'=S pTdp, where dp denotes the invariant measure of O(n) with total

mass 1. 7" is called the spherical mean of 7. Since the application p—pT of
O(n) into D’ is continuous, T" is a distribution. It is easy to verify that 7"
is tempered if T is also. We call T to be invariant under rotation if 7=T".
When T is a function f, then 7" is also expressed as

o ) S0oxe

where do denotes the volume element of the unit sphere of R (cf. [10]. exposé
7). As for the convolution, if S is invariant under rotation, it is not difficult
to see that

(S*xT)'=SxT",

so that S+T is invariant under rotation if both S and T are also.

Let o be any element of <. It follows from the expression of ¢' that ¢*
€ < and p—¢' is a continuous endomorphism of <. Hence, for any element
T of &’ the relation <T', o >=<T, ¢'> shows us that 7" ¢ &’ and that the
application } is a continuous endomorphism of &’. We can also verify that
GF(T)' = (T") since this equation holds by direct calculations for any ¢ € &
and the application b is continuous as just mentioned. The same is also true
for the inverse Fourier transformation, so that & (7") is invariant under rota-
tion if and only if T is also.

Now we consider the endomorphism §&I of “.((D71),). For any T'e &,
we know that e=2"*? T(9) € <Z.((D11),). Then

3 QD™ T(9)=K&, HT(H),

where K(#, #) is the kernel stated in the beginning.

Indeed, for any T in &/, the relation (3) is a direct consequence of calculations
and 7(§)—e 2"*7 T($) is continuous from &’ to ((D71),), so that (3) holds
for any T € &’. Therefore, for any T € &’

K, 9T(§) € & (Do),)
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and
F(T)(#)= SR{C(&, Y)T(y)dy.

Conversely, for a given distribution 7, we assume that K(z, $)T(9) is
partially summable with respect to y. We shall show that T ¢ &” We put
Ki(z, 9)=K(#, $)T(9), then, for any ¢ € D

@ Ki=(gp - K)T
and
@ K= (@)= (p").

While in the Prop. 1, a parametrix u of iterated Laplacian A? can be taken as
invariant under rotation. Then we can go along the same line as in the proof
of Prop. 1 to conclude that 7 ¢ &',

Before stating the next proposition we shall give a short discussion on
the notation (2 —#)K(#, #), where & denotes Dirac mesure on R* and K(#, ¥)
denotes the distribution on R*x R™. This is the image of the tensor §()®
K(E, 7) by change of variables: {=z—x, £=x, n=y. Hence 8(2—2)K(, ) € D’
(D:,,). It is to be noted that

4) (&) + 82— 2K (%, $)=p(2)K(z, §) for every ¢ € D,.
In fact, for every € D, ,, we have
<@(@) 8@ — DK, P, Y4, $)> |
1] 36— K, e, )y

f

[ o BEXDKCE, e+ E0yE,

I

I

|
SLW K& M€, ) | SRHB(Z)q)(é'-FE)dC}dEdq
..

K(E) "7)‘!’(53 ﬂ)?’(f)dfdﬂ
= (-'V)K(&) _)A’)’ "!’(56) 5})>'
Hence we have (4).

Provposition 2. For any distribution K(z, #) on R*x R™, the following con-
ditions are equivalent:

€)) " K&, $) € DD,
(2 32— Kz, 9) € D (D)., ,)
And, iof K(%, 9) satisfies (1) or (2), then we have
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[KCty={[ | 8—oKCx, y)idy.
Proor. By definition, (1) and (2) are equivalent to

%) S P(x)K(x, $)dx € (D71), for every p € D,
and
2" P(&)K(%, 7) € (D11),,, for every p e D,

respectively.

(1)—(2). (1) implies that p(2)K(%, 9) € &E.(D1),) for every p € D,. Then it
suffices to see that & J((D%1),)(D1).,,. Since & is nuclear and the in-
jection &.—(D1%1), is continuous, this is obvious.

(2")—>(1"). Fubini’s theorem [11] shows us that (2) implies (1'). Finally, for
any ¢ € D, we have

<@, || . 3 ~KCx ydady>
=§ gmmq)(e) + 8(2 — 2)K(x, y)dxdy
[, K, yiny
= <qp(®), SRMK(E, y)dy >

Hence SRMK(E, y)dy:SSRn RmS(é—x)K(x, y)dxdy. This completes the proof.

Now we turn to the investigations of the space D ((D11),). We begin
with the fo}lowing

LemMma 1. Let E be a permitted barrelled space of distributions with ad-
massible (normal in Schwartz’ terminologies) strong dual E’. Then E’ is also a
permitted barrelled space of distributions.

Proor. Let {ai}-1,2,3,.. be any sequenee of multiplicators and {pi}-1,2,3,..
any sequence of regularizations. That E is permitted means that («; e)*pi—e
in E (resp. ai(expi)—e in E) for every e as k—co. Since E is a barrelled per-
mitted space and D is dense in E’, it follows from Lemma 1 of Y. Hirata [4]
that £’ is permitted. Then it suffices to show that E is distinguished, that
is, any o(E”, E')-bounded subset of E” is contained in the «(E”, E’)-closure of a
bounded subset of E. Let B be any o(E”, E')-bounded subset of E”. B is also a
bounded subset of E” since E’ is quasi-complete as a dual of a barrelled space.
Set

A= \jak(B*pk).
k=1
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A is considered as a subset of E. We show 4 is bounded in E. For this end
it suffices to see that 4 is o (E, E')-bounded. Let ¢’ be any element of E’. As
(a; €)*pe—>e in E', {(axe’)*p,} is a bounded subset of E'. Now since B is bounded
in E” and since

(A, ¢ >=\U<B, (au)>
k=1

it follows that < 4, ¢’ > is bounded for every ¢ € E', so that 4 is bounded. It
is not difficult to see that B is contained in the «(E”, E')-closure of B. This com-
pletes the proof.

As an exemple, d'@, the space of indefinitely differentiable functions tend-
ing to zero at infinity together with derivatives of every order, satisfies the
condition of the lemma, so that its strong dual is barrelled, therefore borno-
logical since D71 is the strong dual of a space of type (F) [11]. This is also
concluded from the fact that & is a quasi-normable space of type (F), the
proof of which is carried out by the verification of a criterion due to Grothen-
dieck ([2], p. 107) concerning the quasi-normability of a locally convex space
and is not so difficult, so that the proof is omitted. -

Now we show

ProrosrTion 3. (1) D((D71y),) s tke strong dual of Q_),(/Sy) and is a per-
mitted, ultra-bornological complete space of distributions.
(2) The strong dual of D(D7),) is D(R),).

Proor. Ad (1). Owing to a result of L. Schwartz [12; p. 1047, it follows
since & is a space of type (F) that the strong dual of @,(£ )is DL(D),)
which is the strict inductive limit of an increasing sequence of space O, B
(&) of type (F), where B, stands for the ball with radius p and center at O in
R", x Bp(agy) is a topologlcal subspace of a@x , such that the supports of
functions in D, (/3 ) are contained in B, x R™. The duality between D
(D1Y),) and @z(de’y) is given by

<T, p>= Sanme(x, ¥) px, y)dxdy,

Te D,(Dr),) and @ € D(RB).

