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In his theory of vecter valued distributions ([11], [12]) L. Schwartz in
troduced the concept of partial summability of a kernel distribution, which 
makes it possible to give the precise meaning to the Fourier integral written 

formally by ) e-21tixy T(y) dy in his work [8]. For any tempered distribution 

T, the distribution e- 21tixf T(y) is partially summable with respect toy and the 

partial integral I e_z.,,;xy T(y)dy is the Fourier transform of T. We show in Sec. 

1 below that, for a distribution T, if e_z.,,;xJ T(y) is partially summable with re
spect to y, T must be tempered. Consequently the set of distributions T for 
which e- 2";x5 T(y) is partially summable with respect toy is exactly Y', the 
space of tempered distributions. We show that the same is also true for 
vector valued distributions. 

One of the present authors proved [13] that various definitions concern
ing the convolution of two distributions which are available in the literature 
are equivalent to each other. The results established there will be generalized 
for kernel distributions K(x, y) on W x R" [see Sec. 2]: K(x~ y, y) is partially 
summable with respect toy if and only if rp(x + y) K(x, y) is summable for any 

rp f. <;[), The convolution K is defined by <K, cp> = H cp(x+y) K(x, y) "dxdy, cp 

f. <;[) or by) K(x-y, y) dy. The analogous considerations on ..!::!'-convolutions 

are given. The concept of ..!::!'-convolution of two distributions was first in
troduced in [5] and its further investigation was carried out in [13]. We 
introduce the space (noted by @'.,,y) of kernel distributions for which the con
volution is defined. If we @' •. Y take the topology introduced in a natural 
manner, then @'.,,y will be a permitted, ultra-bornological, complete space of 
distributions on W x R". 

Finally Sec. 3 is concerned with the convolution defined by starting with 
the tensor product of vector valued distributions. The results obtained for 
ordinary distributions [13] will be extended to vector valued distributions, 
especially we show that 5(x-j)00,T(f) is partially summable with respect 
toy if and only if rp(x+y) (5.00,T y) is summable. We believe that this 
result will be of use for further investigation of Schwartz' theory of the con
volutions of vector valued distributions. 
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For the most part of this paper we use the notations of L. Schwartz' 
papers [11], [12] often without any special mention about them. 

§ 1. Partial summability of a kernel distribution 

Let Rn be an n-dimensional Euclidean spacE!. Let T be a summable distri
bution on Rn, that is, TE Q)~,, then Tis considered as a continuous linear form 

on(£.). Following L. Schwartz [11] the integral~ T(x)dx is defined as <T, 

1 >, where 1 is a function on Rn identically equal to 1 which belongs to ( £ c). 
A bistribution K(x, y) on Rn x Rm is a continuous linear form on Q) x. Y 

(sometimes called kernel distribution or simply kernel), where ~ and y denote 
the canonical variables of Rn and Rm respectively, and Q)x,y denotes the space 
of indefinitely differentiable functions with compact supports on W x Rm. L. 
Schwartz' kernel theorem ([7], [11]) states that w:,y, the space of distributions 
on W x Rm, is canonically isomorphic to w: c Q)~. The canonical correspond
ence of K(x, y) and a continuous linear application 2 K: 2J x-2' Y (resp . .!f'K: 

Q) Y-W:) is given by the relations: 

<2~(rp), +> = <K, rp@"1r> = <2~('1r), rp> 

for every rp E Q) x and for every + E Q) r 

2 K(rp) is also denoted by rp•K or formally by an integral ~ rp(x)K(x,y)dx, 

where rp(x)K(x, y) is the multiplicative product of rp E Q)x and K. Similarly, 

£~(+) is denoted by K•+ or formally by an integral ~ K(x, y) t(y)dy. The 

precise meaning of the above integrals is given by the following 

DEFINITION (L. Schwartz [11]). A distribution K(x, y) on Rn x Rm is said 
to be partially summa,ble with respect toy, if K(x, y) E W:((Q)~,)y) or rp •KE 

(Q)~,)y for every rp E W. And the partial integral with respect toy ~ /F(x,y) dy 

is defined by the relation: 

< L!("Cx, y) dy, rp(x) > = ~ R\T. K)(y )dy 

for every rp E Q) x-

In a similar manner we can define the concept of the partially summa
bility of K(x, y) with respect to x. 

Examples. 1°. For any distribution K(x, y) and rp E Q)x, the multiplicative 
product rp(x)K(x, y) is partially summable with respect to x, and the partial 

integral ~ rp(x)K(x, y)dx is precisely rp • K ([11], p. 91). 

2°. For any distribution K(x, y) on W x Rn and any rp E Q) x, rp(x + y)K(x,y) 
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E e;:(Ql~)c(Ql~i)x(QJ~). For if we put K1(x, y)=<p(x+y)K(x, y), f(y)Ki(x,y) 
=<J1(x+ y)t(y)K(x, .r) for any t E Q)Y' <J1(x+ y)t(y) is a function of QJ.,,y, there
fore '[r(y)K1(x, y) E e;:r Hence K 1 • t E e;:. This implies that K1 E 6:(QJ~) 
and a fortiori K1 E (Ql~,)xCQ)~). 

3° For any tempered distribution K(x, y) on R" x R" and any <p E .Y, <J1(x 
+ y)K(x, y) E (6':)..(QJ~) C (Ql~,)xCQ)~). This can be proved as in 2°. 

L. Schwartz proved ([10], p. 133) that for any TE .Y.', the space of tem
pered distributions on R", the multiplicative product e· 2";£J T(y) is partially 

summable with respect toy and its integral~ e· 2"i•y T(y)dy coincides with the 

Fourier-transform &r(T). 
Conversely, we show 

PROPOSITION 1. Let T be any distribution on R". If the multiplicative prod
, uct e·21ti•fT(y) is partially summable with respect toy, then T E .Y'. 

PROOF. From our hypothesis, we have 

f cp(x)e· 21tixJ T(y)dx =&r(<J1)(y)T(y) E Q)',,1 for any <p E QJ. The application )R,. 
Sc': qJ-&r(<p) T of Q) to Q) ~,1 is continuous by Theorem 2 of [14], since the 
application <f.1-&r(cp)T is continuous from Q) to Q)', Let Q be a relatively 
compact open subset of R" containing the origin of R". Since the space Q) iJ 

is of type (F) and since the space Q)~1 is of type (DF), the restriction Sc' IQ) n 
is a bounded application ([11], p. 62) i.e. it transforms a suitable neighbourhood 
of zero in Q)IJ into a bounded subset A in Q)~,. We may assume that A is an 
absolutely convex closed bounded set. Then the application of Q)!J to (Q)~1)A, 

the subspace of Q)~, generated by A, is continuous in the topology induced by 
Q):S for some positive integer m. We can take a positive integer p such that 
a u E Q)'.S is a parametrix of an iterated Laplacian f:..P ([8], p: 47): 

(1) o=f:..Pu+'l], 'l] f Q)tJ, 

Since u E Q>;, we can choose a sequence lu} such that uj E Q)!J and uj-u in Qi;; 
as i-=. Hence &r(u)T E Q)~,. From (1) we have 

(2) 

where r denotes the length of x. Since &r(u)T, &r(,,,)T E Q)~, C .Y' and r2P E 6' M, 

it follows from (2) that TE .Y'. This completes the proof. 

REMARK 1°. If for a fixed x, e· 2"';.,, T(y) E (Q)~,)y, then TE Q)~, and the 
application x-e- 2"ixJ T(y) of R" into Q)~, is continuous. In this case &r(T) is 
a continuous function and for each x E R" 

&r(T)(x)= \ e-Z,rixy T(y)dy. 
J Rn 

2°. We can show that an analogous statement of Prop. 1 holds for a 
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kernal K(x, y)=21tJ .. 12-1(21tlx! l.rl)/(S,._ilxl"'2-1l,rl"'2-1), which is the kernel 
of the Fourier transformation of tempered distributions invariant under ro-

tation. HereJ,.,2-1 denotes a Bessel function of order ~· ....:1 and S,._1 the sur

face area of unit sphere of R". To begin with, we shall give a brief account 
of distributions invariant under rotation. Let O(n) be the Lie group of rota
tions p around the origin of R". For any distribution T, pT stands for the 
distribution defined by the relation: , 

<pT, <p> = <T, p- 1<p> for every <pf. Q>. 

'W_e put T'= ~ pTdp, where dp denotes the invariant measure of O(n) with total 

mass 1. T' is called the spherical mean of T. Since the application p-pT of 
O(n) into Q)' is continuous, T' is a distribution. It is easy to verify that T' 
is tempered if Tis also. We call T to be invariant under rotation if T=T'. 
When T is a function f, then T' is also expressed as 

S~-1 ~ f (r<r )d<r 

where d<r denotes the volume element of the unit sphere of R". (ef. [10]. expose 
7). As for the convolution, if Sis invariant under rotation, it is not difficult 
to see that 

so that S*T is invariant under rotation if both S and T are also. 
Let <p be any element of B. It follows from the expression o~ <p' that <p' 

f. Band <p-<p1 is a continuous endomorphism of B. Hence, for any element 
Tof B' the relation <T', <p>=<T, <p'> shows us that T' f. B' and that the 
application q is a continuous endomorphism of B'. We can also verify that 
&r(T)' =!5r(T1) since this equation holds by direct calculations for any <pf. B 
and the application q is continuous as just mentioned. The same is also true 
for the inverse Fourier transformation, so that !5r(T) is invariant under rota
tion if and only if T is also. 

