
Hiroshima Math. J.

49 (2019), 117–127

Local torsion primes and the class numbers associated to

an elliptic curve over Q

Toshiro Hiranouchi

(Received November 8, 2017)

(Revised October 13, 2018)

Abstract. Using the rank of the Mordell-Weil group EðQÞ of an elliptic curve E over

Q, we give a lower bound of the class number of the number field QðE½ pn�Þ generated

by pn-division points of E when the curve E does not possess a p-adic point of order

p: EðQpÞ½ p� ¼ 0.

1. Introduction

Let E be an elliptic curve over Q with complex multiplication (abbreviated

as CM in the following) satisfying EndCðEÞ ¼ OF the ring of integers of an

imaginary quadratic field F . When E has good ordinary reduction at p > 2,

the prime p splits completely in F as p ¼ pp where p A OF and p is the com-

plex conjugation of p. Let Fn :¼ FðE½pn�Þ be the field generated by pn-torsion

points of E over F . The extension Fy :¼
S

n Fn of F1 is a Zp-extension so that

there exist l; m A Zb0 and n A Z which are all independent of n such that we

have

aClpðFnÞ ¼ plnþmpnþn; for ng 0;

where ClpðFnÞ is the p-Sylow subgroup of the ideal class group of Fn. It is

known that the invariant l of the Zp-extension has a lower bound

lb r� 1;

where r is the (Z-)rank of the group of Q-rational points EðQÞ ([4],

Sect. 5).

For an elliptic curve E over Q which may not have CM and a prime

number p > 3, in recent papers [7] and [8], Sairaiji and Yamauchi give a lower

bound of the class numberaClpðKnÞ in terms of the rank of EðQÞ associated to
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the field Kn :¼ QðE½pn�Þ generated by pn-torsion points E½pn� :¼ EðQÞ½pn�
under the following conditions1:

ðRedlÞ E has multiplicative reduction or potentailly good reduction at

any prime l0 p,

ðRedpÞ E has multiplicative reduction at p,

ðDiscÞ pF ordpðDÞ, where D is the minimal discriminant of E, and

ðFullÞ GalðK1=QÞFGL2ðZ=pZÞ.
When p > 5 and E is semistable, ðDiscÞ is automatically satisfied (cf. [8],

Sect. 1). The objective of this note is to propose a condition

ðTorÞ EðQpÞ½p� ¼ 0

instead of using ðRedpÞ and ðDiscÞ above, and give the same form of a lower

bound of aClpðKnÞ as in [8]. The main theorem is the following:

Theorem 1. Let E be an elliptic curve over Q with minimal discriminant

D and let p be a prime number > 2. Put Kn :¼ QðE½pn�Þ. Assume the condi-

tions ðTorÞ and ðFullÞ noted above. Then, for all n A Zb1, we have the following

inequality:

ordpðaClpðKnÞÞb 2nðr� 1Þ � 2
X

l0p; ljD
nl ;

where r is the rank of EðQÞ and

nl :¼
minfordpðordlðDÞÞ; ng; if E has split multiplicative reduction at l;

n; if p ¼ 3; E has additive reduction at l; and cl ¼ 3;

0; otherwise;

8<
:

where cl is the Tamagawa number at l (cf. (2) in Section 2) and ordp (resp.

ordl) is the p-adic (resp. l-adic) valuation on Q.

Remark 1. (i) The condition ðFullÞ means that the Galois representation

r : GalðQ=QÞ ! AutðE½p�ÞFGL2ðZ=pZÞ is full (i.e., surjective).

This can be checked by some criterions [9], Sect. 2.8 (see also [8],

Sect. 1).

(ii) In [1], for an elliptic curve E over Q, a prime number p which does

not satisfy ðTorÞ, that is, EðQpÞ½p�0 0, is called a local torsion prime

for E. It is expected that when E does not have CM, there are only

finitely many local torsion primes ([1], Conj. 1.1).

