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Abstract. This paper considers optimization of the ridge parameters in generalized

ridge regression (GRR) by minimizing a model selection criterion. GRR has a major

advantage over ridge regression (RR) in that a solution to the minimization problem

for one model selection criterion, i.e., Mallows’ Cp criterion, can be obtained explicitly

with GRR, but such a solution for any model selection criteria, e.g., Cp criterion,

cross-validation (CV) criterion, or generalized CV (GCV) criterion, cannot be obtained

explicitly with RR. On the other hand, Cp criterion is at a disadvantage compared to

CV and GCV criteria because a good estimate of the error variance is required in order

for Cp criterion to work well. In this paper, we show that ridge parameters optimized

by minimizing GCV criterion can also be obtained by closed forms in GRR. We can

overcome one disadvantage of GRR by using GCV criterion for the optimization of

ridge parameters. By using the result, we propose a principle component regression

hybridized with the GRR that is a new method for a linear regression with high-

dimensional explanatory variables.

1. Introduction

Let y ¼ ðy1; . . . ; ynÞ0 be an n-dimensional vector of response variables

and X be an n� k matrix of nonstochastic centralized explanatory variables

ðX 01n ¼ 0kÞ with rankðXÞ ¼ m ðaminfk; n� 1gÞ, where n is the sample size,

1n is an n-dimensional vector of ones, and 0k is a k-dimensional vector of

zeros. We assume a linear relationship between y and X , expressed by the

liner regression model:

y ¼ m1n þ Xb þ e; ð1Þ

where m is an unknown location parameter, b is a k-dimensional vector

of unknown regression coe‰cients, and e is an n-dimensional vector of
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independent error variables from a distribution with mean 0 and error vari-

ance s2.

The ordinary least squares (OLS) method is widely used for estimating

the unknown parameters in (1). This is because although the OLS estimators

of m and b are given by simple forms, they have several desirable theoretical

properties. The OLS estimators of m and b are given by m̂m ¼ y and b̂b ¼
ðX 0XÞþX 0y, respectively, where y is a sample mean of the elements of y, i.e.,

y ¼ 1 0
n y=n, and Aþ is the Moore-Penrose inverse matrix of A (for details of the

Moore-Penrose inverse matrix, see, e.g., [9, chap. 20]). However, when multi-

collinearity occurs in X , the OLS estimator of b is not a good estimator in

the sense that it has a large variance. The ridge regression (RR) estimation

proposed by Hoerl and Kennard [10] is one of the methods that avoid the

problem from multicollinearity. The RR estimator is defined by adding yIk to

X 0X in b̂b, where y A Rþ ¼ fy A R j yb 0g is called a ridge parameter. Since

the estimates provided by the RR estimator depend heavily on the value of y,

the optimization of y is a very important problem. One of the optimization

methods is to choose a ridge parameter that minimizes a model selection

criterion, e.g., Mallows’ Cp [16, 17], cross-validation (CV) [21] and generalized

CV (GCV) [3] criteria (see, e.g., [7, 25]). However, an optimal value of y

cannot be obtained without an iterative computational algorithm.

Hoerl and Kennard [10] proposed not only the RR but also a gener-

alized ridge regression (GRR) in their paper. Although GRR estimation was

proposed over 40 years ago, even today, many researchers study the theore-

tical properties of the GRR estimator (e.g., [12]), and use GRR for real data

analysis (e.g., [19]), and for developing new statistical procedures based on

GRR (e.g., [2, 11, 24]). The GRR estimator is defined not by a single ridge

parameter but by multiple ridge parameters y ¼ ðy1; . . . ; ykÞ0 A Rk
þ, i.e., the

GRR estimator of b is defined by replacing yIk in the RR estimator of b with

QYQ 0, where Rk
þ is the kth Cartesian power of Rþ, Y is a k � k diagonal

matrix whose jth diagonal element is yj , and Q is the k � k orthogonal matrix

that diagonalizes X 0X . Even though the number of ridge parameters has

increased, we can obtain y minimizing Cp criterion by closed form (see, e.g.,

[13, 22, 26, 18]). However, Cp criterion is at a disadvantage compared to

the CV or GCV criteria because a good estimate of the error variance s2 is

required in order for Cp criterion to work well. In an extended GRR, several

authors have tried solving the minimization problem for a model selection

criterion other than Cp criterion by using the Newton-Raphson method (e.g.,

[8, 23]). In this paper, we show that ridge parameters optimized by minimiz-

ing the GCV criterion can also be obtained by closed forms in the original

GRR. We can overcome one of the disadvantages of GRR by using GCV

criterion for the optimization of the ridge parameters.
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If negative values are allowed as optimal ridge parameters, an explicit

solution of the minimization problem of the GCV criterion was derived by

finding the point where a gradient vector of GCV criterion is zero vector. If

m ¼ k < n� 1, from the result in [15], we can see that the equation that a

gradient vector of GCV criterion is zero vector can be solved explicitly and

uniquely when the ridge parameters are real values. Regrettably, the solution

does not necessarily become a non-negative value. Hence, in the common

setting of the GRR, an explicit solution of the minimization problem of GCV

criterion cannot be obtained by solving the equation that a gradient vector of

GCV criterion is zero vector.