Now we consider the endomorphism q®I of B:((Q)i.,)y). For any T f. B', 
we know that e-2,cixJ T(y) f. B:((Q)~,)y). T:Iien 

(3) (q®I)(e-2";i7 T(y))=K(x, y)T(y), 

where K(x, y) is the kernel stated in the beginning. 
Indeed, for any Tin B', the relation (3) is a direct consequence of calculations 
and T(.r)-e- 2•<i1J T(y) is continuous from B' to B:((Q)~,)y), so that (3) holds 
for any T f. B'. Therefore, for any T f. B' 
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$(T)1(x)= \. K(x, y)T(y)dy. )R,. 

Conversely, for a given distribution T, we assume that K(x, y)T(y) is 
partiapy summable with respect to y. We shall show that TE 8'. We put 
K1(x, y)=K(x, y)T(y), then, for any cp E <;JJ 

<p • Ki =(cp • K)T 

and 

cp • K=$(rp)1=$(q}). 

While in the Prop. 1, a parametrix u of iterated Laplacian t:._P can be taken as 
invariant under rotation. Then we can go along the same line as in the proof 
of Prop. 1 to conclude that TE 8'. 

Before stating the next proposition we shall give a short discussion on 
the notation o(z-x)K(x, y), whera o denotes Dirac mesure on R" and K(x, y) 

denotes the distribution on R" x R"'. This is the image of the tensor o(e)@ 
K(~, ~) by change of variables: s=z-x, ~=x, 17=y. Hence o(z-x)K(x, y) E <;JJ: 
(<;JJ:,y). It is to M. noted that 

(4) cp(z) • o(z-x)K(x, y)=<p(x)K(x, y) for every cp E <;JJ,. 

In fact, for every y E <;JJx,y, we have 

<cp(z). o(z-x)K(x, y), f(x, f)> 

= ~ER"xR"'xR"o(z-x)K(x, y),p(z)'i'{x, y)dxdydz 

= ~ ~ ~R"xR"'xR,.(0(s)0K(t, 17))cp(s + ~)f(~, 17)d~d17df; 

=ER"llR"'KC~, 11),11Ct, 17) { ~R,.oCs)cpCs+t)ds}d~d11 

= HRnxR"'K(t 17),J,(t, 17)cp(t)dtdr7 

=<cp(x)K(x, f), f(x, y)>. 

Hence we have (4). 

PROPOSITION 2. For any distribution K(x, y) on R" x R'n, the following con
ditions are equivalent: 

(1) -- K(x, y) E <;JJ:((<;JJ~i1)y), 

(2) o(z-x)K(x, y) E <;JJ:((<;JJ~1)x, y) 

And, if K(x, y) satisfies (1) or (2), then we have 
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I K(z, y)dy= II o(z-x)K(x, y)dxdy. )Rm J)RnxRm 

PROOF. By definition, (1) and (2) are equivalent to 

(1') ~ cp(x)K(x, y)dx f (Q)~1)y for every cp f Q)x 

(2') cp(x)K(x, y) f (Q)~1)x,y for every cp E Q)x 

respectively. 
(1)-(2'). (1) implies that cp(x)K(x, y) f <S~((Q)~1)y) for every cp f Q)x• Then it 
suffices to see that <S :((Q)L,)y)((Q)L1)x,r Since <§;~ is nuclear and the in
jection <S~-(Q)L,).,, is continuous, this is obvious. 
(2')-(1'). Fubini's theorem [llJ shows us that (2') implies (1'). Finally, for 
any cp E Q). we have 

<cp(z), II o(z-x)K(x, y)dxdy> ))RnxR"' 

= I ( cp(x)K(x, y)dxdy 
) JRnxRm 

= <cp(z), I K(z, y)dy> )Rm 

Hence I K(z, y)dy= II o(z-x)K(x, y)dxdy. This completes the proof. )Rm J)RnxRm 
Now we turn to the investigations of the space Q):((Q)~1)y). We begin 

with the fo~lowing 

LEMMA 1. Let Ebe a permitted barrelled space of distributions with ad
missible (normal in Schwartz' terminologies) strong dual E'. Then E' is also a 
permitted barrelled space of distributions. 

PROOF. Let {ak} k-1,2,3, ... be any sequence of multiplrcators and {pk} k-1,2,3, ... 

any sequence of regularizations. That Eis permitted means that (ak e)*pk-e 
in E (resp. ah*pk)-e in E) for every e as k-=. Since Eis a barrelled per
mitted space and Q) is dense in E', it follows from Lemma 1 of Y. Hirata [4] 
that E' is permitted. Then it suffices to show that E is distinguished, that 
is, any a{E", E')-bounded subset of E" is contained in the a{E", E')-closure of a 
bounded subset of E. Let B be any <r(E", £')-bounded subset of E". Bis also a 
bounded subset of E" since E' is quasi-complete as a dual of a barrelled space. 
Set 

-A= valB*pk), 
k-1 
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A is considered as a subset of E. We show A is bounded in E. For this end 
it suffices to see that A is o- (E, E')-bounded. Let e' be any element of E'. As 
(ak e')*pk-e' in E', {(ake')*pk} is a bounded subset of E'. Now since Bis bounded 
in E" and since 

= <A, e')=v<B, (ake')*Pk>, 
k=I 

it follows that <A, e'> is bounded for every e' EE', so that A is bounded. It 
is not difficult to see that B is contained in the o-(E", E')-closure of B. This com
pletes the proof. 

As an exemple, £, the space of indefinitely differentiable functions tend
ing to zero at infinity together with derivatives of every order, satisfies the 
condition of the lemma, so that its strong dual is barrelled, therefore borno
logical since Q)~1 is the strong dual of a space of type (F) [11]. This is also 
concluded from the fact that £ is a quasi-normable space of type (F), the 
proof of which is carried out by the verification of a cdterion due to Grothen
dieck ([2], p. 107) concerning the quasi-normability of a locally convex space 
and is not so difficult, so that the proof is omitted. 

Now we show 

PROPOSITION 3. (1) w:ccw~1)y) is the stron,g dual of QJx(&y) and is a per
mitted, ultra-bornological complete space of distributions. 

(2) The strong dual of W:((Ql~,)y) is QJx((£)y). 

PRooF. Ad (1). Owing to a result of L. Schwartz [12; p. 104], it follows 
since£ is a space of type (F) that the strong dual of QJx(&y) is W:((Ql~,)y) 
which is the strict inductive limit of an increasing sequence of space Qlx,Bp 

(£) of type (F), where BP stands for the ball with radius p and center at O in 
W. Ql,,,s/&y) is a topological subspace of &x,y such that the supports of 
functions in Ql,.,8/£ 1 ) are contained in BP x R"'. The duality between w: 
((Ql~,)y) and Ql.(£ y) is given by 

< T, <p > =ff T(x, y) <p(x, y )dxdy, j J Rnxm 

TE W:((Ql~,)y) and rp E QJx(&y). 
Since every space of type (LF) is barrelled, we see that QJ,.(&y) is bar-

relled. Moreover it is permitted. This is immediately verified by direct 
. calculations. And it is easy to see that Qlx@Q) y is dense in the dualW:((Ql~,)y), 
Hence we can apply Lemma 1 to Q>x(&y) to conclude that W:((Ql~,)y) is 
permitted. The dual of any distinguished space of type (LF) in the strict 
sense, i. e. in the sense of Dieudonne and Schwartz [1] is ultra-bornogical 
[3]. It follows that W:((Ql~,)y) is a permitted ultra-bornological space of 
distributions. 

Ad (2). Let E be the strong dual of Ql:((Ql~,)y). E consists of all the 
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bilinear continuous forms (3 on Q): x (Q)~,)y. The associated linear application 
P: (Q>~,)y-+Q)., defined by 

<P(T), S> =(3(S, T) 

for every SEQ): and TE (Q)i.,)y is bounded. We can put for each p 

(i) P(T)(x)= f T(y)/3(x, y)dy, Jam 
where f](x, y) is a member of £ Y for every fixed x. (3(x, y) is also d·efined by 

(ii) (3(x, y)=/3(0.,, oy) 

where~ .. and oy denote the point measures located at x and y respectively. 
(3(x, y) vanishes outside a BP x Rm. Since 

(iii) D;Di(3(x, y)=/3(( -1) 1 P 1'D~o.,, ( -1) 191 nioy), 

it follo,ws by usual reasonings that .the function (3 if'! a member of iJJ.,(£ y). 

Conversely any (3 E iJJ.,(£ y) defines an element of E.. This. is. almost clear 
from (i). Therefore Eis algebraically iJJ.,(£ y). 

We shall compare the topologies of E and iJJ.,(£ y). The latter is, by 
definition, the strict inductive limit of an intreasi~g sequence of spaces Q>:,nP 
(£ y) of type (F). That every bounded subset of Q).,(£ y) is a bounded subset 
of Eis clear from (i). Hence the injection iJJ.,(£ y)-+ Eis continuous since iJJ., 
(£ y)is bornological. On the other hand, a fundamental system of neighbour
hoods of O in Eis obtained by taking the u(E, Q>:((Q)~,)y))-closure of that of 
iJJ.,c&;). A fundamental system o'f neighourhood of O in iJJ.,(&y) is given by the 
family of the f'!Ubsets U( {~k}, {mk}) of iJJ.,(&y) defined by the following: con
ditions ([9], p. 95): 

(a) 

(/3) <p E U( {ck}) {mk}) if and only if 

Sup Sup ID~,y<p(x, y)[<ck. 
Ip I £.mk .,<$Bk 

Then the a-(E, Q):((Q)~,)y))-closure of a U( {ck}, {mk}) is contained in the set 
defined similarly for iJJ.,(£ y). This is clear from (ii) and (iii~. Hence the in
jection E-+iJJ.,(£ y) is continuous. Therefore Eis topologically iJJ.,(£ y). Thus 
we see that the strong dual of Q):((Q)~,)y) is iJJ.,(£ y). This completes the 
proof. 