A proof of Theorem 1 is given in Section 3. In Section 2, we give some

su‰cient conditions for ðTorÞ. In fact, the conditions ðRedpÞ and ðDiscÞ imply

1 In [7], the cases p ¼ 2 and 3 have been studied under the additional condition: GalðKn=QÞF
GL2ðZ=pnZÞ for all nb 1. In fact, for p > 3, ðFullÞ implies this condition (cf. [8], Sect. 1).
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the condition ðTorÞ (Lem. 3). Not only the theorem above can be applied to

an elliptic curve and a prime p of a wider class than [8], but the proof is

simplified.

Closing this section, let us consider the elliptic curve E over Q defined

by

y2 þ y ¼ x3 þ x2 � 2x

(the Cremona label 389a1) which has the smallest conductor among those of

r ¼ 2. This E does not have CM and D ¼ 389 (E has multiplicative reduction

at 389). By using SAGE [2], one can confirm that the condition ðFullÞ holds

for all primes p and ðTorÞ holds for any odd prime < 106. Thus, our main

theorem says that, for all odd primes p < 106 (which may be p ¼ 389), we have

ordpðaClpðKnÞÞb 2n:
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2. Local torsion primes

Throughout this note, we use the following notation:
� p: a prime number > 2,
� E: an elliptic curve over Q,
� D: the minimal discriminant of E ([10], Chap. VIII, Sect. 8),
� ½pn� : E ! E: the isogeny multiplication by pn ([10], Chap. III, Sect. 4),

and
� E½pn� :¼ EðQÞ½pn�: the pn-torsion subgroup of EðQÞ.

Structure theorem on EðQlÞ. For a second prime number l (which may be p),

we denote also by E the base change EnQ Ql of the elliptic curve E to Ql .

Define
� p : EðQlÞ ! EðFlÞ: the reduction map modulo l ([10], Chap. VII,

Sect. 2),
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� EnsðFlÞ: the set of non-singular points in the reduction EðFlÞ (cf. [10],

Chap. III, Prop. 2.5), and
� E0ðQlÞ :¼ p�1ðEnsðFlÞÞ.

The reduction map p : EðQlÞ ! EðFlÞ modulo l induces a short exact sequence

(of abelian groups)

0 ! E1ðQlÞ ! E0ðQlÞ !
p
EnsðFlÞ ! 0; ð1Þ

where E1ðQlÞ is defined by the exactness (cf. [10], Chap. VII, Prop. 2.1).

Lemma 1. (i) E1ðQlÞ½p� ¼ 0.

( ii ) (a) If E has multiplicative reduction at l, then EnsðFlÞ � EnsðFl 2ÞF
ðFl 2Þ�.

(b) If E has additive reduction at l, then EnsðFlÞFFl as additive

groups.

(iii) (a) If E has split multiplicative reduction at l, then EðQlÞ=E0ðQlÞF
Z=ordlðDÞZ.

(b) If E has non-split multiplicative reduction at l, then EðQlÞ=
E0ðQlÞ is a finite group of order at most 2.

(c) In all other cases, namely, E has good reduction or additive

reduction at l, the quotient EðQlÞ=E0ðQlÞ is a finite group of

order at most 4.

(iv) We have an isomorphism

EðQlÞFZl lEðQlÞtor
as abelian groups, where EðQlÞtor is the torsion subgroup of EðQlÞ
which is finite.

Proof. (i) We have E1ðQlÞF ÊEðlZlÞ, where ÊEðlZlÞ is the group asso-

ciated to the formal group ÊE of E ([10], Chap. VII, Prop. 2.2). Since every

torsion element of the group ÊEðlZlÞ has order a power of l ([10], Chap. IV,

Prop. 3.2 (b)), we obtain ÊEðlZlÞ½p� ¼ 0 if l0 p. For the remaining case

l ¼ p > 2, the assertion follows from E1ðQpÞF ÊEðpZpÞF pZp FZp ([10], Chap.

IV, Thm. 6.4 (b)).

(ii) [10], Chapter III, Exercise 3.5.