This paper is organized as follows: In § 2, we describe the use of GCV

criterion for selecting the ridge parameters for GRR, and we present some

lemmas to express explicitly the optimal solution of GCV criterion. In § 3, we

show an explicit solution to the minimization problem of GCV criterion for

GRR, and present additional theorems on GRR after optimizing the ridge

parameters. In § 4, we apply GRR to a linear regression model with high-

dimensional explanatory variables, and propose a new method that is a prin-

ciple component regression hybridized with the GRR. A numerical exami-

nation is conducted at the end of § 4. Technical details are provided in the

Appendix.

2. Preliminaries

Let Q be the k � k orthogonal matrix that diagonalizes X 0X as

Q 0X 0XQ ¼ D Om;k�m

Ok�m;m Ok�m;k�m

� �
; ð2Þ

where Ok;m is a k �m matrix of zeros, and

D ¼ diagðd1; . . . ; dmÞ and d1; . . . ; dm are nonzero eigenvalues of X 0X : ð3Þ

We note that d1; . . . ; dm are positive, because we assume that X 0X is a positive

semidefinite matrix. Without loss of generality, it is assumed that d1 b � � �b
dm. Moreover, let My be a k � k matrix defined by

My ¼ X 0X þQYQ 0;

where Y is the k � k diagonal matrix given by Y ¼ diagðy1; . . . ; ykÞ. In

particular, we write My with y ¼ 0k as M . Then, a GRR estimator of b

is defined by

b̂by ¼ Mþ
y X

0y: ð4Þ
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It is clear that the GRR estimator in (4) with y ¼ 0k coincides with the

ordinary least squares (OLS) estimator defined by

b̂b ¼ MþX 0y: ð5Þ

Equation (4) leads to a predictor of y derived from GRR as

ŷyy ¼ y1n þ X b̂by ¼ ðJn þ XMþ
y X

0Þy; ð6Þ

where Jn is an n� n projection matrix defined by Jn ¼ 1n1
0
n=n.

Notice that trðJn þ XMþ
y X

0Þ ¼ 1þ trðMþ
y MÞ. Thus, according to a gen-

eral formula of the GCV criterion provide by Craven and Wahba [3], the GCV

criterion for selecting y can be defined by

GCVðyÞ ¼ ðy� ŷyyÞ
0ðy� ŷyyÞ

n½1� f1þ trðMþ
y MÞg=n�2

: ð7Þ

A main aim of this paper is to obtain the closed form of the minimizers

of GCVðyÞ. Let z1; . . . ; zm be elements of an m-dimensional vector defined

by

ðz1; . . . ; zmÞ0 ¼ ðD�1=2;Om;k�mÞQ 0X 0y: ð8Þ

Here, we assume that all z1; . . . ; zm are not 0. Furthermore, let tj ð j ¼ 1; . . . ;

mÞ be the jth-order statistic of z21 ; . . . ; z
2
m, i.e.,

tj ¼
minfz21 ; . . . ; z2mg ð j ¼ 1Þ
minffz21 ; . . . ; z2mgnft1; . . . ; tj�1gg ð j ¼ 2; . . . ;mÞ

�
: ð9Þ

The following statistics based on t1; . . . ; tm play a big role in expressing the

closed form of the minimizers of GCV criterion:

s20 ¼ y 0ðIn � Jn � XMþX 0Þy
n�m� 1

;

s2a ¼
ðn�m� 1Þs20 þ

Pa
j¼1 tj

n�m� 1þ a
ða ¼ 1; . . . ;mÞ:

ð10Þ

When the sample size is smaller than the number of explanatory variables, ma

n� 1 holds because X 01n ¼ 0k is satisfied. It is easy to see that y 0ðIn � Jn �
XMþX 0Þy ¼ 0 holds when m ¼ n� 1. From this fact, we define s20 ¼ 0 when

m ¼ n� 1. It should be kept in mind that s20 ¼ 0 holds in most cases of high-

dimensional explanatory variables. The term s2a has the following property

(the proof is given in Appendix A.1):
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Lemma 1. Let a� be an integer defined by

a� A f0; 1; . . . ;mg s:t: s2a� A Ra� ; ð11Þ

where Ra is a range given by

Ra ¼
ð0; t1� ða ¼ 0Þ
ðta; taþ1� ða ¼ 1; . . . ;m� 1Þ
ðtm;yÞ ða ¼ mÞ

8><
>: : ð12Þ

Then following properties are satisfied:

(1) Case of s20 0 0: b!a� A f0; 1; . . . ;mg s.t. s2a� A Ra� . Then s2a� a s20 is

satisfied.