Since every space of type (LF) is barrelled, we see that @x(c'@y) is bar-
relled. Moreover it is permitted. This is immediately verified by direct
.calculations. And it is easy to see that O.®%D, is dense in the dualD(D71),).
Hence we can apply Lemma 1 to D (/3,) to conclude that D,(D1v),) is
permitted. The dual of any distinguished space of type (LF) in the strict
sense, i. e. in the sense of Dieudonné and Schwartz [1] is ultra-bornogical
[38]. It follows that D ((D71),) is a permitted ultra-bornological space of
distributions.

Ad (2). Let E be the strong dual of D.((D71),). E consists of all the
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bilinear continuous forms 8 on D7, x(D71),. The associated linear application
B: (D1),—»D, defined by

<B(T), $>=(S, T)

for every S € D/, and T € (D}1), is bounded. We can put for each 3

© A= 108G Y,

where B(x, y) is a member of £, for every fixed x. S(x, y) is also defined by
G Bz, Y)=B., 5,) |

where 8 and 8, denote the point measures located at x and y respectlvely
Blx, ¥) vamshes outside a B, x R". Since

(lii) D:’:D}q'ﬁ(x’ }’)::3(( - 1) ip l'Di’Bxa ( - 1) Lel D‘}I'Sy))

it follows by usual reasonings that the function £ is a member of D& »)-
Conversely any B e D& ,) defines an element of E. This is almost clear
from (i). Therefore E is algebraically D.(& )

We shall compare the topologies of E and D,(& ,). The latter is, by
definition, the strict inductive limit of an increasing sequence of spaces D ,
(& ,) of type (F). That every bounded subset of DR ,) is a bounded subset
of E is clear from (i). Hence the injection D,(& ,)— E is continuous since D,
(&) is bornological. On the other hand, a fundamental system of neighbour-
hoods of 0 in E is obtained by taking the o (E, D((D71),))-closure of that of
@,(ﬂg ). A fundamental system of neighourhood of 0in D (/3 ) is given by the
family of the subsets U({&}, {mk}) of @x(agy) defined by the following con-
dltlons ([9], p. 95):

(@ - &1 0 and m; 1 oo as koo,

)] @ € U{&}) {m}) if and only if
Sup Sup | D, ,(x, y) | <&
|pl £&myg x&B

Then the o(E, D ((D71),))-closure of a U({&}, {m:}) is contained in the set
defined similarly for D& ,). This is clear from (ii) and (iii). Hence the in-
jection E->D (R ,) is continuous. Therefore E is topologically DR y). Thus
we see that the strong dual of D,(D%),) is D.(AL,). This completes the
proof.

Since D (D171),) is barrelled, 1t is easy to see that D ((D71),) has the ap-
proximation properties by truncature and regularization ([117, p. 8 Remarks).

Prorosition 4. The application K(%, $)—8(2—2)K(z, ) of D,((D711),) into
D (D7, ,) 18 monomorphic.
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Proor. The application is injective. In fact, suppose 8(2 —%)K(#, #)=0.
Then 8(2)QK(%, $)=0. Hence K(2, $)=0. {K}—0 in D((D71),) if and only

if, for any bounded subset 4 of D(R,), SS K(x, y)p(x, y)dedy—0 uniformly
when @ runs through 4. {8(2—2)K(#, $)}—0 in D (D}1).,,) if and only if,
for any bounded subset B of . and any bounded subset C of /3,, y,{“ K(x, y)a

(x)B(x, y)dzdy}—0 uniformly when «, 8 run through B and C respectively.
Therefore if we can show that the sets BC form the set of bounded subsets
of D.(&,), the proof will be completed. It is clear that any BC is bounded
in @x(igy). Conversely, any 4 is a bounded subset of J;’x, y» With supports
contained ina B, x R™. If we take a € D, such that a(x)=1 on a neighbourhood
of B,, then A=a4, and therefore 4 is a set BC, as desired.

By making use of the category theorem of Baire we show

Lemma 2. Let E and F be spaces of type (F), and let G be a space of type
(DF). Let{u.}.c.be a set of separately continuous bilinear applications of Ex F
wnto G. If, for every x € E and y € F, the set szm(x, y) 18 bounded, then {us}ae.4

@€

18 equibounded.

‘Proor. Let {B;} be a fundamental sequence of bounded subsets of G. We
- may take B, to be a bounded absolutely convex closed subset of G. For every
% € E, we put Fi(x)={y; uax, y) € B; for every a € A}. Then Fi(x) is an abso-
lutely closed convex subset of F and F= \k/Fk(x) since \a/u,(x, ¥) is contained in

some B;. Owing to the category theorem of Baire we see that there exists an
Fyx) such that Fy(x) is a neighbourhood of zero of F. Now let {V,} be a fun-
damental system of neighbourhoods of zero in F. We may assume that V,D>
Vaer. 1f we put Ey={x; ua(x, Vi) CB;}, then E; is an absolutely convex closed
subset of Eand E = \kJE,c Then as before we can apply the category theorem

to conclude that some E; is a neighbourhood of zero in E. Hence there exists
a neighbourhood U(resp. ¥) of zero in E (resp. F) such that UAu“(U’ V) is con-
! 113

tained in a B;. This completes the proof.

ProrosiTiON 5.  For any subset A of D, ,, the following properties are
equivalent to each other:

(1) A s relatively compact in D, (D711),),
@ Axyr is relatively compact in D, (D711),) for every e D, ,,

(8)  p(Ax) is relatively compact in (D71),,, for every € D, , and p¢€
D,, ‘ '
(4) @A is relatively compact in (D7y),,, for every p € D,.

Proor. Ad (1)-(2). The endomorphism T—Txr of D.(D71),) is con-
tinuous for every € D, ,([14], Theorem 2). Hence A* is relatively compact
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in D,(D7),) for every € D, ,.

Ad (2)—(8). Since for any ¢ ¢ D,, the application T—>¢T of D ((D71),)
to (D1y).,, is continuous ([14], Theorem 2), p(A4*y) is also relatively compact
in (D711).,, for every p € D, and € D, . ,

Ad (83)—>(4). Consider the application &r: (@, V)—>@(Txy) of (Dg). x
(D)., , to (D1y).,,, where H (resp. K) is the unit ball with the center at zero
in R*(resp. R" x R™). This application is separately continuous [ 14; Theorem 2.
(Dw), (Dx).,, are spaces of type (F) and (D71),,, is a space of type (DF). We
can now apply Lemma 2 to conclude that the applications {7z} re4: (Dg).x
(Dg).,,—>((D1).,,)s are equicontinuous in the topology induced by (Dg).x
(DR).,, for some positive integer m, where ((D71). ,)s is the subspace of
(D1y).,, generated by B. (D)) satisfies the strict Mackey’s condition ([2], p.
103) since /@w is quasi-normable, hence we may assume that the set ¢(4+yr)
is relatively compact in ((D71).,,)s for every ¢ € (Dy). and ¥ € (D)., ,.

Choose a parametrix u € (Dg),,, for an iterated Laplacian A?. Then we
have @T=@(T*A)+ p(Txy), where 7€ (D). ,. Since ue(Dp),,, we can
choose a sequence {u;} such that u; € (Dy).,, and u;—u in (D). Then p(4*u;)
and p(A*n) are relatively compact in (D71). ,. p(4+*u) is also relatively compact
because p(T*u;)—>@(T*u) uniformly when 7" runs through 4. Since ‘p(T*'é?_.")