Since Q>:((Q)~,)y) is barrelled, it is easy to see that Q):((Q)~,)y) has the ap
proximation properties by truncature and regularization ([11], p. 8 Remarks). 

PR0Pos1TION 4. The application K(x, y)-+0(£-x)K(x, y) of Q>:((Q)~,)y) into 
Q):((Q)~1).,,y) is monomorphic. 
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PRooF. The application is injective. In fact, suppose S(z-x)K(x, y)=O. 
Then S(z)@K(x, y)=O. Hence K(x, y)=O. {K}-+0 in QJ:((Q)~,)y) if and only 

if, for any bounded subset A of Q>,.(£y), B K(x, y)<p(x, y)dxdy-+0 uniformly 

when <p runs through A. {S(z-x)K(x, y)}-+0 in Q) :((QJ~,)x,y) if and only if, 

for any bounded subset B of Q),. and any bounded subset C of £x,y, { ~ ~ K(x, y )a 

(x),B(x, y)dxdy}-+0 uniformly when a, ,Brun through B and C respectively. 
Therefore if we can show that the sets BC form the set of bounded subsets 
of QJ,.(£y), the proof will be completed. It is clear that any BC is bounded 
in Q>,.(£y). Conversely, any A is a bounded subset of £x,y, with supports 
contained in a BP x Rm. If we take a E Q),. such that a(x)=l on a neighbourhood 
of Bp, then A=aA, and therefore A is a set BC, as desired. 

By making use of the category theorem of Baire we show 

LEMMA 2. Let E and F be spaces of type (F), and let G be a space of type 
(DF). Let {u.,} "'f Abe a set of separately continuous bilinear applications of Ex F 
into G. If,for every x EE and y E F, the set Vu.,(x, y) is bounded, then {u.,}.,EA 

• a>EA 

is equibounded. 

PROOF. Let {Bk} be a fundamental sequence of bounded subsets of G. We 
may take Bk to be a bounded absolutely convex closed subset of G. For every 
x EE, we put Fk(x)=, {y; u.,(x, y) E Bk for every a EA}. Then Fix) is an abso
lutely closed convex subset of F and F= v Fix) since Vu.,(x, y) is contained in 

k "' 

. some Bk. Owing to the category theorem of Baire we .see that there exis~s an 
A(x) such that Fix) is a neighbourhood of zero of F. Now let {Vn} be a fun
damental system of neighbourhoods of zero in F. We may assume that Vn) 
Vn+l• If we put Ek= {x; u.,(x, Vi)C-Bk}, then Ek is an absolutely convex closed 
subset of E and E = v Ek, Then as before we can apply the category theorem 

k 

to conclude that some Ek is a neighbourhood of zero in E. Hence there exists 
a neighbou;rhood U(resp. V) of zero in E (resp. F) such that VuiU, V) is con-

(X,f A 

tained in a Bk. This completes the proof. 

PROPOSITION 5. For any subset A of Q):,y, the following properties are 
equivalent to each other: 

(1) A is relatively compact in Q):((Q)~1)y), 

(2) A*'1r is relatively compact in 9J:((CJJ~1)y)for every '1r f. Q)x,n 

(3) cp(A*t) is relatively compact in (Q)~1)x,y for every t f. <;JJ%,Y and rp E 

Q)x, 
(4) cpA is relatively compact in (Q)~1)x,y for every rp f. Q)x• 

PROOF. Ad (1)-+(2). The endomorphism T-+T*>/r of Q):((Q)~,)y) is con
tinuous for every t f. Q)x_i[14], Theorem 2). Hence A*~/r is relatively compact 
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in Q):((Q)~,)y) for every t E Q>,.,r 
Ad (2)---+(3). Since for any rp f. Q)x, .the application T-+rpT of Q):((Q)~,)y) 

to (Q)~,),.,y is continuous ([14], Theorem 2), rp(A*t) is also relatively compact 
in (Q)~,),.,y for every rp E Q)., and t E Q>,.,r 

Ad (3)----+(4). Consider the application ,2? r: (rp, "f,)--+<P(.T*t) of (QJ H)x x 
(QJK)x,y to (Q)~,)x,y, where H (resp. K) is the unit ball with the center at zero 
in Rn(resp. R" x Rm). This application is separately continuous [14; Theorem 2]. 
(QJH), (QJK)x,y are spaces of type (F') and (Q)~1)x,y is a space of type (DF). We 
can now apply Lemma 2 to conclude that the applications {s:?rhcA: (Q)n)xx 
(QJK)x,y--+((Q)~,)x,y)n are equicontinuous in the topology induced by (QJH) .. x 
(Q}x)x,y for some positive integer m, where ((Q)~1)x,y)n is the subspace of 
(QJ~,) .. ,r generated by B. (Q)~,) satisfies the strict Mackey's condition ([2], p. 
103) since ckx,r is quasi-normable, hence we may assume that the set cp(A*t) 
is relatively compact in ((Q)~1).,,y)n for every <pf. (Q}H)x and t E (Q)K)x,r 

Choose a parametrix u E (Q}x),.,y for an iterated Laplacian ti..P. Then we 
have cpT=cp(T*,~,lu)+rp(T*'TJ), where 'T/ E (QJK),.,r Since u E (Q}x\,n we can 
choose a sequence {ui} such that ui c (Q>K)x,y and ui--+u in (Q}K)- Then ,p(A*uj) 
and cp(A*'T/) are relatively compact in (Q)~-1)x,r rp(A*u) is also relatively compact 

because (p(T*ui)--+cp(T*u) uniformly when T runs through A. Since ,p( T*a~~u) 
' 

= a~. {cp(T*u)} -( 0:, rp) (T*u), it follows that cp(A*a~.u )is relatively compact 

in (Q)~,)x,r Repeating this process, we can see that cp(A*Lllu) is relatively com
pact in (Q)~,)x,r Therefore cpA is relatively compact in (Q)~1)x.y• 

Ad ( 4)---+(l). If T runs through A, then <p • T= ~ cp T dx falls in a bounded 

set of (Q)~,)y for any <pf. Q)x• This means that A is bounded in s:?(Q)x;(Q)~,)y) 
in the topology of simple convergence, hence A is a bounded subset of Q): 
((Q)~_1)y), The application (rp, T) E 8x x Q):((Q)~,)y)-+cpT E Q):((Q)~1)y) is hypo
continuous, since it is separately continuous and 8x, Q):((Q)~1)y) are bar
relled. Hence for any sequence of multiplicators{a,.}, {anT} converges to T as 
n--+ 00 • Since a" E Q),., each a,.A is relatively compact ~n Q):((Q)~1)y), therefore 
A is relatively compact in Q>:((Q>~)y). This completes the proof. 

As a special case of Prop. 5 we mention the following 

CoROLLARY. Let T be any distribution on W x Rm. If 1'*-t' f. Q):((Q)~,)y) 
for every t E Q) x, Y then also TE Q>:((Q)~,)y). 

Let E be a locally convex Hausdorff topological vector space. A linear 
continuous application f of Q) into E is defined to be an E-valued distribution 
or a distribution with values in E. We denote by Q)'(E) the space of E-valued 
distributions. On Q)'(E) we put the topology of uniform convergence on 
bounded sets of Q), If u: E:--+Q)' is a continuous linear application, it is the 
transpose of a uniquely determined E-valued distribution f, i.e., u='T. Let 
~ be a space of distributions. The space ~(E) consists of all E-valued 
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distributions T which have the following property, 'T: E;-<.IY maps actually 
E; into 7c' and is a continuous application of E; into !J"c'. !J"c'(E) takes the 
topology of uniform convergence on equicontinuous subset of E;. Namely 7c' 
(E)=.2:',(E;, !J"c'). It is well known that .27,(E;, 7c')=2".(7c';, E). Accord
ing to L. Schwartz ([11], p. 130) we state the following 

DEFINITION. A distribution KE 9J:,y(E) is said to be partially summable 
with respect toy if KE (QJ:(Q)~1)y)(E)=9J:((9J~1)y(E)). The partial integral, 

noted by) K(x, y) dy, is the image of K by the continuous application U:i)) /jf?;Jh 

of (QJ:(Q)~1)y)(E) into QJ:(E), where I:. and hare the identities of 9J: and E re
spectrively. 

L. Schwartz ([11], p. 133) defined the Fourier transform of vector valued 
tempered distribution TE Y:(E): e-2 .. i1l'f(x) is partially summable with re
spect to x and 

< ~e- 2"ix~ T(x)dx, e'> =&r( <T, e'>) for every e' €. E'. 

We can show that if Eis quasi-complete and e_z,.; .. e T(x) is partially sum
mable with respect to x (more generally if e_z,,;,i<T(x), e'> is partially sum
mable with respect to x for every e' EE'), then TE c!:l'(E). The proof may be 
carried out with obvious modifications along a similar line as in Prop. 1. 