(2) Case of s20 ¼ 0: :ðba� A f0; 1; . . . ;mg s.t. s2a� A Ra� Þ.

On the other hand, the GRR estimator b̂by in (4) and GCVðyÞ in (7) satisfy

the following property (the proof is given in Appendix A.2):

Lemma 2. The GRR estimator b̂by and GCVðyÞ are invariant with respect

to any changes in ymþ1; . . . ; yk.

From Lemma 2, we set ymþ1 ¼ � � � ¼ yk ¼ y for simplicity. Moreover,

Lemma 2 indicates that GCVðyÞ can be regarded as a function with respect to

y1 ¼ ðy1; . . . ; ymÞ0. In particular, the GCV criterion can be expressed as the

following lemma (the proof is given in Appendix A.3):

Lemma 3. The GCVðyÞ can be written as

GCVðyÞ ¼ gðy1Þ ¼
fðn�m� 1Þs20 þ

Pm
j¼1fyj=ðdj þ yjÞg2z2j g=n

f1� ðmþ 1�
Pm

j¼1 yj=ðdj þ yjÞÞ=ng2
: ð13Þ

Lemma 3 indicates that the optimal yj is y if zj is accidentally 0.

Then, optimizations of y1; . . . ; yj�1; yjþ1; . . . ; ym should perform by z1; . . . ; zj�1;

zjþ1; . . . ; zm. Moreover, it is easy to see that gðy1Þ takes a minimum at

y1 ¼ 0m when s20 ¼ 0 and m < n� 1, because the non-negative function gðy1Þ
takes 0 if and only if y1 ¼ 0m when s20 ¼ 0 and m < n� 1. Thus, we do not

consider the case of s20 ¼ 0 and m < n� 1, i.e., henceforth, s20 ¼ 0 means the

case of m ¼ n� 1.

Notice that when s20 0 0,

q

qya
gðy1Þ

����
y1¼0m

¼ � 2s20
daðn�m� 1Þ < 0:

This implies that gðy1Þ does not reach a minimum at 0m when s20 0 0. On

the other hand, gðy1Þ is not determinate when s20 ¼ 0 and y1 ¼ � � � ¼ ym ¼ 0.

Hence, we search for optimal solutions of gðy1Þ in y1 A Rm
þnf0mg.
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3. Main results

3.1. Optimal solutions of GCV criterion. The ridge parameters y1; . . . ; ym that

minimize gðy1Þ in (13) are derived as in the following theorem (the proof is

given in Appendix A.4):

Theorem 1. Let ŷy1; . . . ; ŷym be optimal solutions of gðy1Þ, i.e.,

ŷy1 ¼ ðŷy1; . . . ; ŷymÞ0 ¼ arg min
y1 ARm

þnf0mg
gðy1Þ:

Then, an explicit form of ŷyj ð j ¼ 1; . . . ;mÞ is given as follows:

(1) Case of s20 0 0:

ŷyj ¼
y ðs2a� > z2j Þ;
dj=ðz2j =s2a� � 1Þ ðs2a� a z2j Þ;

(
ð14Þ

where dj, zj , and s2a are given by (3), (8), and (10), respectively, and the

integer a� is given by (11).

(2) Case of s20 ¼ 0: Eh A ð0; t1�,

ŷyj ¼ dj=ðz2j =h� 1Þ; ð15Þ

where tj is given by (9). To minimize the covariance matrix of the GRR

estimator, we define h ¼ t1. Hence

ŷyj ¼
y ðz2j ¼ t1Þ;
dj=ðz2j =t1 � 1Þ ðz2j 0 t1Þ:

(
ð16Þ

Liu and Jiang [15] derived ridge parameters optimized by minimizing GCV

criterion when m ¼ k < n� 1 if the domain of GCV criterion is not Rk
þ but

Rk. If all z21 ; . . . ; z
2
k are larger than s20 , the point where the first derivatives of

GCV criterion with respect to y are zeros is contained in Rk
þ. Hence the result

in [15] coincides with our result in (14) when all z21 ; . . . ; z
2
k are larger than s20 ,

i.e., in the case of a� ¼ 0.

By using equation (14) or (16), we can obtain a closed form of the GRR

estimator of b after optimizing y by GCV criterion. However, the expression

is somewhat di‰cult to use in actual data analysis because equations (14) and

(16) involve y. Hence, we give another expression of the GRR estimator

after optimizing y by GCV criterion. Let V be an m�m diagonal matrix

defined by V ¼ diagðv1; . . . ; vmÞ, where

vj ¼
0 ðs2a� > z2j Þ; 1� s2a�=z

2
j ðs2a� a z2j Þ; ðwhen s20 0 0Þ;

0 ðt1 ¼ z2j Þ; 1� t1=z
2
j ðt1 0 z2j Þ; ðwhen s20 ¼ 0Þ:

(
ð17Þ

Then, the GRR estimator after optimizing y by GCV criterion is given by

b̂bŷy ¼ Q1VQ 0
1b̂b; ð18Þ
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where b̂b is the OLS estimator of b given by (5), and Q1 is a k �m matrix that

consists of the first m columns of Q, which is given by (2).