%G;

(p> (T*u), it follows that ¢(A* o u)is relatively compact

_ 0 _< 2
= .8_32 {p(T*u)} B I,

in (D71).,,. Repeating this process, we can see that p(AxAPu) is relatively com-
pact in (D71),,,. Therefore ¢4 is relatively compact in (D7), ,.

Ad (4)>(1). If T runs through 4, then ¢ - T'= S"’ T dx falls in a bounded

set of (D11), for any @ € D,. This means that 4 is bounded in (D..(D7),)

in the topology of simple convergence, hence 4 is a bounded subset of D}

((D71),). The application (p, T) € &, x D(D11),)—»pT € DA((D7),) is hypo-

continuous, since it is separately continuous and &,, D, ((D71),) are bar-
. relled. Hence for any sequence of multiplicators{«a,}, {«.T} converges to T as

n—co. Since a, € D,, each «,4 is relatively compact in D,((D7»),), therefore

A is relatively compact in D ((D7),). This completes the proof.

As a special case of Prop. 5 we mention the following

i

CoroLrary. Let T be any distribution on R*xR". If Txy € D, (D71),)
Sfor every € D, , then also T € D, (D1),).

Let E be a locally convex Hausdorff topological vector space. A linear
continuous application T of @ into E is defined to be an E-valued distribution
or a distribution with values in E. We denote by ’(E) the space of E-valued
distributions. On D’(E) we put the topology of uniform convergence on
bounded sets of D. If u: E,—~D’ is a continuous linear application, it is the
transpose of a uniquely determined E-valued distribution T, i.e., u=‘T. Let
# be a space of distributions. The space F°(E) consists of all E-valued
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distributions T which have the following property, ‘T : E,—~ D’ maps actually
E. into 57 and is a continuous application of E, into 5. FZ°(E) takes the
topology of uniform convergence on equicontinuous subset of E.. Namely &~
(E)=Z(E., 7). 1t is well known that & (E., 77 )=.F (7., E). Accord-
ing to L. Schwartz ([11], p. 130) we state the following

DeriviTion. 4 distribution K € D), (E) is said to be partially summable
with respect toy if K € (DUD)NE)=D(Di)AE)). The partial integral,

noted by S K(#, y) dy, is the image of K by the continuous application I ®S Rz

of (@,(@ Ln),)(E) into D(E), where I, and I are the identities of D, and E re-
spectrively.

L. Schwartz ([117], p. 133) defined the Fourier transform of vector valued
tempered distribution 7 ¢ YL(E): e 2%%#T(%) is partially summable with re-
spect to x and

< Se'z’”'"é T(x)dx, & >=9(<T, & >) for every & € E'.

We can show that if E is quasi-complete and ¢~2*¢ T(#) is partially sum-
mable with respect to x (more generally if e~2***< T(x), &> is partially sum-
mable with respect to x for every ¢ € E’), then T € &”(E). The proof may be
carried out with obvious modifications along a similar line as in Prop. 1.

Finally we conclude this section with the following

Prorosition 6. Let E be a quasi-complete locally convex Hausdorff topolog-
ical vector space. For any E-valued distribution K on R*x R™, K(#, §) is par-
tially summable with respect to y if and only if K = yr 18 also for every yr € D, ,.

Proor. The “only if” part is obvious since th& application 77 x+ of
DL(D71),) into itself is continuous. To prove the “if” part, we first assume
that F is complete. Any linear application of E. into a second locally convex
space F is continuous if the application is continuous on any equicontinuous
subset of E4 ([117, p. 41). Hence it suffices to: show that &¢—<K, &) is con-
tinuous from any equicontinuons subset of E, into D,((D71),). Let 4 be any
absolutely convex equicontinuous subset of E.. Since K * 4 € DL(D71)(E))
for everv re D, ,, so the set<K, 4> is relatively compact in D.L(D71),)
for every Y€ D, ,. It follows from Prop. 5 that <K, A> is relatively com-
pact in D,((D71),). Let &—0in 4. If T is any limiting element of {<K,
&>}, whose existence is assured by the relative compactness of <K, 4>,
then T*«;» is a limiting element of {< K, & > *Jr} which converges to zero since

&'— <K, &>y is continuous. Henec T +»=0 for any € D, ,. Th1s implies
in turn that 7=0. Therefore <K, ¢ >—0 as &—0 in 4.

Next we consider the general case. Let £ be the completion of E. D
(D71),(E)) is a topological subspace of D.(D71),(E)). By the result estab-
lished just above, K € D,(D71),(E)). Let {p;} be any sequence of regulariza-
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tions. Kxp,—>K in D,L(D11),(E)) as i—>oco. On the other hand, for every i,
Kxp, € D.((D11),(E)), the quasi-complete space. Henec we have K ¢ D’
(D11)E)), completing the proof.

If E is a scalar field, Prop. 6 tells us that a subset 4 of @7: is relatively
compact if and only if Axp is relatively compact in L' (resp. D71, D) for any
@ € D. In particular, it follows that a sequence {T:};.1.» .. of D71 converges
to zero when T} *p—0 in L' for any ¢ € D as k—oo.

§ 2. Convolution of a kernel distribution

We shall define the convolution of a distribution K(%, #) on R"x R" under
the following condition: . ,

1) (% + DK, §) € (D)., for every p e D,

If this is the case, the convolution which we denote be K is defined by the
relation:

<I'(, p>= ngxm(p(x + y)K(x 4 y)dxdy.

K is a distribution on R" since the application p—p(&+ KR, §) of D, into
(D11).,, is continuous ([14], Theorm 2). According to the definition of the
" space D ((D2.,,), (1) is equivalent to '

@) 32—2—PK&, 9) € D.(DL)s, ),

where (2 —%— $)K(#, ) is a distribution on R"x R"x R issuing from §2)&
K(#, ) by change of variables.

Owing to Prop. 2 and by making use of change of variables we can
deduce from (1) or (2) the following equivalent conditions:

3) . p®KGE—, 7)€ (D)., for every peD,,

@) Sq)(x)K(x— $, $dx € (D7), for every p e D.,

) K(%—#, %) is partially summable with respect to y,
(6) P(R)K(P, £—9) € (D1).,, for every p € D,

™ S(p(x)K(y, 5= P)dx € (D7), for every ¢ ¢ D.,

8 K(#, 2—#) is partially summable with resbect to y.

The convolution K is also given by the integrals:

K@&)= SK(&—% y)dy=gK(y, &—y)dy
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K@= “8(2 —x—)K(x, y)dxdy

In fact, < SK &—y, Ydy, p(&)> =SS<p(x)K(x —v, ¥) dxdy
'——ggfp(x'*-y)K(x, y) dady= <K, p>, for every pe D.

Hence K(2)= SK(& —y, ¥)dy. In like manner we have K(z)= SK(y, &—y)dy.

As regards the last equation, its validity results from

< Sg 8(2—x—y)K(x, y) dxdy, p(8)> ZSS @(x+y)K(x, y) dxdy = <K, Pp>.

When K is decomposable, i. e., K(%, $)=S&)RT($), then the above-men-
tioned conditions give rise to the equivalent conditions for two distributions
S, T to be defined the usual convolution Sx7T, which coincides with K [137].