Finally we conclude this section with the following 

PROPOSITION 6. Let Ebe a quasi-complete locally convex Hausdorff .topolog
ical vector space. For any E-valued distribution Kon R" x Rm, K(x, y) is par
tially summable with respect toy if and only if K *tis also for every ,t E QJ.,,y-

PROOF. The "only if" part is obvious since the application r-r * "[I' of 
9J:((Q)~1)y) into itself is continuous. To prove the "if" part, we first assume 
that E is complete. Any linear application of E~ into a second locally convex 
space F is continuous if the application is continuous on any equicontinuous 
subset of E~ ([11], p. 41). Hence it suffices to: show that e'-<K, e'> is con
tinuous from any equicontinuons subset of E~ into 9J:((Q)~1)y). Let A be any 
absolutely convex equicontinuous subset of E~. Since K * t E 9J:((QJ~1)y(E)) 
for everv t E QJ.,,y, so the set<K., A>*t is relatively compact in Q):((QJ~1)y) 
for every t E QJ.,,r It follows from Pr.op. 5 that <K, A> is relatively com
pact in 9J:((QJ~1)y). Let e'-O in A. If T is any limiting element of { <K, 
e'> }, whose existence is assured by the relative compactness of <K, A>, 
then T*'V is a limiting element of { <K, e'>*t} which converges to zero since 
e'-<K, e'>*t is continuous. Henec T *'r=O for any t E QJ.,,r This implies 
in turn that T=:=0. Therefore < K, e' >-0 as e' -o in A. 

Next we consider the general case. Let E be the completion of E. 9J: 
((QJ~1)y(E)) is a topological subspace of 9J:((9J~1)y(E)). By the result estab
lished just above, KE 9J:((QJ~1)y(E)). Let {p;} be any sequence of regulariza-
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tions. K*p;-K in Ql:((Ql~1)y(.E)) as i-=. Oil the other hand, for every i, 
K*p; E Ql:((Q)~1)y(E)), the quasi-complete space. Henec we have K. E Q): 
((Ql~1XE)), completing the proof. 

If Eis a scalar field, Prop. 6 tells us that a subset A of Q)~1 is relatively 
eompact if and only if A*cp is relatively compact in 1 1 (resp. Q)~1, Q)L1) for any 
<p E Ql. In particular, it follows that a sequence {Tkh-1•2 , ... of Q)~1 converges 
to zero when Tk *cp-O in 1 1 for any cp E Q) ask-+=. 

§ 2. Convolution of a kernel distribution 

We shall define the convolution of a distribution K(x, y) on Rn x W under 
the following condition: 

(1) cp(x+ y)K(x, y) E (Ql~1).,,y for every <p E Ql.,. 

If this is the case, the convolution which we denote be K is defined by the 
relation: 

<K, cp> =ff cp(x+y)K(x+y)dxdy. J )RnxRri . . 
K is a distribution on Rn since the application cp-+cp(x+ y)K(x~ y) of Q)., into 
(Ql~1).,. Y is continuous ([14], Theorm 2). According to the definition of the 

· space Q): ((Ql~1).,, y), (1) is equivalent to 

(2) 

where o(2-x-y)K(x, y) is a distribution on Rn x Rn x Rn issuing from o(2)® 
K(x, y) by change of variables. 

Owing to Prop. 2 and by making use of change of variables we can 
deduce from (1) or (2) the following equivalent conditions: 

(~) <p(x)K(x-y, y) E (Ql~1).,,y for every cp E Ql.,, 

(4) ~cp(x)K(x-y, y)dx E (Ql~i)y for every <p E Q).,, 

(5) K(x - y, y) is partially summable with respect toy, 

(6) <p(x)K(y, x-y) E (Ql~1).,,y for every cp E Ql.,, 

(7) ~cp(x)K(y, x-y)dx E (Ql~1)y for every cp E Ql.,, 

(8) K(y, x -y) is partially summable with respect toy. 

The convolution K is also given by the integrals: 

K(x)= ~K(x-y, y)dy= ~K(y, x-y)dy 
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K(z)= Ho(z-x-y)K(x, y)dxdy 

In fact, < )K(x-y, y)dy, cp(x)> = Hrp(x)K(x-y, y) dxdy 

= ~~cp(x+y)K(x, y) dxdy= <K, cp>, for every cp E 9J. 

Hence K(x)= )K(x-y, y)dy. In like manner we have K(x)= )K(y, x-y)dy. 

As regards the last equation, its validity results from 

< H o(z-x-:--y)K(x, y) dxdy, ip(z)> = H cp(x+y)K(x,y) dxdy= <K, rp>. 

When K is decomposable, i.e., K(x, y)=S(x)@T(y), then the above-men
tioned conditions give rise to the equivalent conditions for two distributions 
S, T to be defined the usual convolution S*T, which coincides with K [13]. 

For example, t E 9Jx,y satisfies the equivalent conditions and ,ir(x) = 

)'fr(x-y, y)dy. For any K(x, y) E s:. y, it is clear that cp(i+ y)K(x, y) E (Q)~,)x, Y 

since its support is bounded. This is also the case for cp E 6x and the appli
cation <p-cp(x+y)K(x, y) of Gx into (Q)~,)x,y is continuous. Then KE s' and 

<K, rp> =) cp(x+y)K(x, y) d~y. 

We define K' by K'(x, y)=K(y, x), that is, <K•, t(x, y)> = <K, 'fr(y, x)> 
for every ,1r E Q) .,,, r The condition (1) yields that K' is defined if and only if 
K is also, and K' = K. 

Now consider the condition: 

(9) the convolution of K*t is defined for every t E Q) "'· r 

If we put K1(x, y)=K(x-y, y), ti(x, y)=t(x-y, y), then it is easy to, 
verify that (K*t)(.x-y, f)=(K1*t1)(.x, f). Then it follows from Corollary of 
Prop. 5 that K(x-y, y) is partially summable. The converse is true also. 
Therefore K is defined if and only if (K *'t )* is defined for every t E Q) "'· r 

We show that 

By a similar reasoning as in the proof of the implication (1)-(2') of Prop. 
2, we can show that the condition (9) is equivalent to 

(10) rp(x+ y)K(x-t y-f;)f{g, r;) E (9J~ 1)x,y, ~~~ 
for every ip E 9J.,, and ,fr E Q),.,r 

Then 
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<(K *v)*, ,p> = HRnxRn<p(x+y) {HRnxRnK(x-l;, y-11)t(l;, 17) dl;d17} dxdy 

= f ( t(l;, 11){\f <p(x+y)K(x-l;, y-17) dxdy} di; d17 
JJRnxRn J)RnxRn 

= HRnxR•y(l;, 17){HRnxRncp(x+y+l;+17)K(x, y) dxdy} di; d17 

= HRnxRny(l;, 17) (K.*cp) (/;+17) di; d17 
;; . 

= <,Jr, K*<p>= <K*,/r, ,p>. 

Renee we have that (K*t)*=K*f. 
We have proved in the preceding discussions 

PR0Pos1noN 7. For any distribution K (x, y) on R" x R", the conditions (1) 
-(8) are equivalent. The convolutions K and i• are defined and coincide if K 
is defined. K is defined if and only if (K * <p )* is defin'3d for every <p f. Q) x, y· 

Suppose K is defined. Let T be any distribution on R· x R• with compact 
support. We show that (K * T)* is defined and 

(11) (K*T)*=K*T. 

Let t be any element of Q) x, r T * t is also an element of Q) x, y· Then (K * T) 
*t=K*(T*y), Hence K*T astisfies the condition (9). Therefore 

(K * T)**f =((K * T) * t)* =(K * (T*t ))* 
=i *Cr*t)*=i * ct *f )=Ci *t)*f. 

Renee (K*T)*=K*T. 
Let @~. Y be the set of distributions K(x, y) on R" x R" for which the con

volutions are defined: K satisfies the equivalent conditions (1)~(8) discussea. 
:above. By change of variables x=l;- 17, y=17, @~.y is transformed. into Q)~ 

{(QJ~1\). On @:,Y we put the topology so that the application @~.y-+QJ~((Q)~1),,) 
is isomorphic. Then the application K(x, y)-+0(£- x - y)K(x, y) of @~. Y into 
QJ:((QJ~1)x,y) is monomorphic, because the application is decomposed into K(x, 
j)-+K(~-r;, r;)-+o(t-~)K(g-f;, f;)-+0(£-x-y)K(x, y),. where K(g-f;, f;)-+o(e
.g)K(g-f;, f;) is the isomorphism of Q)~((Q)~1),,) into QJ~((QJ~,)t.,,), and o(e-~) 
K(g-fJ, f;)-+0(£-x-y)K(x, y) is caused by change of variables l;=x+y, 17=y, 

r=z defining the isomorphism of Q) ~((Q)~1k,,) onto Q):((Q)~1).,,y). It follows 
from Prop. 3 that @:. Y is a permitted, ultra-bornological, complete space of 
-distribution with the approximation properties by truncature and regulariza
tion. Let @.,, Y be the strict inductive limit of an increasing sequence of 
;Spaces (@x,y)p of type (F), where (@x,y)p is a subspace of Ax,y consisting of 
functions with supports in the cylinder )x+yl <p, p being a positive integer. 
By change of variables x=l;-17, y=17, we see that @x,y is isomorphic with 
{i)x(£y). Therefore it follows from Prop. 3 that @~.y is the strong dual of ©x,y, 
and the duality between @:. Y and @x, Y is given by 
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(12) <K, <p> = H K(x, y)<p(x, y) dxdy, 

where K f. @:. Y and <p f. @,., y• 

It is clear that the strong dual @,., Y of @:. Y results from Q)tC £ ,,) by change 
of variables x=~-,,,, y=,,,, that is, @,.,Y is the strict inductive limit of an in
creasing sequence (@,.,y)p of type (F), where (@,.,y)p is the subspace Qf £,.,r 
consisting of functions with supports in the cylinder Ix+ y I .:::;:p. The duality 
between @:. Y and @,., Y is given by (12) with K f. @:. Y and <p f. @,., r Any bound
ed subset of @,., Y is equicontinuous. The topology of compact convergence on 
compact subsets of @,., Y coincides on bounded subsets of @,., Y with the topology 
induced by €o,.,r · 

It is to be noticed that the application (<p, "Y• K)-<p(x+ y) (K*'t) (x, y) of 
Q),. x Q>,.,Y x @:.,,y into (Q)~,),.,y is hypocontinuous. In fact, since Q),., Q>,.,Y and 
@:,Y are barrelled, it suffices to see that the application is separately contin
uous. This is almost obvious from Theorem 2 of [14]. 