(iii) [10], Chapter VII, Theorem 6.1 (for the cases (a) and (c)) and [11],

Chapter IV, Remark 9.6 (for the case (b)).

(iv) The quotients EðQlÞ=E0ðQlÞ;E0ðQlÞ=E1ðQlÞFEnsðFlÞ are finite by

(ii) and (iii). From the exact sequence (1), it is enough to show

E1ðQlÞFZl lE1ðQlÞtor;

where E1ðQlÞtor is the torsion subgroup of E1ðQlÞ which is finite. In fact, as

in the proof of (i), we have E1ðQlÞF ÊEðlZlÞ. For the case l > 2, the formal
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logarithm induces ÊEðlZlÞF lZl FZl . On the other hand, for the case l ¼ 2,

we have ÊEð22Z2ÞF 22Z2 FZ2 and the quotient ÊEð2Z2Þ=ÊEð22Z2ÞF 2Z2=2
2Z2

is finite ([10], Chap. IV, Prop. 3.2 (a)). The assertion follows from these

structure of ÊEðlZlÞ. r

Recall that the Tamagawa number cl at a prime l for E is defined by

cl :¼ ðEðQlÞ : E0ðQlÞÞ: ð2Þ

Lemma 2. Suppose that E has additive reduction at a prime l0 p. We

further assume the following conditions:

(a) p > 3, or

(b) cl 0 3, where cl is the Tamagawa number at l (cf. (2)).

Then, EðQlÞ½p� ¼ 0.

Proof. As E has additive reduction at l, we have EnsðFlÞ½p� ¼ 0 (Lem. 1

(ii-b)). On the other hand, E1ðQlÞ½p� ¼ 0 (Lem. 1 (i)) so that E0ðQlÞ½p� ¼ 0

by (1). As cl ¼aEðQlÞ=E0ðQlÞa 4 (Lem. 1 (iii)), the quotient EðQlÞ=E0ðQlÞ
does not possess elements of order p under the additional assumption (a) or

(b). We obtain EðQlÞ½p� ¼ 0. r

Multiplicative reduction at p.

Lemma 3. Suppose the condition ðRedpÞ in Introduction, that is, E has

multiplicative reduction at p. We further assume one of the following condi-

tions:

ðDiscÞ pF ordpðDÞ, or
(a) E has non-split multiplicative reduction at p.

Then, the condition ðTorÞ: EðQpÞ½p� ¼ 0 holds.

Proof. As E has multiplicative reduction at p, EnsðFpÞ � EnsðFp2ÞF
ðFp2Þ� (Lem. 1 (ii-a)). In particular, EnsðFpÞ½p� ¼ 0. On the other hand,

E1ðQpÞ½p� ¼ 0 (Lem. 1 (i)) and hence E0ðQpÞ½p� ¼ 0 by (1).

Case (a): First, we suppose that E has non-split multiplicative reduction.

In this case, the quotient group EðQpÞ=E0ðQpÞ is a finite group of order at

most 2 (Lem. 1 (iii)) so that we obtain EðQpÞ½p� ¼ 0.

Case (Disc): Next, we assume pF ordpðDÞ. From Case (a) above, we

may assume that E has split multiplicative reduction at p. The assertion

follows from EðQpÞ=E0ðQpÞFZ=ordpðDÞZ (Lem. 1 (iii)). r

Remark 2. When the elliptic curve E over Q has multiplicative reduction

at 2, by considering the isomorphism EðKÞFK�=qZ for some unramified

extension K=Q2 locally, �1 A K� gives a 2-torsion element in EðQ2Þ. Thus

the condition ðTorÞ at 2 does not hold: EðQ2Þ½2�0 0.
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Good reduction at p.

Lemma 4. Suppose that E has good reduction at p.

( i ) We further assume one of the following conditions:

(a) EðFpÞ½p� ¼ 0, or

(b) EðQÞtor 0 0; pb 11.

Then, the condition ðTorÞ holds.