For example, € D, , satisfies the equivalent conditions and (&)=

Sw— v, 9)dy. For any K(z, §) € €., it is clear that p(&+ $)K(#, §) € (Di)a.,
since its support is bounded. This is also the case for ¢ € &, and the appli-
cation @&+ 9)K(%, ) of &, into (D71),., is continuous. Then K € &' and
<K, p> =S plx+y)K(x, y) dxdy.

We define K* by K*(#, 7)=K(#, %), that is, <K, J(&, )> = <K, y(F, £)>
for every yr € &, ,. The condition (1) yields that K is defined if and only if
K is also, and K*=K.

Now consider the condition:

(9)  the convolution of Kxr is defined for every 4 € D, ,.

If we put Ki(%, ))=K@&—7, 9), \n®, 9)=y(£—#, #), then it is easy to
verify that (Kxy)(&— 9, #)=&Ki*y1)(%, #). Then it follows from Corollary of
Prop. 5 that K(&#—#, #) is partially summable. The converse is true also.
Therefore K is defined if and only if (K *4r)* is defined for every € D, ,.
We show that

(Kxy)* =K.

By a similar reasoning as in the proof of the implication (1)—(2’) of Prop.
2, we can show that the condition (9) is equivalent to

(10) i+ PKGE—E, §—E D) € (D1 y b0
for every p€ D, and € D, ,.

Then
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=<, Kxp>= <K, p>.

Hence we have that (KxJ)* =K.
We have proved in the preceding discussions

ProrosiTion 7. For any d@stmbutwn K (#, j>) on R*x R", the conditions (1)
~(8) are equivalent. The convolutions K and K* are defined and coincide if K
is defined. K is defined if and only if (K x@)* is defined for every p € D, ,.

Suppose K is defined. Let T be any distribution on R*x R* with compact
support. We show that (K*7)* is defined and

[¢5)) (K*T)*=K *T.

Let + be any element of D, ,. T*+ is also an element of D, ,. Then (K*T)
*Jp=K*(T*+), Hence KT astisfies the condition (9). Therefore

(K TY*sajp= (K T) ) =(K (T x41)*,
=K #(Trp)* =K w (T aip)=(K +T) .

Hence (K*T)*=K «T.

Let @, , be the set of distributions K(, #) on R*x R* for which the con-
volutions are defined: K satisfies the equivalent conditions (1)~(8) discussed
above. By change of variables x=§&—7, y=y, €, , is transformed into D}
{(D1D),). On @, , we put the topology so that the application € ,—D(D1),)
is isomorphic. Then the application K(z, $)—8(2—4%— $)K(#, j?) of 0, , into
D.((D1Y).,,) is monomorphic, because the application is decomposed into K(#;,
)f)—>1:<(§—77, N8 —EHKE 1, N—>8e—4—HK&, 9), where K(E—14, 7)—>8(¢ -
E)K(E—7, ) is the isomorphism of Di(D711),) into Di(Dr)g, ), and 8(€—¢)
K(E—7, 9)—>8(2—4—$)K(#, $) is caused by change of variables £=x+y, 5=y,

=z defining the isomorphism of D {((D71),,) onto D, (D)., ,). It follows
from Prop. 3 that @, , is a permitted, ultra-bornological, complete space of
distribution Wlth the approximation properties by truncature and regulariza-
tion. Let €., be the strict inductive limit of an increasing sequence of
‘spaces (@x »)p of type (F), where (@x ,)p 18 a subspace of 6@,, , consisting of
functions with supports in the cylinder [x+y|<p, p being a positive mteger.
By change of variables x=§£—7, y=7, we see that @, » is isomorphic with
DR y). Therefore it follows from Prop. 3 that @, , is the strong dual of @,,, s
and the duality between € , and @x, , is given by
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12 <K, 9> = || K ot ) ddy,

where K€ €., and ¢ €0, .

It is clear that the strong dual €, , of 0, , results from D¢(&,) by change
of variables x=§£—7, y=n, that is, €, , is the strict inductive limit of an in-
creasing sequence (C, ,), of type (F), where (€, ,), is the subspace of &, ,
consisting of functions with supports in the cylinder |x+y|<p. The duality
between U, , and €, , is given by (12) with K€ 0, ,and ¢ € C, ,. Any bound-
ed subset of @, , is equicontinuous. The topology of compact convergence on
compact subsets of €, , coincides on bounded subsets of €., , with the topology
induced by &, ,.

It is to be noticed that the application (p, v, K)>@p&+ 9) (Kxy) (&, 7) of
D, xD,, ,x0, , into (D11),,, is hypocontinuous. In fact, since D,, D, , and
@.,, are barrelled, it suffices to see that the application is separately contin-
uvous. This is almost obvious from Theorem 2 of [14].

Now we give an &’-convolution of a distribution K(#, #) on R* x R* under
the condition:

an P&+ 7)K%, 9) € (D1).,, for every ¢ € ..

The '-convloution which we denote also by K is defined by

<kyp>=\{ oty ydady.

Since the apphcatlon p—>p&+ K%, y) of ¢, into (@ 21, 18 continuous ([14],
Theorem 2), K is tempered, that is, K e &. 1t is clear from (1") that the &’-
convolution K, if defined, coincides with the previously defined convolution.
We note that (1") implies K€ &, ,. In fact, let ¢ be the Fourier transform
¥, Y € D, then the application y—J(2+ KR, 9) of D into (D1y).,, is con-
tinuous. It is almost obvious that we can make use of a parametrix for an
iterated Laplacian as in the proof of Prop. 1 to conclude that K¢ &} ,. &,
(D7), is the strong dual of 3,(6@,) ([12], p. 103), and we can apply Lemma 1
of §1 to show that (D7), is a permitted, ultra-bornological complete space
of type (DF), with the approximation properties by truncature and regulariza-
tion. The strong dual of <,(D7y), is &, (&,) ([12], p. 103).

By similar reasoning as in the preceding discussions, we can find the
equivalent alternatives of (1’). Suppose K is tempered. Taking into consid-

eration the definition of &,((D71).,,), we see immediately that (1) is equiv-
alent to

@) 82— DK, $) € LD ,y).
By change of variables we obtain from (2'), the equivalent conditions:

&) Kx—73, 9) € S(D1),),
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@) K(p, 8—5) € F.(D1),).

The &'-convolution K is also expressed by the following integrals:

SR,,K(J‘C—% y)dy, SRnK(y, &—y)dy, “R 8@ ==K, y) dady.

With necessary modifications of the proof of (11) we can show that if the
&'-convolution K is defined, then for any T € (&, )., , the &'-convolution (K+T)*
is defined and

(K*xT)*=K «T.

Finally we turn to the simultaneous convolution of a distribution on R* x R" x
---x R™ For the sake of simplicity we consider a distribution K(#, ¥, £) on R"
X R*x R*. We say that the convolution of K is defined if the following con-
dition:

an P&+ 5+ 2K &, 9, £) € (D), for every p € D,

is satisfied.
‘The convolution which we denote also by K is given by the relation:

<]

K is a distribution on R" since the application p—p(2+ 7+ 2)K(#, 9, 2) of D,
into (D71).,,.. is continuous ([147, Theorem 2). It is easy to see that (1”) is
equivalent to the following conditions:

. plx+y+2)K(x, y, 2) dedydz.