Now we give an Y'-convolution of a distribution K(x, y) on R" x R" under
the condition: 

(1') <p(x + y)K(x, y) E (Q>~,),.,y for every <pf. Y ,.. 

The Y' -convloution which we denote also by K. is defined by 

<K, <p>=f( <p(x+y)K(x, y)dxdy. JJRnxRll 

Since the application <p-►<p(x+ y)K(x, y) of Y,. into (Q)~,),.,y is continuous ([14],. 
Theorem 2), K is tempered, that is, K. f. Y'. It is clear from (1') that the Y'
convolution K, if defined, coincides with the previously defined convolution. 
We note that (1') implies K f. Y:,Y. In fact, let <p be the Fourier transform 
{fr, "Y f. Q), then the application 't-f(x+ y)K(x, y) of Q) into (Q>~,),.,y is con
tinuous. It is almost obvious that we can make use of a parametrix for an 
iterated Laplacian as in the proof of Prop. 1 to conclude that K f. Y:,r Y: 
(Q>~,)y is the strong dual of Y,.(li,y) ([12], p. 103), and we can apply Lemma 1 
of §1 to show that Y:(W~,)y is a permitted, ultra-bornological complete space
of type (DF), with the approximation properties by truncature and regulariza
tion. The strong dual of Y:(W~,)y is Y,. (£ y) ([12], p. 103). 

By similar reasoning as in the preceding discussions, we can find the 
equivalent alternatives of (1'). Suppose K is tempered. Taking into consid
eration the definition of Y~((Q>~,),.,y), we see immediately that (1') is equiv
alent to 

(2') 

By change of variables we obtain from (2'), the equivalent conditions: 

(5') 
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(8') 

The Y' -convolution K is also expressed by the following integrals: 

f K(x-y, y) dy, f K(y, x-y)dy, ff o(2-x-y)K(x, y) dxdy. 
)Rn JRn JJRnxRn 

With necessary modifications of the proof of (11) we can show that if the 
.Y' -convolution K is defined, then for any TE ( ([j: ).,,Y the Y' -convolution (K*T)* 
is defined and 

(K*T)*=K*T. 

Finally we turn to the simultaneous r.onvolution of a distribution on Rn x R" x 
··· x W. For the sake of simplicity we consider a distribution K(x, y, 2) on R" 
x R" x R". We say that the convolution of K is defined if the following con-

dition: 

(1') <p(x+ y+2)K(x, y, 2) E (Q>~,).,,y,• for every <p E Q)., 

is satisfied. 
'The convolution which we denote also by K. is given by the relation: 

. <K, <p> = rrr <p(x+y+z)K(x, y, z) dxdydz. J J J R11 xRnxR" · 

K is a distribution on R" since the application <p-<p(x+ y+2)K(x, y, 2) of Q)" 
into (Q)~1).,,y,• is continuous ([14], Theorem 2). It is easy to see that (1") is 
~uivalent to the following conditions: 

(2') 

(3D 

(3;) 

(3;) 

o(u-x-y-£)K(x, Y, £) f Q>:((Q)~1).,,y,z), 

K(£- x- :r, y, x) E Q>:((Q>~,).,,y), 

K(x, 2-x-y, :r) E Q>:((Q>~,)., y), 

K(x, :r, 2-x-y) E Q>:((Q>~,).,,y), 

The convolution K is also expressed by the integrals 

ff f o(u-x-y~z)K(x, y, z) dxdydz, ff K(2-x-y; x, y) dxdy, J]]PxPxP . ]JPxP 

ff K(x, 2-x-y, y) dxdy, J }RnxRn 
ff K(x, y, 2-x-y) dxdy. J )RnxR11 

The spaces @.,,Y,•• @:,Y,•• @.,,Y,• can be defined in the same way as @.,,y, @~.,., 

~",Y' 

We say that the partial con.volution of K(x, y, £) with respect to x, y is 
defined if K(x, y, 2) E @~,y(Q>:). This will be a special case of the convolution 
-0f a vector valued kernel distribution treated in the next section. The con-
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dition that the partial convolution of K(x, y, z) with respect to x, y is defined 
is the following 

This is also equivalent to any of the following conditions: 

(14) 

(15) 

o(u-x-y)K(x, y, z) E Q)~,,((Q)~1)x,y), 

K(x-y, y, z) E Q:>:,.C(Q:>~1)y). 

The partial convolution H(x, z) of K(x, y, z) is given by the relation: 

<p•H(z)=ff <p(x+y)K(x,y, z) dxdy. 
) JRnxRn 

H is also expressed by the integrals: 

f I o(u-x-y)K(x, y, z) dxdy, J)RnxRn f K(x -y, y, z)dy. ]Rn 

In fact, let these integrals be denoted by H1 and H2 respectively. For any q;, 

i" E Q), we have 

<cp•Hi. ,fr>= <Hi. <p(u)f{z)> 

=Hcp(x+ y)(K. "/r)(x, y)dxdy= < B <p(x+y)K(x, y, z) dxdy, t(z)> 

<<p • H2, t> = <Hz, cp(x)1,{f)> 

= ~ {~rp(x)(K • t)(x-y, y)dx}dy = ~~<p(x+y)(K • t)(x, y) dxcly 

= < ~ ~ cp(x + y)K(x, y, z) dxdy, t(z) >. 

PROPOSITION 8. If the convolution of a distribution K(x,.f, z) on Rn x W x 

Rn is defined, then the partial convolution H of K with respect to x, y is defined 
and the convolution of His also defined and we have 

K=iI. 

PRooF. Since the convolution of K is defined, we have 

o(u-x-y-z)K(x, y, z) E Q:>:,.((Q:>~1),,,y). 

o(u-x-f)K(x, y, z) E Q:>:,.((Q:>~1).,,y). 

Hence the partial convolution Hof K is defined, and H(x, z)= ~ _K(x-y-z, y, z) 

dy. Now it is easy to see that 
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H(x-i, i)= ~K(x-y-i, y, i) dy. 

Since K(x-y-f, y, f)E Q)~((Q)~1)y,.) and K=HK(x-y-z,y,z)dydz. Therefore 

H is defined and K = H. 
We can apply Prop. 8 to deduce the equation (11). If K is decomposable 

i.e., K=S®T®U, U=!=O, then Prop. 8 is equivalent to saying that if the sim
ultaneous convolution S*T*U is defined, then (S*T)*U is defined and 

S*T* U=(S*T)*U. 

The result was already established in Shiraishi [13]. 
We can define the simultaneous .Y' -convolution of K(x, y, i) and show the 

analogue of Prop. 8. 

§ 3. Convolution of a vector valued kernel distribution 

Let E and F be two locally convex Hausdorff vector spaces, not neces
sarily quasi-complete. E@ ,F denotes the quasi-completion of inductive tensor 
product E®,F, the locally convex topology 76 of E®,F is a unique locally con
vex Hausdorff topology such that under the usual correspondence between the 
bilinear application of Ex F into an arbitrary locally convex Hansdorff space 
G and the linear applications of E®F into G, the separately continuous bilinear 
applications of Ex F into G precisely correspond to the continuous linear ap
plications of E®F provided with the topology 76. 

Let S and T be vector valued distributions on R" with values in E and F 
respectively, that is, SE Q)~(E), TE Q)~(F). The tensor product S®®,T is, by 
definition, an E® ,F-valuded distribution on R" x R" defined by the following 
relation ([12], p. 145): 

S,,/i9®/f Y • 11{x)v(y)=(S • u)®(T • v) for every u, v E Q), 

From this definition of tensor product of vector valued distributions we can 
easily prove 

LEMMA 3. (i) (S,,,*cp)®®,(Ty*,fr)=(S,,,@@,Ty)*(cp®,fr)for every cp, ,fr E Q). 
And (S,,,@®,T) * (cp®,fr) is an indefinitely differentiable function (x, y)-(S *<p) 
(x)®(T *,fr)(y) with values in E®,F. 