3.2. Relationships between the optimal solutions of GCV and the generalized

Cp criteria. When s20 0 0, Cp and the modified Cp ðMCpÞ [26] criteria can be

defined. Their optimal solutions are also given by closed forms, and they are

unified as solutions of the minimization problem of the following generalized

Cp (GCp) criterion:

GCpðyjlÞ ¼ ðy� ŷyyÞ
0ðy� ŷyyÞ þ 2l trðMþ

y MÞ;

where ŷyy is the predictor of y given by (6) (originally, the GCp criterion for the

model (1) was proposed by Atkinson [1]). Solutions of GCpðyjlÞ with l ¼ s20
and cMs20 correspond to those of Cp and MCp criteria, respectively, where

cM ¼ 1þ 2=ðn�m� 3Þ. Since it follows from Lemma 2 that GCpðyjlÞ is

invariant with respect to any changes in ymþ1; . . . ; yk, we take ymþ1 ¼ � � � ¼
yk ¼ y for simplicity as well as the minimization of the GCV criterion. By

extending the result in [18], the optimal solutions of GCpðyjlÞ are given by

ŷyjðlÞ ¼
y ðl > z2j Þ;
dj=ðz2j =l� 1Þ ðla z2j Þ:

(
ð19Þ

By comparing (14) with (19), it is clear that the optimal solutions of GCV

criterion are a special case of those of GCp criterion with l ¼ s2a� . Suppose

that l1 a l2. Then it is easy to see that ŷyjðl1Þa ŷyjðl2Þ. Notice that cM > 1

holds. Moreover, from Lemma 1 (1), s2a� a s20 holds. Consequently, the

following theorem is derived:

Theorem 2. The optimal solutions of GCV criterion can be regarded as

the special case of those of GCp criterion with l ¼ s2a� , where a� is the integer

defined by (11). Let ŷy
ðCÞ
j and ŷy

ðMÞ
j ð j ¼ 1; . . . ;mÞ be optimal solutions of Cp and

MCp criteria, respectively, when s20 0 0. Then, the following inequality always

holds:

ŷyj a ŷy
ðCÞ
j a ŷy

ðMÞ
j :

Theorem 2 indicates that even though GCV criterion does not require an

estimator of s2, it estimates s2 automatically by s2a� . Furthermore, s2a� always

underestimates s2. This results in less shrinkage of the OLS estimator with

the GRR optimized by GCV criterion than it does by Cp criterion or MCp

criterion.

Additionally, we consider choosing a threshold value l in (19) by mini-

mizing the GCVðŷyðlÞÞ, where ŷyðlÞ ¼ ðŷy1ðlÞ; . . . ; ŷymðlÞ;y; . . . ;yÞ0, and ŷyjðlÞ is

given by (19). It is obviously that miny ARk
þ
GCVðyÞaminl ARþ GCVðŷyðlÞÞ.
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From Theorem 1, the ridge parameters that minimize GCVðyÞ can be expressed

as ŷyðs2a� Þ. Hence, we derive the following theorem:

Theorem 3. An explicit solution to the minimization problem of GCVðŷyðlÞÞ
can be obtained as s2a� , i.e.,

s2a� ¼ arg min
l ARþ

GCVðŷyðlÞÞ:

Theorem 3 indicates that the GRR with y optimized by the GCV criterion is

equivalent to the GRR with y optimized by GCp criterion after choosing the

threshold value l by GCV criterion.

3.3. Generalized degrees of freedom in the optimized GRR. In this subsec-

tion, we derive an estimate for the generalized degrees of freedom (GDF), as

proposed by Ye [27], for the GRR after optimizing y by GCV criterion under

the normal distributed assumption. Suppose that e@Nnð0n; s2InÞ. From [5],

the GDF of the GRR after optimizing y is given by

g ¼ E
Xn
i¼1

qm̂mi
qyi

" #
;

where m̂mi ði ¼ 1; . . . ; nÞ is the ith element of ŷyŷy ¼ y1n þ X b̂bŷy, and b̂bŷy is the GRR

estimator of b after optimizing GCV, which is given by (18). Hence, we can

see that the GDF is estimated by ĝg ¼
Pn

i¼1 qm̂mi=qyi. After a simple calculation,

we obtain the explicit form of ĝg as in the following theorem (the proof is given

in Appendix A.5):

Theorem 4. Suppose that e@Nnð0n; s2InÞ. Let wj ¼ Iðvj 0 0Þ ð j ¼
1; . . . ;mÞ, where Iðx0 0Þ is the indicator function, i.e., Iðx0 0Þ ¼ 1 if x0 0

and Iðx0 0Þ ¼ 0 if x ¼ 0, V ¼ diagðv1; . . . ; vmÞ is given by (17), and let W be an

m�m diagonal matrix whose jth diagonal element is wj. Then, an estimator of

the GDF is derived as

ĝg ¼ 1þ 2 trðWÞ � trðVÞ: ð20Þ

In particular trðWÞ ¼ m� a� holds when s20 0 0 and trðWÞ ¼ m� 1 holds when

s20 ¼ 0, where the integer a� is given by (11).