R®x R"x R™

@) da—%—3—2)K(%, 9, 2) € D (DL, )
(3D K¢—-%—9, 9, 2) € Di(DL)s,,),
(32) K(#, 2—2—9, 9) € D.(D1). ),
(3%) K, 9, 2—4—9) € D.(D1)s,,).

‘The convolution K is also expressed by the integrals
S S S R"xR"xR"S(iz —x—y—2z)K(x, y, z)\ dxdydz, S SRnXRnK(ﬁ —x—Yy, %, ¥) dxdy,

S SR"xR"K(x, 2—x—y,y) dxdy, S SR"xR"K(x’ ¥y 2—x—Y) dxdy.

The spaces C, .., €., ., C.,,. can be defined in the same way as C, ,, €. ,,

Q.. :
We say that the partial convolution of K(#, 9, £) with respect to x, y is
defined if K(z, 9, 2) € €, (D). This will be a special case of the convolution
of a vector valued kernel distribution treated in the next section. The con-
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dition that the partial convolution of K(#, 9, £) with respect to x, y is defined
is the following :

13) p(&+ DK%, 9, 2) € (D)., (D)) for every p € D..
This is also equivalent to any of the fqllowing conditions:

(14) 8 —%— K@, 9, 2) € D, (D1,

15) K(x—9, 9, 2) € D, ((D1),).

The partial convolution H(%, 2) of K(%, 9, 2) is given by the relation:

@ HZ)= S SR"xR"¢(x +y)K(x, y, £) dxdy.

H is also expressed by the integrals:

S SmenB(a —x—y)K(x, y, 2) dxdy, SRnK(a‘n -9, ¥, £)dy.

In fact, let these integrals be denoted by H; and H, respectively. For any ¢,
€ D, we have '

<o Hy, > = <Hi, p@)y(2)>
= [\t 2K - X, Yoty =< ([ e+ K, 3, 2) dady, 2>
<@« Hy, > = < Hs, p(&)W($)>
S {S(p(x)(K ) x—, ¥) dx} dy= SSga(x +Y)K * ), ) dxdy

l

=< SSq)(x +9)K(x, y, 2) dxdy, J(2)>.

ProrositioN 8. If the convolution of a distribution K(%,7, 2) on R*x R*X
R" is defined, then the partial convolution H of K with respect to x, y is defined
and the convolution of H is also defined and we have

K=H.
Proor. Since the convolution of K is defined, we have
Sa—x—p—2K@, 9, 2) € D, (D1,
By change of variables u—u+z, x—>=x, y—=y, z—z, we have
a—&—PK(&, 5, 2) € D, (DLo)x,y).
Hence the partial convolution H of K is defined, and H(%, 2)=S K&—y—2,v, %)
dy. Now it is easy to see that |
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H(i—3, 2)=SK(5c—y—2, y, 2) dy.

Since K(#—9—2, 9, 2) € D.(D71v),,.) and K= S SK(a*o—— y—z,v, z)dydz. Therefore

H is defined and K=H.

We can apply Prop. 8 to deduce the equation (11). If K is decomposable
1. e.,, K=S®RTRU, U+0, then Prop. 8 is equivalent to saying that if the sim-
ultaneous convolution S*T*U is defined, then (SxT)+U is defined and

SxTxU=(S*T)x*U.

The result was already established inAShiraishi [13].
We can define the simultaneous &’-convolution of K(#, #, 2) and show the
analogue of Prop. 8. -

§ 3. Convolution of a vector valued kernel distribution

Let E and F be two locally convex Hausdorff vector spaces, not neces-
sarily quasi-complete. EQ F denotes the quasi-completion of inductive tensor
product ER.F, the locally convex topology © of EQ.F is a unique locally con-
vex Hausdorff topology such that under the usual correspondence between the
bilinear application of E x F into an arbitrary locally convex Hansdorff space
G and the linear applications of EQF into G, the separately continuous bilinear
applications of E x F into G precisely correspond to the continuous linear ap-
plications of EQF provided with the topology 0.

Let S and T be vector valued distributions on R* with values in E and F
respectively, that is, S € DUE), T € D)(F). The tensor product SQR.T is, by
definition, an EQ® F-valuded distribution on R"x R" defined by the following
relation ([12], p. 145):

5.QR.T, « ulxw(y)=(S - u)Q - v) for every u, v e D.

From this definition of tensor product of vector valued distributions we can
easily prove

Lewva 3. () (.x )@, * )=E.QRT,)* (9@ for every ¢,y € D.
And (S.QQ.T) * (pQnr) 18 an indefinitely differentiable function (x, y)—>(§ * @)
@QT *y)(y) with values in E ®.F.

(i)  IfU, Ve&,then S.* DRI ,+V)=E.QR.T,) * (UQV),

i) For any o € D, {pu+ 9)E.QRT Mx=[( = )T,

and

ch +9XS.BR.T )y =[S T+)]..
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(iv) For any @, € D, S (% + y)((§,®®f ») * ) dx 18 a distribution of

E (ERF) and 18 written as (§ * @) ( y)®,(T * ) (y), where [ . denotes the
multiplicative product of two vector valued distributions defined by L. Schwartz
([12], p. B7).

Proor. First we prove (ii). Let u, v be any elements of @. Then

S*DRIRT * V) - @)= *U)+u QT *V)+v
=S - (U *w)QT + ¥ *)=ERQR.T) - U )@ * )
=R - (UQV)* (u Q@ 0)=ERR.T) * URV) - u R v.

Hence we have the equation (ii).

Specially, (S * )QRT * P)=ERR.T) * (p@) for every @, 4 € D. Let
K denote the second member of the equation. Then K € &, (E® F). Let 5.,
8, denote Dirac measures located at points x, y respectively. Since 5,X3, €
&, so that K(z, y)=K - 8,8,.

K - 8.28,=ERR.T) * (pQ) - 8.8,
=ERRT) + (3*8.)Q0 * 8,)=8 + 7.6 QT - 74
=(S * ) @RT * ¥)(9).

The equation (iii) is proved in ([12], p. 181).

Before proceeding to the proof of the final part (iv), some preliminary
discussions on the multiplicative product ¢(2+ $)K(#, ), where p € D,, K€
D(&,), are given. _

Let E be a quasi-complete locally convex space. &.(E) is, by definition,
the space of indefinitely differentiable E-valued functions f (x) on R* with
usual topology ([9], p. 94). &.(E) is isomorphic to &,.(E) by the application
f(x)=5,+ T, T being an element of &,(E). Nowletae &, ,, K € DYE,), and
we denote by @(y) and K(y) the corresponding functions in &(&,) and &,
(D7) respectively. Since the multiplicative product between &, and @, is hy-
pocontinuous, the function T(y) =&(y)12(ylis.an indefinitely differentiable func-
tion with values in D, that is, T(y) € &,(D%). Evidentely the application
(a, B)>T is separately continuous. We show that the distribution 7 on
R"x R" corresponding to T is «a K, the multiplicative product of « and K. The
application (a, K)—a K is also separately continuous from &, ,x D«(&,) into
D.,,. For the end of the proof it suffices to show that it is the case where
«a and K are decomposable. Let a(z, §)=E&)Qn($), K=S.Q&($), where &, 7,

te€& and Se D'. Then a(y)=Ex)m(y), K(y)=S.L(y), T(y) E#)San(y)¢(y). For
anyu€ D, ve D, we have

<a K, u@v> = <ES.Qn&, uQv> = <&S,, u> <qf, v>,
<T, u@v>=<T o, u>=< S ESa(NE(yw(y) dy, u>
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- S <ES., u> g (y)dy = <ES. 1> <nf, v>.