(ii) If U, VE E6', then (S,,, * U)®®,(Ty*V)=(S,,,@®,T y) * (U®V), 

(iii) For any <p E Q), ~cp(x+ y)(S,,,@@,Ty)dx=[(S * cp)T]. 

and 

~cp(x+y)(S,,,@®,T y)dy=[S(T*cp)],. 
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(iv) For any cp, t E Q), ~ cp(x+ y)((5x®®.1\) * yt)dx is a distribution of 

0y(E0,F) and is written as (S * cp) (y)®,(T * t) (y), where [ ], denotes the 
multiplicative product of two vector valued distributions defined by L. Schwartz 
([12], p. 57). 

PRooF. First we prove (ii). Let u, v be any elements of Q). Then 

(5 * U)®®,(T * V) • (u®v)=(5 * U) • u ®(T * V) • v 

=5. (U * u)®T. (V * v)=(S®®,T). (U *u)®(V * v) 

=(50®,T) · (U®V)"* (u ® v)=(5®®,T) * (U®V) • u ® v. 

Hence we have the equation (ii). 
Specially, (5 * cp)®®,(T * t)=(50®,f) * (cp®t) for every cp, t E QJ. Let 

K denote the second me1Jlber of the equation. Then KE 0.,/E®,F). Let o,, 
oy denote Dirac measures located at points x, y respectively. Since o.,,@oy E 

0~,y, so that K(x, y)=K · o.,,®or 

K. o.,,@oy=(5®®i) * (cp®t). o.,,@oy 

=(5@@.T) • (tp*Ox)®(,{r * Oy)=5 • T.,,<p @T • Ty1/r 

=CS* cp) (x)®Cf * t)(y). 

The equation (iii) is proved in ([12], p. 181). 
Before proceeding to the proof of the final part (iv), some preliminary 

discussions on the multiplicative product cp(x+ y)K(x, y), where cp c QJ.,,, KE 
QJ:(0y), are given. 

Let E be a quasi-complete locally convex space. €,.,,(E) is, by definition, 
the space of indefinitely differentiable £-valued functions f (x) on Rn with 
usual topology ([9], p. 94). €,iE) is isomorphic to Eix(E) by the application 
/(x)=o.,,• T, T being an element of 15.,,(E). Now let a E 15.,,y, KE W:(Eiy), and 
we denote by a(y) and K(y) the corresponding functions in €,/15.,,) and €,Y 
(QJ:) respectively. Since the multiplicative product between 6.,, and QJ~ is hy
pocontinuous, the function T(y)=a(y)K(y) is an indefinitely differentiable func
tion with values in QJ ~' that is, T(y) E €,y(QJ~). Evidentely the application 
(a, K)-T is separately continuous. We show that the distribution T on 
Rn x Rn corresponding to f is a K, the multiplicative product of a and K. The 
application (a, K)-a K is also separately continuous from 15.,,,Y x W:(6y) into 
QJ~,r For the end of the proof it suffices to show that it is the case where 
a and Kare decomposable. Let a(x, y)=~(x)®,,,(y), K=S,®s(y), where ~, ,,,, 
s E €i ands E f/J'. Then a(y)=~(.x),,,(y), .K.(y)=S.,,s(y), T(y)=~(.x)S.,,,,,(y)s(y). For 
any u E W., v E QJY we have 

<aK,u®v>=<~S.®,,,s, u®v>=<~S", u> <1Js, v>, 

<T, u®v> = <T•v, u> = < ~ ~S.,'IJ(y)s(y)v(y) dy, u> 
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= \ <tSx, u>17(y)t(y)v(y)dy= <tSx, u> <17s, v>. 
J 

From these equations we obtain that T=a K, as desired. Moreover, since 
aK E <§;y(Q)J, we see that aKE Q):(<Sy), Now we let a(x, y)=q:i(x+y), where 
<p E Q)X' Then we see from the above facts that Ki(x, y)=q:i(x+ y)K(x, y) E 

Q):(0y), We can show K1 E Q)~,(6y), In fact, let G be any compact subset of 
Rn, and H the support of q:i. Then it is easy to see that the support of K1 • v, v 
E 6~, is contained in H-G, a compact subset of Rn. It follows that K1 E 6:(6y) 

and therefore K1 E (Q)~,)x(6y), It is not difficult to see that the application 
(<p, K)-<p(x+ y)K(x, y) of Q)x x Q):(0y) into (Q)~,)x(6y) is separately continuous. 

Let T(y) = i <p(x + y)K(x, y)dx. Then Tis an element of 6 y, and the value of T 

at Yo is given by T(y0)= i i?(y0 )K.(ro) dx, where i?(y)=r(x+y) E <§;y(<Sx). This is 

because T(ra)=oy,, • T= ~i?(ra)K(ra)dx. 

In a similar .way we can show that q:i(x + z)K(x, y) E (Q)~,)x(6y,,), and 

S(y, z) = i<p(x+z)K(x, y)dx E <3y,z• The value taken bys at (Yo, Zo) is S(yo, Zo) = 

iip(zo)K(yo)dx. From the expressions of T(yo) and S(ro, Zo) it is clear that T(ro)= 

S(yo, Jo). 
We come to the proof of (iv). 
Since Sx®®,Ty E Q):,iE@,F), (Sx®®,Ty) *y'o/ ~ Ql:(<Sy(E@,F)) for any t E 

Q)Y' On account of the fact that the application (q:i, K)-<p(x+ y)K(x, y) of Q)x 
x Ql:(<Sy) into (Ql~,)x(6y) is separately continuous, we see that q:i(x+ y)((Sx® 

®,Ty)*y'o/) E (Ql~,)x (6y(E@,F)), whence i <p(x+ y)((Sx®®,Ty)*yt)dx is an ele

ment U(y) of <Sy(E@,F). Let g' be any element of the dual of E&J,F. Then 

<U, g'> = i<p(x+y)( <Sx®®,Ty, g'>*y't)dx E 6y, 

Next we note that the symmetry of (Sx®®,Ty) *y'o/ with respect to the 
variable x is (Sx®®,T y) *y'o/• For this follows from the following equations: 

~ --+ V ~ --+ 'v 'V 

(S®®,T) *y'o/ • u®v=S®®.T • u®v * ,fr 
~V - V-!> --+ V 

=(S • u)®(T • v * ,fr )=(S • u)®(T * v *,fr) 

=(S®@,T) *y'o/ • u@v, u E Q)x, v E Q)y, 

We can also show that <p(x+z)((S,.@®.1\) *yt) E (Ql~1),.(6y,,(E@,F)). i <p(x+z) 

((S®®,T)*yt) dx is an element V(y, z) of <3y,,(E@,F). Now using the remark 
stated above, we have 
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For any g' E (E0 F)'., we have 

<V, g'> = ~<p(x+2)( <(Sx®®.J'y), g'>*y~)dx. 

Consider the values of <U, g'> and <V, g'> taken at Yo and at (yo, zo) re
spectively. 

<U, g'>(y0)= <U(yo), g'> 

<V, g'>(yo, z0 )=<V(Yo, Zo), g'> 

= < (S * <p )(zo)®.('f * '/F )(Yo), g' > · 

Then it follows from our preceding discussions for prelimaries that 

which completes the proof. 

REMARK. We can show that 

For our later use we show the following 

LEMMA 4. Let E be a locally convex Hausdorff vector space and ,J'c"' a space 
of distributions. Suppose ,J'c"' is a permitted barrelled space or "has the approx
imation properties by truncature and regularization. Let j be the continuous 
injection: ,?c"'(E)-~Q)'(E). Any linear application ..5::7 of a barrelled space F 
into ,J'c"' (E) is continuous if j O sl' is continuous. 

PRooF. In Shiraishi ([13], p. 21) it was shown that any linear application 
..5::7 of a barrelled space F into a locally convex space G is continuous if G is a 
subspace of a locally convex space H with the continuous injection j and if 
IE ..5::7.(G; G) is strictly adherent to a subset A of ..5::7,(G; G) such that each. 
u f. A is a restriction of a continuous linear application of H into G and such 
that j O ..5::7 is continuous. Put G=,?c"'(E) and H=Q)'(E). In case ,J'c"' is a 
permitted space, we take A to be the set of application uk: T---+(a,!f) * Pk of ,J'c"' 

(E) into itself, where {ak} and {pk} are any sequence of multiplicators and 
regularizations respectively. An application uk, as an application of, Q)'(E) 
into ,?c"'(E), is continuous and the identical application I of ,?c"'(E) into itself 
is strictly adherent to a subset A. In fact (a/.f)*pk---+T in ,?c"'(E) since <(akT), 
* pk, e'> =(ak<T, e'>) * pk---+<T, e'> uniformly in ,J'c"' when e' runs through 
any equicontinuous subset of E'. In case ,J'c"' has the properties by truncature 
and regularization we take A to be T---+(akf) * Pk• Then the proof will be car
ried out in the same way as above, completing the proof. 
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PROPOSITION 9. Let G be any quasi-complete locally convex Hausdorff vector 
$pace. For any G-valued distribution K(x, y) on R" x R", the following con
ditions are equivalent to each other: 

(1) K(x, y) E @~.y(G), 

(2) <p(x+ y)K(x, y) E (Q)~1).,,y(G) for every <p E Q).,, 

(3) S(i-x- y)K(x, y) E Q):((Q)~1).,,y(G)), 

(4) ~<p(x+ y)K(x, f)dx E (Q)~1)y(G) for every <p E Q),,,, 

(5) K(x-y, y) E Q)~((Q)~1)y(G)), that is, K(x-y, y) is partially summable 
-with respect to y, 

(6) ~ cp(x+y)K(x, y)dy E (Q)~1),,,(G) for every <p E Q)y, 

(7) K(y, x-y) E Q)~((Q)~1)y (G)), that is, K(y, x-y) is part,ially summable 
-with respect to y, 

(8) K * ,,,E E@~,y(G)for every EE Q),,,, 

(9) K *y''l E@:_y(G)for every,,, E Q)y, 

(10) K * t E @:,y(G) for every t E Q).,,y, 

(11) K * (E®,,,) E@:,y(G)for every EE Q),,, and 'T/ E Q)y, 

.(12) <p(x+y)(K*t) E L!,ycG for every <p E Q),. and t E Q),,,,r 

Let one of the equivalent conditions (1)~(12) be satisfied. We define K by 
the relation: 

(13) <K, cp> = rr <p(x+y)K(x, y)dxdy for every <p E Q).,, K. is a G-J )R11 xR11 

-valued distribution and is also written as the following integrals: 

I K(x-y, y)dy, I K(y, x-y)dy, II o(i-x-y)K(x, y)dxdy. And we have )R11 · )R11 JJR11 xRn 

(14) Let K"(x, y)=K(y, x). Then K' satisfies the above equivalent con
,,J'. nd ~ ~ uitions, a K'=K. 