4. Application to the case of high-dimensional explanatory variables

4.1. Principle component regression hybridized with the GRR. In this section,

we consider the case of high-dimensional explanatory variables, i.e., the case

of na k, which has been studied by, e.g., Srivastava and Kubokawa [20], and
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Fan and Lv [6]. In this paper, the case of m ¼ n� 1 is considered. Even

when m ¼ n� 1, GRR can work, and the optimal solutions of GCV criterion

can be obtained by the closed forms, as in Theorem 1. However, it seems

from Theorem 1 that the optimal y1 will become very small. Thus, there is a

possibility that GRR cannot work e¤ectively. In order to avoid such a risk,

we apply GRR to a regression model in which the various small singular values

of X are eliminated, i.e., the GRR is applied to a principal component regres-

sion (PCR; see, e.g., [4, chap. 6.9], [14]). Let Dr ¼ ðd1; . . . ; drÞ ðr < mÞ be a

r� r diagonal matrix, where dj is the jth largest eigenvalue of X 0X defined by

(3), and let X r be an n� k matrix defined by

X r ¼ P
D1=2

r Or;k�r

On�r; r On�r;k�r

 !
Q 0:

After eliminating m� r principal components and replacing X with X r, the

reduced model, called the r-PCR model, can be expressed. It is equivalent to

the following liner regression model:

y ¼ m1n þ X rb þ e: ð21Þ

We know that a predictor of y derived from the model (4.1) with r ¼ m

corresponds to y. Thus, we do not consider the case of r ¼ m. Let GCVðyjrÞ
be the GCV criterion for selecting yr in the r-PCR model (21) to which the

GRR is applied, and let ŷyr be the minimizer of GCVðyjrÞ. Then, ŷyr can be

also obtained in closed form from Theorem 1.

The most important choice in PCR is to determine how many singular

values are eliminated, i.e., it is important to choose the optimal r. We can use

the estimate of the GDF calculated in Theorem 4 with the new GCV criterion

for selecting r for the PCR hybridized with the GRR. For the r-PCR model

(21) derived from the GRR after optimizing yr, let ŷyr; ŷyr be a predictor of y and

let ĝgr be the estimator of GDF. As in Ye (1998), we propose a new GCV

criterion for selecting r as

GCVaðrÞ ¼
ðy� ŷyr; ŷyrÞ

0ðy� ŷyr; ŷyrÞ
nð1� ĝgr=nÞ

2
: ð22Þ

Unfortunately, there is a possibility that 1� ĝgr=na 0, in which case, we reject

r. Let S be a set of integers defined by S ¼ fr A f0; 1; . . . ;m� 1g j 1� ĝgr=n

> 0g. Then, an optimal r is found by minimizing the GCV criterion in (22) is

as follows:

r̂r ¼ arg min
r AS

GCVaðrÞ:
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4.2. Numerical study. We evaluated the proposed method by applying it to

data from NnðXb; I nÞ, where X ¼ ðIn � JnÞX0FðrÞ1=2 and b ¼ MþX 0h. Here,

X0 is an n� k matrix whose elements are identically and independently

distributed according to Uð�1; 1Þ, FðrÞ is a k � k symmetric matrix whose

ða; bÞth element is rja�bj, and h is an n-dimensional vector whose jth element is

given by ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12nðn� 1Þ
4n2 þ 6n� 1

r
ð�1Þ j�1 1� j � 1

n

� �
� 1

2n

� �
:

In this setting, it should be emphasized that kbk does not become large even

when k is increased. If kbk becomes large as k is increased, a value close to

Table 1. MSEs of coe‰cients and a predictor in each method

MSE of Coe‰cients (%) MSE of Predictor (%)

n k r M1 M2 M3 M1 M2 M3

20 20 0.80 95.69 29.28 29.30 98.72 96.39 101.82

0.90 98.10 29.20 29.22 98.77 95.19 101.80

0.99 100.63 29.14 29.17 99.10 94.71 101.85

40 0.80 98.06 63.29 63.87 98.93 94.63 100.27

0.90 99.25 63.35 63.37 99.73 95.22 100.90

0.99 97.84 63.32 63.08 98.60 95.44 100.86

100 0.80 99.15 93.76 94.13 99.04 95.41 99.94

0.90 99.01 96.60 97.15 99.12 97.20 102.77

0.99 99.03 99.33 100.02 98.80 96.79 103.60

200 0.80 98.55 87.53 90.82 98.32 92.20 98.91

0.90 98.92 85.91 91.02 98.55 90.30 101.48

0.99 98.88 86.48 92.37 98.51 87.80 101.35

50 50 0.80 100.24 77.08 77.06 99.69 96.51 99.33

0.90 100.91 77.42 77.29 99.97 97.01 99.38

0.99 100.15 77.32 77.51 99.81 97.36 99.08

100 0.80 100.30 75.76 74.62 99.57 90.22 89.28

0.90 99.94 75.61 73.96 99.77 91.39 92.40

0.99 100.08 75.15 73.79 99.84 86.65 92.24

250 0.80 99.72 78.76 77.62 99.69 86.64 88.70

0.90 99.90 78.83 77.80 99.74 91.84 95.19

0.99 100.26 78.52 77.90 100.02 89.30 98.42

500 0.80 99.46 86.05 87.77 99.59 92.65 97.63

0.90 99.56 87.51 89.43 99.47 91.99 98.90

0.99 99.68 90.53 92.37 99.88 95.59 100.85
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0m is frequently chosen as the optimal y. Needless to say, such a situation is

meaningless in applications of GRR. Therefore, we avoid such a situation by

controlling the elements of b.

The following three methods were applied to simulated data:

Method 1 (M1): ordinary GRR (GRR with all of the principle components).

Method 2 (M2): PCR hybridized with GRR (i.e., the proposed method).

Method 3 (M3): ordinary PCR (PCR without GRR) with an optimal r

ðr ¼ 0; 1; . . . ;m� 1Þ chosen by minimizing GCV criterion as

GCVa
P ðrÞ ¼

ðy� ŷyrÞ
0ðy� ŷyrÞ

nf1� ð1þ rÞ=ng2
;

where ŷyr ¼ fJn þ X rM
þ
r X

0
rgy.

Let b̂bj be an estimator of b and ŷyj be a predictor of y, as derived from Method

j ð j ¼ 1; 2; 3Þ. We compared the following two characteristics of each method,

based on 10,000 iterations:
� MSE of coe‰cients (%): 100� E½ð b̂bj � bÞ0ð b̂bj � bÞ�=trðMþÞ, trðMþÞ is the

MSE of the OLS estimator of b.
� MSE of predictor (%): 100� E½ð ŷyj � XbÞ0ð ŷyj � XbÞ�=n, where n is the

MSE of a predictor of y derived from the OLS estimation.

Table 1 shows the two characteristics for n ¼ 20; 100, k ¼ n; 2n; 5n; 10n and

r ¼ 0:8; 0:9; 0:99. When the characteristic is less than 100, it means that the

method used improved the performance of the OLS estimation, as measured

by the MSE. From the table, we can see that in most cases and for both

MSEs Method 2 resulted in the smallest (best) values. Those of Method 1

were the worst. These results indicate that GRR does not work e¤ectively

when k is larger than n. If PCR is used instead of GRR, although the result

is improved, it is still insu‰cient. Using GRR and PCR simultaneously is

expected to improve the results more than using either one alone.

Appendix

A.1. Proof of Lemma 1

In order to prove Lemma 1 (1), we show that if the integer a� in (11)

exists, it is unique. Later, we will use reductio ad absurdum to prove the

existence of the integer a�. Notice that the following equation is satisfied for

any integers a A f0; 1; . . . ;m� 1g:

s2aþ1 ¼
ðn�m� 1þ aÞs2a þ taþ1

n�mþ a
¼ n�m� 1þ a

n�mþ a
ðs2a � taþ1Þ þ taþ1;
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where tj and s2a are given by (9) and (10), respectively. This implies that

s2aþ1 � taþ1 ¼
n�m� 1þ a

n�mþ a
ðs2a � taþ1Þ ðEa A f0; 1; . . . ;m� 1gÞ:

From the above equation, we can see that the following statements are true:

s2a � taþ1 a 0 ) s2aþ1 � taþ1 a 0; s2a � ta > 0 ) s2a�1 � ta > 0: ðA1Þ

Moreover, the following statements are also true because t1 a � � �a tm holds:

s2a � ta a 0 ) s2a � taþ1 a 0; s2a � taþ1 > 0 ) s2a � ta > 0: ðA2Þ

Suppose that an integer a� exists. Combining (A1) and (A2) yields

s2a� � ta�þ1 a 0 ) s2a�þ1 � ta�þ1 a 0 ) s2a�þ1 � ta�þ2 a 0 ) � � � ) s2m � tm a 0;

and

s2a� � ta� > 0 ) s2a��1 � ta� > 0 ) s2a��1 � ta��1 > 0 ) � � � ) s20 � t1 > 0:

Hence, we find

s2a a ta ðEa A fa� þ 1; . . . ;mgÞ; s2a > taþ1 ðEa A f0; 1; . . . ; a� � 1gÞ:

These equations indicate that s2a B Ra when a0 a�, where Ra is given by (12).