(ii) Assume that E has CM, and pb 7. Then, ðTorÞ holds if and only if

EðFpÞ½p� ¼ 0.

The lemma above essentially follows from [1], Proposition 2.1. For the

sake of completeness, we give a proof.

Proof (of Lem. 4). (i) Case (a): We have E1ðQpÞ½p� ¼ 0 (Lem. 1 (i)).

The condition can be checked by using the exact sequence

0 ! EðQpÞ½p� !
p
EðFpÞ½p� !

d
ÊEðpZpÞ=pÊEðpZpÞ;

where d is the connecting homomorphism. The assumption EðFpÞ½p� ¼ 0

implies the condition ðTorÞ.
Case (b): Assume EðQpÞ½p�0 0. By [1], Proposition 2.1 (1), we have

EðQÞtor FZ=pZ. From the assumption pb 11, this contradicts with Mazur’s

theorem on EðQÞtor ([10], Chap. VIII, Thm. 7.5).

(ii) From (i) (the case (a)), it is enough to show that if EðFpÞ½p�0 0,

then EðQpÞ½p�0 0. From Hasse’s theorem ([10], Chap. V, Thm. 1.1) and

pb 7, aEðFpÞ ¼ p. We have apðEÞ :¼ pþ 1�aEðFpÞ ¼ 1. This implies

EðQpÞ½p�0 0 by [1], Proposition 2.1 (3) under the assumption that E has CM.

r

When E has CM, Lemma 4 (ii) gives a criterion for the condition ðTorÞ.
On the other hand, Lemma 4 (i) says that, for pb 11, ðTorÞ does not hold

only if

(a 0) EðFpÞ½p�0 0, and

(b 0) EðQÞtor ¼ 0.

For our purpose, we further impose

(c 0) E does not have CM, and

(d 0) the rank r > 1 (to exclude cases where our main theorem (Thm. 1)

becomes trivial).

The following calculations are given by using SAGE [2]. There are 1733

elliptic curves with conductor N < 104 satisfying (b 0)–(d 0) above. Among

them, only 50 curves have a local torsion prime p in the range 11a p < 106,

i.e., EðQpÞ½p�0 0 listed below:
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curve p curve p curve p curve p

1 1639b1 2833 14 4976a1 11 27 7497c1 13 40 9082a1 13

2 1957a1 163 15 5171a1 23 28 7520e1 11 41 9149c1 23

3 2299b1 31 16 5736f1 11 29 7826d1 19 42 9395a1 37

4 2343c1 17 17 5763d1 23 30 8025d1 43 43 9467a1 19

5 2541c1 197 18 5982h1 197 31 8025d2 43 44 9510c1 103

6 2728d1 443 19 6334b1 11 32 8048f1 2593 45 9535a1 31

7 3220a1 41 20 6405c1 113 33 8384j1 157 46 9706b1 367

8 3333b1 19 21 6792a1 97 34 8495a1 43 47 9783b1 11

9 3997a1 167 22 6848p1 23 35 8551a1 293 48 9789f1 541

10 4024b1 47 23 6896e1 29 36 8768h1 17 49 9797b1 19

11 4279c1 13 24 7152a1 79 37 8950m1 271 50 9865b1 11

12 4504b1 19 25 7233a1 11 38 8974c1 1063

13 4768a1 109 26 7366g1 11 39 8988d1 37

Table 1. Local torsion primes

3. Elliptic curve over Q
We keep the notation of the last section. We further define
� Kn :¼ QðE½pn�Þ (cf. [10], Chap. VIII, Prop. 1.2 (d)),
� r :¼ the rank of EðQÞ (which is finite by the Mordell-Weil theorem [10],

Chap. VIII),
� P1; . . . ;Pr A EðQÞ: generators of the free part of EðQÞ, and
� Ln :¼ Knð½pn��1

P1; . . . ; ½pn��1
PrÞ.