(15) (K. * 'If)* =K*,/r for every "¥' E Q),,,,y, more generally this equation 
.holds also for TE <S~,r 

PRooF. Ad (1)~(3). By Prop. 4 the application <K(x, y), g'>-+<o(~
..x-y)K(x,y), g'> of @:,Y into Q):((Q)~,),,,,y) is monomorphic. Let g'-+0 inc;. 
<K(x,y),g'>-+0 in@~.y, therefore <B(~-x-y)K(x, y), g'>-+0 in Q):((Q)~1).,,y), 

:and vice versa. 
Ad (3).!;(2). Clearly (3) implies (2). If (2) holds, then it follows from 

Lemma 4 that the application <p(x)-+<p(x+ y)K(x, y) of Q)., into (Q)~1),,,,y(G) is 
-continuous. This implies (3), since cp(~) • B(~-x-y)K(x, y)=<p(x + y)K(x, y). 

Ad (2)-+(4). If (2) holds, the integration of <p(x + y)K(x, y) with respect 
to x yields ( 4). 
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Ad (4)-(5). By change of variables we have ~<p(x+ y)K(x, j>) dx=) <p(x)K 

(x-y, y)dx f. (r;JJ~1)(G). The application <p- ~<p(x)K(x-y, y)dx of (J) into (J)~, 

(G) is continuous (Lemma 4). Hence K(x-'-j>, y) f. r;JJ:((r;JJ~,)y(G)). 
Ad (5)-(1). This implication is clear from the fact that @:,Y is isomor

phic to r;JJ:((JJ~,)y by change of variables. 
Ad (2)-(6)-(7)-(1). We can show these implications in a similar way 

as in the proof of (2)-( 4)-(5)-(1). 
Ad (1)-(8). The application g-K*,J of (J) into @:JG) is continuo~s 

(Lemma 4). Therefore (1) implies (8). 
Ad (8)-(11). The application K*~-K*(g&)17) of @:,y(G) into @~jG) is 

continuous, so that this implication holds. 
Ad (1)-(9)-(11). The proof is very similar to the preceding case: (1)

(8)-(11). 
Ad (11)-(10). The bilinear application (f, 17)-K*(g@n) of r:;JJ_. x (J)Y into

@,.,r(G) being separately continuous, it is also continuous in the topology of 
r;JJ,,r [11]. Hence (11) yields (10). 

Ad (10)-(5). If we put K 1(x, y)=K(x-y, j>) and 1;1(x, y)=l;(x-y, y) we 
have (K1 * l;1)(x, y)=(K * l;)(x-y, y). Therefore (10) implies that K1*s1 E (J)~ 

((r;JJ~,)y(G)). Then it follows from Prop. 6 that .K1 f. r;JJ:((r;JJ~,)y(G)). 
Ad (10)-(12). We note that K1(x, y)=<p(x+ y)(K*s) is distinguished in 

(r;JJ~,).,y(G) (see Miyazaki [6] for the definition of, "distinguished element"). 
In fact there exists a sequence of positive number {:\,} such that {:\,D'K.1} is 
bounded in (r;JJ~,) .. ,r (G). Any derivative D'K.1 is a linear combination of the ele
ment of (r;JJ~,) .. ,r (G) written in the form (D'i<p)(x+ y)(K *DJi-'it). There exists a. 

sequence of positive numbers {µp} (resp. {J)Ji}) such that {µ,(Dl<p) (x+ j>)} (resp. 
{vpDJi-'i(s)}) is bounded in r;JJ_. (resp. r;JJ,.,r). On account of the fact that the ap
plication (<p, l;)-<p(x+y) (K * I;) of <;JJ_. x r:;JJ_.,,. into (r;JJ~,) .. jG) is hypocontinuous,, 
we can easily see that K.1 (x, y) is distinguished. Applying a result due to 
Miyazaki [6], we see that K.1(x, y) is in (JJ L,(G), and a fortiori in (£1),.,,r c G, as. 
desired. 

Ad (12)-(10). Since the injection (£1)_.,y(G) into (Q)~,) .. ,y(G) is continuous,. 
(12) implies (10). 

Suppose K satisfies the equivalent conditions proved above. The appli
cation <p-<p(x+ y)K(x, y) of <;]) into '.((JJ~,) .. ,r (G) will be continuous by Lemma. 

4. Hence the application <p-)<p(x+y)K(x, y) dxdy of Q) into G is continuous .. 
... 

This shows that K defined by (13) is a G-valued distribution. Let g' be any - .... element of G', then <K, g'> f. @:,r- It follows then from Prop. 7 that K 1s 

written by the integrals: ~K(x-y, y)dy, ~K(y, x-y),dy, H o(x-x-y) K(x, y) 

dxdy. 
Ad (14). It is clear from Prop. 7. 
Ad (15). Let T be any element of 0:,r- Then T *I;€ <;JJ,.,r for every I; c 
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Q)x,r (K * T) * s=K * (! * s) E @;;,y(~)- Hence K *TE @:,,.(G). Then it fol
lows from Prop. 7 that (K * T)*=K * T. 

If K(x, y) E Q):,,.(G) satisfies the equivalen! conditions (1)~(12), then we 
:shall call K defined by (13) the convolution of K. 

Now we apply Prop. 9 to a tensor product of vector valued distribution 
•On Rn. 

THEOREM. Let E and F be two locally convex vector spaces. For any distri
.butions SE Q):(E) and T E Q)~(F) the following conditions (1)~(8) are equiva
lent: 

(1) (S/g!®,Tv) E @:_,.(E@,F), 

(2) rp(x+y)(S.00,T,.) E (Q)~,).,y(E®,F)for every rp E Q)x, 

(3) o(z-x-y)(Sx00,T,.) E (Q)~(Q)~,)x,,.)(E®,F), 

(4) [(S * rp)T]. E Q)~,(E®,F) for every <p E Q),., 

(5) [S(T * rp)]. E Q)~,(E@,F) for every <p E Q),., 

(6) S(x-y)00.T(y) is partially summable with respect toy, 

(7) S(y) 00,T(x-y) is partially summable with respect toy, 

(8) (S * rp)(x)0,(T * t-)(x) E (L1),.s(E0,F) for every 'P,"V' E Q), 

.S, T satisfy the above equivalent conditions if and only. if S * rp, T(resp. S, T * 
<p) satisfy also, f o'r every <p E Q) ,.. 

Let S, T satisfy the equivalent conditions (1)~(8). We define S*.T by 
the relation: 

.S*,T is an (E@,F)-valued distribution (which we shall call the i-convolution of 

.sand T). s *,f is written as the integrals: I S(x-y)00,T(y)dy, I S(y) 0 JRn JRn 
0.T(x-y) dy, I I o(z-x-y)(S,.00,T,.) dxdy, and s*,f • rpt'= fcs * rp)(x)0 J JRnxRn J 
{T * t')(x) dx for every 'P,"f E Q). And we have 

(10) T*.S can be defined and is equal to the image of S*,T under the can
-0nical application: E ® ,F ~ F&J ,E. 

(11) If U is any element of e;:, then (S *,T)*U=(S * U)*,T =S*.(T * U). 

PRoOF. Put K=S00,T and G=E@,F. With the aid of Lemma 3 we 
have 

~<p(x+ y)K(x, y)dx=[(S * rp)T]., 

!rp(x+y)K(x, y)dy=[S(T * rp)]., 



On Partial Summability and Convolutions in the Theory of Vector Valued Distributions 559 

~<p(x+y)(K * 't)dx=(S * <p)(y)&).(T * 't)(y), 

K *,.<p=S*,.<p®®, f, K *y<p=S®®,(T * <p). 

Then it follows from Prop. 9 that the conditions (1)~(7) are equivalent. As 
regards (8), the conditions are equivalent to 

(8') (S * <p)(y)®,(T * -t)(y) f Q)~1(E®,F). 

We can show that the left member of (8') is distinguished in Q)~,(E@,F). In 
fact, owing to the relation (1) (Remark after Lemma 3), the proof can be 
earried out along the similar line as in the proof of the implication (10)---+(12) 
of Prop. 9. Therefore (S * cp)(y)®.(T * -t)(y) E Q) L,(E@,F). It follows since the 
injection Q) L,(E®,F)-+L1c(E0,F) is continuous that the implication (8')-+(8) 
holds. The converse is trivial. 