Consequently, the integer a� is uniquely determined if a� exists. Next we show

the existence of the integer a�. Since Rc
a ¼ ð0; ta� [ ðtaþ1;yÞ, we can see that

the following statement is true:

fs2a � ta > 0g \ fs2a B Rag ) s2a � taþ1 > 0: ðA3Þ

Suppose that the integer a� does not exist, i.e., s2a B Ra holds Ea ¼ f0; 1; . . . ;mg.
This implies that s20 > t1. Combining (A1) and (A3) yields

s20 � t1 > 0 ) s21 � t1 > 0 ) s21 � t2 > 0 ) � � � ) s2m � tm > 0:

However, s2m � tm > 0 contradicts the assumption s2m B Rm. Consequently, by

reductio ad absurdum, the integer a� exists.

Next, we derive an upper bound for s2a� . Let x1 ¼ � � � ¼ xn�m�1 ¼ s20 and

xn�m�1þ j ¼ tj ð j ¼ 1; . . . ;mÞ. Then s2a is regarded as the sample mean of

x1; . . . ; xn�m�1þa. It follows from a property of the sample mean that

s2a a max
j A f1;...;n�m�1þag

xj ¼ maxfs20 ; tag ðEa A f1; . . . ;mgÞ: ðA4Þ

Since s20 > 0 and
Sm

j¼0 Rj ¼ ð0;y� hold, an integer b A f0; 1; . . . ;mg exists such

that s0 A Rb. When b ¼ m, it follows from the inequality s20 > tm and (A4) that

s2a amaxfs20 ; tagamaxfs20 ; tmg ¼ s20 ðEa A f1; . . . ;mgÞ:
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When bam� 1, inequalities s20 a ta
Ea A fbþ 1; . . . ;mg and s20 > ta

Ea A f1; . . . ;
bg are satisfied, because s20 A Rb. It follows from these results and (A4)

that

s2a amaxfs20 ; tag ¼ ta ðEa A fbþ 1; . . . ;mgÞ;
s20 ðEa A f1; . . . ; bgÞ:

�
ðA5Þ

The upper equation on the right side of (A5) indicates that s2a B Ra holds
Ea A fbþ 1; . . . ;mg. Hence it holds that the integer a� is less than or equal

to b. This result and the lower equation on the right side of (A5) lead us to

the conclusion that s2a� a s20 .

Finally, we give the proof of Lemma 1 (2). When s20 ¼ 0, s2a is expressed

as the sample mean of t1; . . . ; ta, i.e., s2a ¼ a�1
Pa

j¼1 tj ða ¼ 1; . . . ;mÞ. It is

clear that s20 B R0. Moreover, from a property of the sample mean and the

inequality t1 a � � �a tm, we derive

s2a a max
j A f1;...;ag

tj ¼ ta ðEa A f1; . . . ;mgÞ:

The above equation indicates that s2a B Ra holds Ea A f1; . . . ;mg. Therefore,

Lemma 1 (2) is proved.

A.2. Proof of Lemma 2

Let P be an n� n orthogonal matrix that diagonalizes XX 0 as

P 0XX 0P ¼ D Om;n�m

On�m;m On�m;n�m

� �
; ðA1Þ

where D is an m�m diagonal matrix given by (3). The singular value

decomposition of X is expressed as

X ¼ P
D1=2 Om;k�m

On�m;m On�m;k�m

 !
Q 0; ðA2Þ

where Q is given by (2). Let Y1 ¼ diagðy1; . . . ; ymÞ and Y2 ¼ diagðymþ1; . . . ;

ykÞ. It follows from (A2) that

Mþ
y X

0y ¼ Q
ðDþY1Þ�1D1=2 Om;n�m

Ok�m;m Ok�m;n�m

 !
P 0y: ðA3Þ

Moreover, the equations (A2) and (A3) imply that

XMþ
y X

0 ¼ P
D1=2ðDþY1Þ�1D1=2 Om;n�m

On�m;m On�m;n�m

 !
P 0: ðA4Þ
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The results in (A3) and (A4) indicate that b̂by in (4) and trðMþ
y MÞ in (7) are

independent of Y2. Consequently, Lemma 2 is proved.