From these equations we obtain that 7=« K, as desired. Moreover, since
aK € 8(D.), we see that aK e D,(E,). Now we let a(%, §)=@(&+9), where
€D, Then we see from the above facts that K(z, #)=¢p(&+ $)K(%, §) €
DUE,). We can show K; € D7:(&,). In fact, let G be any compact subset of
R", and H the support of . Then it is easy to see that the support of K; - v, v
€ 8¢, is contained in H—G, a compact subset of R”. It follows that K; € &£,(&,)
and therefore K; € (D71).(&,). It is not difficult to see that the application
(@, K)—>p(x+ DK, 9) of D, x D(E,) into (D11).(E,) is separately continuous.

Let T(9)= S(p(x-{- #K(x, #)dx. Then T is an element of &,, and the value of T
at y, is given by T(y,,)=S #(y)K(y.) dx, where g(y)=p(&+y) € gy(éx). This is

because T(y,)=$,, - T=S¢( ¥R (y.)dx.
In a similar way we can show that @& + 2K, 7)€ (D1).(8,..), and
S(9, 8)= Stp(x-l—é‘)K(x, $)dx € &, The value taken by S at (y,, z,) is S(y,, 2,) =

S@(‘zo)l_{ (y.)dx. From the expressions of 7(y,) and S(y., z,) it is clear that T(y,)=

S(Yor ¥o)-

We come to the proof of (iv).

Since S.QR®.T, € D, LEQ.F), S.QR.T,) 1 € D,(E (EQ.F)) for any €
D,. On account of the fact that the application (p, K)—>p(4+ #)K(%, ) of D,
x D(8,) into (D11).(&,) is separately continuous, we see that o+ §)(S.Q

QT )* ) € (D7), (8,(EQ F)), whence S(p(x-i- S QRT )*,)dx is an ele-
ment U(9) of & (EQ.F). Let g’ be any element of the dual of E®,F. Then

<0, 5> ={pa+yX<5.0DT,, ¥ >+ iz c &,

Next we note that the symmetry of (S.Q®.T,) *,)» with respect to the
variable x is (S.Q®.T,) *,4. For this follows from the following equations:
SRT) *p - iRQv=SRRT - Qv *
=(S - DT + v * ) =(5 - (T *v * )
=ERRT) xh - uQv, u€ D, ve D, ,
We can also show that (i +2)((5.QR.T,) *) € (D18, (ED F)). g P(x+5)

(RKR.T)*,4) dx is an element 7 (#, 2) of &, (E®.F). Now using the remark
stated above, we have

PG, )= p(—+ NE.BRT,) #9)d
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=E.QRT,) * (p) =@ * )T * ).
For any g’ € (EQF)., we have

<P, &> = ot A<ERBT,), B>

Consider the values of <U, > and <V, > taken at y, and at (y,, z,) re-
spectively. ‘

<U, §>()=<U(y,), §>
P, 8> Yoy 2)= <V (yo 2), &>
= <(§ * @)(%)@z(f * \{’)(yn)a §,>

Then it follows from our preceding discussions for prelimaries that
U(y) =@ * o)Xy )RUT * ¥)(y0),
which completes the proof.

Remark. We can show that

® DS * (N * ¥} =q§(§){(§ * D1p) QT *DP~ )y}

For our later use we show the following

Lemma 4. Let E be a locally convex Hausdorff vector space and 7 a space
of distributions. Suppose 72 is a permitted barrelled space or has the approx-
imation properties by truncature and regularization. Let j be the continuous
ingection: FZ(E)—>D'(E). Any linear application & of a barrelled space F/
into 2 (E) is continuous if j - Z is continuous.

Proor. In Shiraishi ([13], p. 21) it was shown that any linear application
%7 of a barrelled space F into a locally convex space G is continuous if G is a
subspace of a locally convex space H with the continuous injection j and if
Ie & (G; G) is strictly adherent to a subset 4 of .&°,(G; G) such that each
u € A is a restriction of a continuous linear application of H into G and such
that j - & is continuous. Put G=F°(E) and H=D'(E). In case 7 is a
permitted space, we take A to be the set of application u,: T—(a.T) * pi of 52
(E) into itself, where {«a;} and {p:} are any sequence of multiplicators and
regularizations respectively. An application u;, as an application of D'(E)
into #2°(E), is continuous and the identical application I of Z7°(E) into itself
is strictly adherent to a subset 4. In fact (a.T)*p,—»T in FZ(E) since < (a;T)
% pg, & > =(a,<T, &>) * p,—><T, &> uniformly in $# when & runs through
any equicontinuous subset of E’. In case 72 has the properties by truncature
and regularization we take A to be T—(a,T) * pr. Then the proof will be car-
ried out in the same way as above, completing the proof.
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ProrosiTion 9. Let G be any quasi-complete locally convex Hausdorff vector
space. For any G-valued distribution K(%, 9) on R"x R", the following con-
ditions are equivalent to each other:

@ R, 9) € €..,(6),

@ . g+ HRG, 9 (D) (6) for every p e D,
® s —2— DK, §) € DD C),

@ [+ 9B @, 9)ix € (D22),(6) for every g € D,

(5) K@&E—9, ) € DUU(Di)L6)), that is, K(&— 9, ) is partially summable
with respect to y,
(6) S P&+ K&, y)dy € (D)L6) for every p € D,,

(N K@, 2—7%) € DLU(D1y), (G)), that is, K($, £—9) is partially summable
with respect to y,

) K x £ €0, (G) for every £ € D,

9 K x5 € 0., (G) for every ne D,,

10) K¢ €C, (G) for every ¢ € D, ,,

11 K x (EQn) € 0., (G) for every £ € D, and ne D,,
(12) p(x+y)Kx) € LL &G for every p € D, and L€ D, ,.

Let one of the equivalent conditions (1)~(12) be satisfied. We define K by
the relation:

13) <I%, (p>=“m Rn(p(x+y)f5(x, y)dxdy for every o€ D.. K is a G-

valued distribution and is also written as the following integrals:

14) Lei I—C"(fc, P=K(#, 2). Then K* satisfies the above equivalent com-
ditions, and K*=K.

15 (K * 4fr)* =I?*1ir for every € D, ,, more generally this equation
holds also for Te &, ,.

Proor. Ad (1)2(3). By Prop. 4 the application <K (%, 9), g >—><8(E—
42— PK*,9), &> of 0., into D,(D1).,,) is monomorphic. Let z—0 inG..
<K (&, 9,8 >—0 in €, ,, therefore <&z —z—PK(%, ), g >—01in D.(D71.,,),
and vice versa. '

Ad (3)5(2). Clearly (3) implies (2). If (2) holds, then it follows from
Lemma 4 that the application p(4)—>@&+$)K(®, 9) of D, into (D7).,,(G) is
continuous. This implies (3), since @(2) - (¢ — 2 — DK%, =g + K&, $).