Following [5], Chapter V, Section 5, for each 1a ia r, define

FðiÞ : GalðLn=KnÞ ! E½pn�; s 7! sðQiÞ �Qi; ð3Þ

where Qi A EðQÞ with ½pn�Qi ¼ Pi. Since E½pn� � EðKnÞ, the map FðiÞ does

not depend on the choice of Qi. These homomorphisms ðFðiÞÞ1aiar induce an

injective homomorphism

F : GalðLn=KnÞ ! E½pn�lr; s 7! ðFðiÞðsÞÞi: ð4Þ

From E½pn�F ðZ=pnZÞl2 ([10], Chap. III, Cor. 6.4) the extension Ln=Kn is

an abelian extension with ½Ln : Kn�a p2nr.

Inertia subgroups. For any prime number l and a prime ideal l in (the ring

of integers of ) Kn above l (we write ljl in the following), we denote by
� Il: the inertia subgroup of GalðLn=KnÞ at l (for Ln=Kn is abelian, the

inertia subgroup Il is independent of a choice of a prime ideal in Ln

above l), and
� Il :¼ hIl; prime ideal ljl in Kni: the subgroup of GalðLn=KnÞ gener-

ated by Il for all ljl.
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For any prime ljl of Kn, and a prime L of Ln above l (we write Ljl), we denote

by
� ðKnÞl: the completion of Kn at l, and
� ðLnÞL: the completion of Ln at L.

Lemma 5. We assume the condition ðTorÞ. Then, we have aIp a p2n.

Proof. By the structure theorem on EðQpÞ (Lem. 1 (iv)),

EðQpÞFZp lEðQpÞtor:

From the condition ðTorÞ, we have EðQpÞtor=½pn�EðQpÞtor ¼ 0 and hence

EðQpÞ=½pn�EðQpÞFZ=pnZ:

Let P A EðQpÞ=½pn�EðQpÞ (the residue class represented by a point P A EðQpÞ)
be a generator of the cyclic group EðQpÞ=½pn�EðQpÞ and, for each index

1a ia r, write

Pi ¼ ai � P in EðQpÞ=½pn�EðQpÞ

for some ai A Z=pnZ ðai A ZÞ. Take 1a ia r such that

ordpðaiÞa ordpðajÞ

for all 1a ja r. For any prime Pjp of Ln, we denote by p the prime in Kn

below P. Using the chosen index i, we obtain

ðLnÞP ¼ ðKnÞpð½pn��1
PiÞ: ð5Þ

Put K 0
n :¼ Knð½pn��1

PiÞ � Ln. From the equality (5), the extension Ln=K
0
n is

unramified (at all primes in K 0
n) above p. As the extension Kn=Q is Galois,

this extension Ln=K
0
n is unramified above p. Since Ip \GalðLn=K

0
nÞ ¼ f1g, the

restriction FðiÞjIp : Ip ! E½pn� of FðiÞ defined in (3) is injective and hence

aIp a p2n. r

Lemma 6. Let l be a prime number with l0 p.

( i ) We have aIl a p2n.

( ii ) Suppose that E has multiplicative reduction at l. We haveaIl a p2nl ,

where

nl :¼
minfordpðordlðDÞÞ; ng; if E has split multiplicative reduction at l;

0; if E has non-split multiplicative reduction at l:

�

(iii) Suppose that E has additive reduction at l. We further assume the

following conditions:
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(a) p > 3, or

(b) cl 0 3, where cl is the Tamagawa number at l (cf. (2)).

Then, we have aIl ¼ 1.

Proof. (i) Take any ljl in Kn. For a prime Ljl in Ln, let ðTnÞL :¼
ððLnÞLÞ

Il be the inertia field of L over ðKnÞl which is the fixed field of Il (cf. [6],

Chap. II, Def. 9.10). Since l0 p, the extension Ln=Kn is tamely ramified at

any prime Ljl in Ln. The inertia subgroup Il ¼ GalððLnÞL=ðTnÞLÞ is cyclic (cf.