That S, T satisfy the equivalent conditions (1)~(8) if and only if S * cp, T 
(resp. S, T * cp) satisfy also for any <p E Q) is a consequence of the equivalence 
of (1), (8), (9) of Prop. 9. 

Suppose S, T satisfy the equivalent relations (1)~(8). S •,T is nothing 
but K., so that the representations of S * T by the integrals in our Theorem are 
obvious. (10) is almost evident. (11) follows from (15) of Prop. 9 if we con
sider U®o or o®U instead of Tin (15) of Prop. 9. Thus tlhe proof is completed. 

This theorem is an extension of the result of Shiraishi [13] concerning the 
eonvolution of two scalar valued distributions. 

Let K(x, y) be any G-valued distribution on Rn x Rn satisfying the con
dition: 

(1)' cp(x+ y)K(x, y) E (Q)~1),.,y(G) for every cp E 8". 

By Lemma 4 the application <p-+cp(x+y)K(x, y) of 8" into (Q>~,)xjG) is con

tinuous, so that the application K. defined by the relation: 

<K, cp> = rr cp(x+y)K(x, y) dxdy for every <p E 8x, J J RnxRn 

is continuous from 8,. into G, that is, K (called 8'-convolution) is an element 
of 8'(G). We note that K(x, y) E 8:,y(G). In fact, (1)' implies that <p(x+ y) 
<K(x, y-), g'> f (Q>~,1)x,y for every (f} f ,.y'x and g' f G', and in turn <K(x, y), g' • 
> E 8:,Y as remarked in § 2. Since 8' has an (c)-property ([11], p. 54), we 
have KE 8:,Y (G). In particular, if K(x, y) is a tensor product S"®®:f y, 
where SE Q)'(E), TE Q)'(F) and S=¾=O, T=\=O, we can conclude that SE 8:(E) 
and f E 8iF). For in this case S,.<2)(2),Ty E 8:jE0,F) implies that <Sx, e' 
>®<Ty, /'> E 8:,Y for every e' EE' and/' E F'. In fact, <S,.00J\ • u(x) 
®v(y), e'®/'> = <S,. • u, e'> <Ty•v, /'> =C <Sx, e'>. u) C <Ty, f'> • v)=C < 
Sx, e'>®<Ty, l'>). u&)v for every u, VE Q), e' EE', l' E F', hence <Sx®®· 
I\, e'®/'> = <S,., e>®<Ty, /'>. Since T=¾=O by our assumption, there is 
an/' such that <T, /'>=f=O. Then it follows from a result of Shiraishi 
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([13], p. 27) that <Sx, e'> EB' for every e' EE'. This implies SE B:(i;;). 
since B' has an (c)-property. Similarly we have f E B;(ff). Conversely if 
S E cY:(E) and f E BiF), then S(g;(g;,T E B:.y(E@.F). This follows from the 
equation: 

(Sx®®,Ty). u®v=Sx. u(l)Ty. V for every u E Q)x, VE Q)Y' 

Suppose K f B:,y(G). This implies <p(x + y)K(x, y) f Ly:· ccw~1)y(G)) for 
every <p E Bx• <p(x + y)a(x) EB x,y for every a EBY' Then a(x)cp(x + y)T(x. 
y)c(6':)x,y=(6':)xC(6':)y) for every TEBx,y and in turn cp(x+y)T(x, y)EB: 
((6':)y) and a fortiori B:((QJ~1)y), It follows from this that the application 
(<p, T)-<p(x+ y)T(x, y) of Bx x B:,Y into B:((<;JJ~1)y) is hypocontinuous. From 
this remark we can conclude cp(x+ y)K(x, y) E B:((QJ~1)y(G)). 

With the aid of the remarks just mentioned, we can state and prove an 
analogue of Prop. 9. Here we mention some properties of B' -convolutions 
without proof. For any.KE w:,y(G), K(x-y, y) (resp. K(y, x-y)) E (QJ~1)y(B: 
(G)) if and only if <p(x+y)K(x, y) E (QJ~1)x,y(G) for every cp E Bx- And if the 
B' -convolution of K is defined, then this is defined also for .K * U for every 

U E (6':)x,y and (K * U)*= K * U. As regards the tensor product of vector 
valued distributions, if we let S E B:(E) and f E B;(F), then the analogous 
statements of Theorem will hold. The proof is not so difficult that we can 
omit it. · 

Next we turn to the simultaneous convolution of a .K(x, y, £) E w:,y,,(G). 
Consider the condition: 

(l)" cp(x+ y+£).K(x, y, £) E (QJ~1)x,y,,(G) for every <p E QJ;. 

If .K satisfies (1)", we define K (called the convolution of K.) by the relation: 

<K, <p> = rrr cp(x+ y+£)K(x, y, £) dxdydz J J )RnxRnxRn 

K. will be a G-valued distribution on Rn. We can state the conditions equiv
alent to (l)" as in § 2. 

PROPOSITION 10. Let K(x, y, £) be any G-valued distribution on W x Rn x Rn, 

for which the convolution K is defined. Then K(x, y, £) E @:.rew:cc)) and if we 

denote by ii (x, £)= ~K(x-y, y, £)dy, then ii E@:,.(G) and moreover H=K. 

PROOF. By our hypothesis, K(x, y, £) E @:.y,,(G). It follows since the in
jection @:.y,,-@:.y(QJ:) is continuous that K(x, y, £) E @:,rCW:(G)). Put K.1 
(x, y)=K(x, y, £). Then K.1 E @:,y cw:cc)) so that K.1 (x, £) exists and equals 

H(x, £) defined in the Proposition. It is easy to see that ii(x-£,£)= ~ K(x-y 

-£, y, £)dy. Since K(x, y, £) E@:,y,,(G) implies K(x-y-£, y, £) f QJ:((QJ~1)y,z ... 
(G)), it follows from a theorem of Fubini ([11], p, 106) that H(x-£, £) E w: 
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((Q)~,),(G)) and K=~H(x-z, z)dz, that is H=K, as desired. 

Let E, F and H be three locally convex Hausdorff spaces. S (resp. f, U) 
be any E-valued (resp. F-valued, H-valued) distribution on Rn. When ((S®® 
T@@U),* is defined, we shall denote this convolution by (S * f * U).. The 
properties of the simultaneous convolution of scalar valued distributions were 
studied by Shiraishi [13]. The analogous statements for the case of vector 
valued distributions can be proved, as an example we shall show the associa
tive property which is a generalization of a result of L. Schwartz ([12], p. 
169). 

PROPOSITION 11. Let the convolution (S * f * U). be defined. If tJ =\=O, then 
S*,f and (S*.T)*,tJ are defined and the latter is the image of (S * T * U), under 
the canonical appilcation j: (E®F@H)'":---+(E{gy,F)@,H. 

PROOF. First of all we show that s*,T is defined. For any h' EH', we 
denote by 0r., the multilinear application Ex Fx H---+E0,F defined 0r.,(e, /, h)= 
(e@/)<h, h'>, e EE, f E F, h EH. Clearly 0x, is separately continuous. Hence 
8'f., is uniquely extended to a linear continuous applicaion i'h,: (E®F®H)'°;---+E 
0 ,F. It is easy to verify the equation: 

(1) (J@8'f.,)(S@@T@®U),=(S®@.'f)@<U, h'> E@:,y,.(E0,F), 

where I is the identical application of Q) :,y,•• It follows from (1) that (S® 
®.T)<U • u, h'> E @:,y(E0,F) for any u E Q), since the injection @:,y.,-@:,Y 
(Q):) is continuous. We can choose u and h' such that <U • u, h'> =l. Hence 
s*,f is defined. 

We put K(x, y, z)=(S0@T@@t1), and il(x, z)=~K(x-y, y, z)dy. If we 

can show that 

(2) (I@j)il(x, z)=(S*,f)@@,tJ E @:,.((E0,F)0.H), 

~ ~ ~ - --+ 

we shall have (I®j)K =(I®j)H =(S*,T)*.U by Prop. 10. Hence the proof will 
be through. 
Now, for any <p E Q)x, VE Q)y, u E Q), 

(3) (I®j)K(x-y, y, z) • <p(x)v(y)u(z)= ~[(S*<p)T].(y)v(y)dyG9U • u. 

Indeed, the left membar of (3) equals 

(I@j)K(x, y, £) • <p(x+ y)v(y)u(z)=(S@@,T)@@,tJ • <p(x+ y)v(y)u(z) 

=(S®@,T). <p(x+y)v(y)@U. u= ~[(S*<p)T].(y)v(y)dy@tJ. u. 

Let v tend to 1 in£ c• The right member of (3) tends to~ [(S* <p)T].(y)dy@tJ • u, 
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that is, (S*,T)®®,U • rpu. On the other hand 

(I®j)K(x-y, y, £) • cp(x)v(y)u(£)=cp(x)u(£) • ~v(y)(I®j)K(x-y, y, £)dy. 

Since (I®j)K(x-y, y, £) E (r;JJ~1)y((J):,.((Ec?J,F)@H)), it follows that ~v(y)(I®j) 

K(x-y, y, £)dy tends to (I®j)H(x, £) in QJ:,.ccE®,F)'2>.H) when v tends to 1 in 
tR, c• Thus the left member of (3) tends to (I®j)H(x, £) • cpu. Since fi(x, £) E 

@:,.C(E®,F)®,H). Therefore we have (2), completing the proof. 
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