Ad (2)—>(4). If (2) holds, the integration of @(4+ $)K(#, ) with respect
to x yields (4).

Rn8(2 —x—9)K(x, y)dxdy. And we have

R"x
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Ad (4)>(5). By change of variables we have S(p(x—i- PR, 9) dng WK

(x—$, $)dx € (D3:)G). The application g;—»Sq;(x)K(x— 9, $)dx of D into D

(G) is continuous (Lemma 4). Hence K(2= 7, 9) € DL(D1),(6).

Ad (6)—>(1). This implication is clear from the fact that €, , is isomor-
phic to D,(D7.1), by change of variables.

Ad (2)—>(6)>(7)—>(1). We can show these implications in a similar way
as in the proof of (2)—(4)—>(B)—>(1). '

Ad (1)->(8). The application £#&>Kx*,£ of D into €. ,(G) is continuous.
(Lemma 4). Therefore (1) implies (8).

Ad (8)—>(11). The application KxE->Kx(t®7y) of €. (G) into O, (G) is
continuous, so that this implication holds.

Ad (1)—(9)—(11). The proof is very similar to the preceding case: (1)—
(8)—(11). : : '

Ad (11)-(10). The bilinear application (£, »)—>K*((Qn) of D, x D, into
C.,,(G) being separately continuous, it is also continuous in the topology of
D.,, [117]. Hence (11) yields (10).

Ad (10)>(5). If we put Ki(#, $)=K(&—4, ) and Li(&, H=LE—5, §) we
have (K, * &), $)=K * )@ —#, 9). Therefore (10) implies that K+, € D,
(D721),(6)). Then it follows from Prop. 6 that K, € D.(D7:),(G)).

Ad (10)—>(12). We note that K,(%, $)=¢p(#+ §)(K*¢) is distinguished in
(D711)s,,(G) (see Miyazaki [67] for the definition ofi “distinguished element”).
In fact there exists a sequence of positive number {\;} such that {x,-,DPKI} is
bounded in (D71).,, (G). Any derivative D’K, is a linear combination of the ele-
ment of (D71).,, (G) written in the form (Dip)(%+ $)(K * DP-7¢). There exists a.
sequence of positive numbers {x;} (resp. {v;}) such that {u(D?p) (4+ )} (resp.
{v;DP7I({)}) is bounded in D, (resp. D, ,). On account of the fact that the ap-
plication (@, {)—=>@(x+y) (K * §) of D, x D, , into (D71),,,(G) is hypocontinuous,
we can easily see that K, (%, %) is distinguished. Applying a result due to
Miyazaki [6], we see that K,(x, y) is in D ,:(G), and a fortiori in (L), & G, as.
desired.

Ad (12)—(10). Since the injection (L'),, (G) into (D7.).,,(G) is continuous,
(12) implies (10). ,

Suppose K satisfies the equivalent conditions proved above. The appli-
cation o>+ PNE&, 7) of D into (D7), (G) will be continuous by Lemma.

4. Hence the application ¢—>S¢(x +y)K(x, y) dedy of D into G is continuous.

This shows that K defined by (13) is a G-valued distribution. Let g’ be any
element of G, then <K, > €0, ,. It follows then from Prop. 7 that K is
written by the integrals: Sf(’(&—y, )y, SIZ( ¥, &—v),dy, SS (& —x—7y) K(x, y)

dxdy.
Ad (14). It is clear from Prop. 7.
Ad (15). Let T be any element of &, ,. Then T*¢€ D, , for every ¢ €
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D.,. KxT)xt=K=x(Tx¢) €0, (G). Hence K xTe0, (G). Then it fol-
lows from Prop. 7 that (K = T)*= =R T

If K(x ) € D, (G) satisfies the equlvalent conditions (1)~(12), then we
shall call K defined by (13) the convolution of K.

Now we apply Prop. 9 to a tensor product of vector valued dlstrlbutlon
on R*.

TueoreMm. Let E and F be two locally convex vector spaces. For any distri-
butions S € D(E) and T € DI(F) the following conditions (1)~(8) are equiva-
dent:

®  G.RRT,) 0, (EDF),

@ p+HNE.QRT,) € (D)., (ER.F) for every p e D,

@ 22— 9S.QRT,) € (DUDL).,XEBF),

4) [(§ * )T . € D(ED F) for every ¢ € D,,

G)  [ST * @))€ D(ER.F) for every p € D,

(6) S(x— PNRKRT($) is partially summable with respect to ¥,

@) §(y) RQRT (4 — $) s partially summable with respect to v,

®) S *P@ORUT * ) € L)LER.F) for every g€ D.

S, T 'satisfy the above equivalent conditions if and only if § * ¢, T(resp. S, T »
p) satisfy also, for every p € D,.

Let S, T satisfy the equivalent conditions (1)~(8). We define SxT by
1he relation:

© <g, G+I)> =SSRM"¢(x +)S.QR.T,) dudy for every € D..

ST is an (EQ F)-valued distribution (which we shall call the «-convolution of

S and T). 3§ =T is written as the integrals: S Sz ——y)®®f(y)dy, S §(y) (03¢
R® R™

RI (%~y) dy, SSRW»S@ —x—y)S.QRT,) dudy, and S*T « pyp= S(S‘ * P) ()R

(T * )(x) dz for every pr € D. And we have |

(10) TS can be defined and is equal to the image of SxT under the can-
onical application: EQ F->FQ.E.

(A1) If U is any element of &, then (S * T)xU=(S x U)xT =Sx(T » ).

Proor. Put K=SQQX.T and G=E® F. With the aid of Lemma 3 we
have

[+ 9RE, Pav=[S * )T,

[pe+9R G ity =15@ » )],
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[pa+7)E  p)ie=G3 = DR ),

K xp=8xpRR.T, K*p=SQK.T * ).

Then it follows from Prop. 9 that the conditions (1)~(7) are equivalent. As
regards (8), the conditions are equivalent to

@®) S pNRUT #)y) € D(ER F).

‘We can show that the left member of (8) is distinguished in D(E® F). In
fact, owing to the relation (1) (Remark after Lemma 3), the proof can be
carried out along the sirvnilar line as in the proof of the implication (10)—(12)
of Prop. 9. Therefore (S * p)(NRUT * v)(y) € D (E®.F). It follows since the
injection D (ER F)—>L'&(EQ . F) is continuous that the implication (8)—(8)
holds. The converse is trivial.

That S, T satisfy the equivalent conditions (1)~(8) if and only if § * ¢, T
(resp. S, T * o) satisfy also for any ¢ € O is a consequence of the equivalence
of (1), (8), (9) of Prop. 9.

Suppose S, T satisfy the equ1valent relations (1)~(8). ST is nothing
but K so that the representations of ST by the integrals in our Theorem are
obvious. (10) is almost evident. (11) follows from (15) of Prop. 9 if we con-
sider UR6 or QU instead of T in (15) of Prop. 9. Thus the proof is completed.

This theorem is an extension of the result of Shiraishi [137] concerning the
convolution of two scalar valued distributions.

Let K(z, #) be any G-valued distribution on R"x R* satisfying the con-
dition:

ay @@+ PEG, $) € (D1).,(C) for every g € L.