[6], Chap. II, Sect. 9). There exists 1a ia r such that

ðTnÞLð½pn��1
PjÞ � ðTnÞLð½pn��1

PiÞ

for any 1a ja r. Since Il does not depend on the choice of Ljl in Ln, the

index i above can be chosen independent of Ljl. We obtain

ðLnÞL ¼ ðTnÞLð½pn��1
PiÞ ð6Þ

for any prime Ljl.
Put K 0

n :¼ Knð½pn��1
PiÞ � Ln. The extension ðTnÞL=ðKnÞl of local fields

is unramified from the definition of ðTnÞL for any prime Ljl in Ln. Using the

equality (6) the extension

ðLnÞL ¼ ðTnÞLð½pn��1
PiÞ over ðKnÞlð½pn��1

PiÞ

is also unramified ([6], Chap. II, Prop. 7.2). This implies that Ln=K
0
n is

unramified at all primes Ljl in Ln. As the extension Kn=Q is Galois, this

extension Ln=K
0
n is unramified above l. Since Il \GalðLn=K

0
nÞ ¼ f1g, the

restriction FðiÞjIl : Il ! E½pn� of FðiÞ defined in (3) is injective and hence

aIl a p2n.

(ii) This assertion is [8], Theorem 4.1.

(iii) By Lemma 1 (iv), we have

EðQlÞFZl lEðQlÞtor:

From EðQlÞ½p� ¼ 0 (Lem. 2), we have

EðQlÞ=½pn�EðQlÞ ¼ 0:

Hence, Pi A ½pn�EðQlÞ for each i. This implies that, for any prime ljl in Kn,

ðKnÞlð½pn��1
PiÞ ¼ ðKnÞl and hence

ðLnÞL ¼ ðKnÞl

for any Ljl in Ln. In particular, Ln=Kn is unramified at all primes Ljl in

Ln. As the extension Kn=Q is Galois, this extension Ln=Kn is unramified above

l. Hence Il ¼ f1g.
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Proof of Theorem 1. In the rest of this section, we show Theorem 1. As in

the beginning of this section, first we choose
� P1; . . . ;Pr A EðQÞ: generators of the free part of EðQÞ, and put
� Ln :¼ Knð½pn��1

P1; . . . ; ½pn��1
PrÞ.

Next, we define
� ~KKn: the Hilbert p-class field, that is, the maximal unramified abelian

p-extension of Kn, and
� I :¼ hIl ; l ¼ p or ljDi � GalðLn=KnÞ: the subgroup generated by the

inertia subgroups Ip and Il for all prime number ljD.
By class field theory (cf. [6], Chap. VI, Prop. 6.9), we have

aClpðKnÞ ¼ ½ ~KKn : Kn�b ½Ln \ ~KKn : Kn� ¼
½Ln : Kn�

½Ln : Ln \ ~KKn�
: ð7Þ

From the condition ðFullÞ and p > 2, F : GalðLn=KnÞ ! E½pn�lr defined in (4)

is bijective ([7], Thm. 2.42, see also [5], Chap. V, Lem. 1) and hence

½Ln : Kn� ¼ p2nr: ð8Þ

Since the extension Ln=Kn is unramified outside fp;yg [ fljDg ([10], Chap.

VIII, Prop. 1.5 (b)), we have

½Ln : Ln \ ~KKn� ¼ ½Ln : L
I
n � ¼aI : ð9Þ

Using the upper bound ofaIl given in Lemma 5 (for l ¼ p under the condition

ðTorÞ) and Lemma 6 (for l0 p), we have

aI aaIp �
Y

l0p; ljD
aIl a p2n � p2Tl0p; ljDnl : ð10Þ

Finally, Theorem 1 follows from the following inequalities:

aClpðKnÞb
½Ln : Kn�

½Ln : Ln \ ~KKn�
ðby ð7ÞÞ

¼ p2nr

aI
ðby ð8Þ and ð9ÞÞ

b p2nðr�1Þ�2T
l0p; ljDnl ðby ð10ÞÞ: r

2 In [7], it is considered the case where pb 11. However, the arguments of Theorem 2.4 in [7]

works for p > 2.
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