By Lemma 4 the application p—>@(4+ K%, $) of &, into (D11), (G) is con-
tinuous, so that the application e defined by the relation:

<K, p>= SSR" Rnrp(x +9)K(x, y) dxdy for every ¢ € .,

is continuous from &, into G, that is, K (called &’-convolution) is an element
of &(G). We note that K(z, $) € &, (G). In fact, (1) implies that oz + 5)
<K&, 9), §> € (D)., for every p € &, and &' € G, and in turn <K, 9), g
> € ¢, , as remarked in § 2. Since &’ has an (&)-property ([11], p. 54), we
have K € &, , (G). In particular, if K(%, §) is a tensor product S.QR.T,,
where S € D'(E), T € D'(F) and S0, T:\:O we can conclude that S € . (E)
and T € &”,(F) For in this case S.Q®. T € 3, AEQF) 1mp11es that <S,, &
>®<T,, f’> € Y, . for every A and f'eF. Infact, <S. ®®‘ 5 ulx)
®v(y), ®f/> <8, u &> <Ty v, f’> (<8, &> - u) (<Ty, 7> v) (<
,,, & >®<T,, f >) - u®ov for every u, v € D, &€k, f’ € F', hence <35.0®R.
7R f >=<38,, e>®<Ty, f >. Since T'#O by our assumption, there is
an f such that <7, f'>=0. Then it follows from a result of Shiraishi
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([18], p. 27) that <S§,, &> € & for every & € E'. This implies S € ¥L(E),
since " has an (&)-property. Similarly we have T € (F). Conversely if
S e Y(E) and T € Y(F), then SQR.T € <. (EQF). This follows from the
equation:

(S;@@f,) cu®Qu=S, - u®Ty -vforeveryue D, veD,.

Suppose K € ,,(G). This implies @(%+ NEK@, §) e L (D), (G)) for
every ¢ € <,. op&+Pai)e ., for every a e ,. Then a@)pi+ 9)T(%,
) €(0%).,,=(0)((D%,),) for every Te &, , and in turn @&+ PTH, P € S,
(@%),) and a fortiori &, (D7),). It follows from this that the application
(@, T)—=>p&+NTR, ) of &.x &, , into F((D71),) is hypocontinuous. From
this remark we can conclude @(% + $)K(%, §) € L2(D71),(G)).

With the aid of the remarks just mentioned, we can state and prove an
analogue of Prop. 9. Here we mention some properties of &’-convolutions
without proof. For any K € D;, (G), K(z—#, §) (resp. K($, £—$)) € (D7),(~
(6)) if and only if p(z+HK(#, ) € (D11).,,(G) for every p€ <. And if the
&'-convolution of K is defined, then this is defined also for K = U for every
Ue(07).,, and (K * U)*=Ii’ «U. As regards the tensor product of vector
valued distributions, if we let S € &.(E) and T € &,(F), then the analogous
statements of Theorem will hold. The proof is not so difficult that we can
omit it. '

Next we turn to the s1mu1taneous convolution of a Kz, 9, 2) € D, (6.
Consider the condition:

@y P&+ 9 +2)K(@, §, 2) € (D11).,,,(C) for every p € D..
If K satisfies (1), we define K (called the convolution of K) by the relation:

<k, p>= mR o PEEF DR, §, 2) dudydz

IEC' will be a G-valued distribution on R*. We can state the conditions equiv-
alent to (1)” as in § 2.

ProrosiTion 10. Let K(x, %, 2) be any G-valued distribution on R"x R"x R",
for which the convolution K is defined. Then K(z, 9, 2) € 0. (D.(G)) and if we

denote by H (&, 8)= SK(J‘c -5, ¥, £)dy, then H € €, (G) and moreover #=K.

Proor. By our hypothesis, K(z, #, 2) € 0., .(G). It follows since the in-
jection @ ,.—C, (D7) is continuous that K(z, 9, 2) € 0, (D.(G)). Put K,
(&, $)=K(&, #, 2). Then K, €, , (D.(G)) so that I?l (%, 2) exists and equals
H(%, 2) defined in the Proposition. It is easy to see that H(x—2,8)= g R@#—y
—2, 9, 2)dy. Since K(#, #, 2) €0, (G) implies Kx—9—3, 9, 2) € D.((D1y),..
(G)), it follows from a theorem of Fubini ([11], p, 106) that H(fv —%,8€eD;,
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(D)6)) and B= Sﬁ(x—z, 2)dz, that is =&, as desired.

Let E, F and H be three locally convex Hausdorff spaces. S (resp. T, )
be any E-valued (resp. F-valued, H-valued) distribution on R*. When (5®&
TQRU)* is defined, we shall denote this convolution by (ST = T),. The
properties of the simultaneous convolution of scalar valued distributions were
studied by Shiraishi [13]. The analogous statements for the case of vector
valued distributions can be proved, as an example we shall show the associa-
tive property which is a generalization of a result of L. Schwartz ([12], p.
169).

~ Prorposrtion 11. Let the convolution (S*T *T), be defined. If U0, then
S«T and (S»T)xT are defined and the latter is the image of (S T » U), under
the canonical appileation j: (EQFRQH),—(EQ F® H.

Proor. First of all we show that SxT is defined. For any k' € H', we
denote by ¢; the multilinear application E x F x H->E® F defined 652, f Ch)=
@R f Y<h,h'>,é€E, f € F, k € H. Clearly 6;, is separately continuous. Hence
05, is uniquely extended to a linear continuous applicaion §;,: (EQFRH),—E
®F. Itis easy to verify the equation:

1 IRG)SRIV/TRIRN.=ERRNHR<U, V> €0, , (EQ.F),

where I is the identical application of @, .. It follows from (1) that S®
RI<U +u, k"> €0, (EQF) for any ue D, since the injection 0, ,.—C; ,
(D7) is continuous. We can choose z and %’ such that <¥ - u, &> =1. Hence
ST is defined.

We put K%, #, £)=ERRTQR0), and H(#, 2):812(@— ¥, v, Hdy. If we
can show that
@) IQPH%, £)=ExTHRQRT € €, (EQ F)D H),

we shall have (I®j)l_'f =(I®j)fi =(S« )0 by Prop. 10. Hence the proof will
be through.
Now, forany p€ D,;ve D, ueD,

®  URPRG-7, 5, 2)+ o) = |[Grp) LoNNHRU -
Indeed, the left membar of (3) equals

URPK G, 9, 2) - p&+ (D =ERRDRRU + pla+ F(Fu(®)
=BRBD)  pa+ N0 (IRT - u=|[Grp)T WP ET -

Letvtend to1in &.. The right member of (3) tends toS [(S* )T U NdyQT « u,
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that is, SxT)Q®J - pu. On the other hand

URNKE~F, 3, 2) + p(w(Pul2)= p(&)u(2) - gv(y)(1®]')K(fc—% ¥, 2)dy.

Since (IQNRGE— 9, §, 8) € (D1),(D%, (ES F)D H)), it follows that Sv(y)([@j)

K@ —

...

¥, ¥, 2)dy tends to (IQ)H(%, 2) in D, (EQ F)Q H) when v tends to 1 in
Thus the left member of (8) tends to UQj)H(#, 2) - pu. Since H(, £) €

O, .(EQ F)® H). Therefore we have (2), completing the proof.
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