A.3. Proof of Lemma 3

Let u be an n-dimensional vector derived by centralizing y, i.e., u ¼
ðIn � JnÞy. Moreover, let us decompose P in (A1) to

P ¼ ðP1;P2Þ; ðA1Þ

where P1 and P2 are n�m and n� ðn�mÞ matrices, respectively. It follows

from the equation X 01n ¼ 0k and (A2) that

P 0
1u ¼ ðD�1=2;Om;k�mÞQ 0Q

D1=2 Om;n�m

Ok�m;m Ok�m;n�m

 !
P 0u

¼ ðD�1=2;Om;k�mÞQ 0X 0y:

Since P 0
1u is equal to ðz1; . . . ; zmÞ0 in (8), we write the following n-dimensional

vector as z:

z ¼ ðz1; . . . ; znÞ0 ¼
z1

z2

� �
¼ P 0

1u

P 0
2u

� �
: ðA2Þ

Notice that P2P
0
2 ¼ In � XMþX 0 and X 0Jn ¼ Ok;n. Thus, we have

z 02z2 ¼ u 0ðIn � XMþXÞu ¼ y 0ðIn � JnÞðIn � XMþXÞðIn � JnÞy

¼ ðn�m� 1Þs20 ; ðA3Þ

where s20 is given by (10). By using the equation X 01n ¼ 0k, and (A4) and

(A3), the residual sum of squares in (7) can be rewritten as

ðy� ŷyyÞ
0ðy� ŷyyÞ ¼ u 0ðIn � XMþ

y X
0Þ2u

¼ u 0P I n �
D1=2ðDþY1Þ�1D1=2 Om;n�m

On�m;m On�m;n�m

 !( )2

P 0u

¼ z 01fIm �D1=2ðDþY1Þ�1D1=2g2z1 þ z 02z2

¼ ðn�m� 1Þs20 þ
Xm
j¼1

yj

dj þ yj

� �2
z2j : ðA4Þ

Moreover, from (A4), trðMþ
y MÞ can be rewritten as
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trðMþ
y MÞ ¼ tr

D1=2ðDþY1Þ�1D1=2 Om;n�m

On�m;m On�m;n�m

 !( )

¼ trfðDþY1Þ�1Dg ¼ m�
Xm
j¼1

yj

dj þ yj

� �
: ðA5Þ

By substituting (A4) and (A5) into (7), GCVðyÞ is expressed as (13).

A.4. Proof of Theorem 1

Let d ¼ ðd1; . . . ; dmÞ0 be an m-dimensional vector whose jth element

dj A ½0; 1� ð j ¼ 1; . . . ;mÞ is defined by

dj ¼
yj

dj þ yj
:

From Lemma 3, gðy1Þ in (13) is expressed as the following function with

respect to d:

gðy1Þ ¼ f ðdÞ ¼ rðdÞ
cðdÞ2

; ðA1Þ

where

rðdÞ ¼ 1

n
ðn�m� 1Þs20 þ

Xm
j¼1

d2j z
2
j

( )
; cðdÞ ¼ 1� 1

n
mþ 1�

Xm
j¼1

dj

( )
;

and zj and s20 are given by (8) and (10), respectively. Let d̂d ¼ ðd̂d1; . . . ; d̂dmÞ0 be a

minimizer of f ðdÞ in (A1), i.e.,

d̂d ¼ arg min
d A ½0;1�m

f ðdÞ;

where ½0; 1�m is the mth Cartesian power of the set ½0; 1�. Notice that

q

qda
f ðdÞ ¼ 2

ncðdÞ3
fcðdÞdaz2a � rðdÞg:

Hence, we find that a necessary condition of d̂d is

d̂dj ¼
1 ðif hðd̂dÞ > z2j Þ;
hðd̂dÞ=z2j ðif hðd̂dÞa z2j Þ;

(
ðA2Þ

where hðd̂dÞ ¼ rðd̂dÞ=cðd̂dÞ.
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Suppose that hðd̂dÞ A Ra, where a A f0; 1; . . .mg, and Ra is a range defined

by (12). The assumption naturally indicates that Ra is not an empty set.

Then the equation (A2) leads us to the result that d̂dj ¼ 1 when j A Ja ¼ f j A
f1; . . . ;mg j z2j a tag and d̂dj ¼ hðd̂dÞ=z2j when j A Jc

a ¼ f j A f1; . . . ;mg j z2j > tag,
where tj is given by (9). Notice that

Xm
j¼1

d̂dj ¼
X
j AJa

1þ
X
j AJ c

a

hðd̂dÞ
z2j

¼ aþ hðd̂dÞ
Xm
j¼aþ1

1

tj
;

Xm
j¼1

d̂d2j z
2
j ¼

X
j AJa

z2j þ
X
j AJ c

a

hðd̂dÞ2

z4j
z2j ¼

Xa
j¼1

tj þ hðd̂dÞ2
Xm
j¼aþ1

1

tj
:

These imply

rðd̂dÞ ¼ 1

n
ðn�m� 1þ aÞs2a þ hðd̂dÞ2

Xm
j¼aþ1

1

tj

( )
;

cðd̂dÞ ¼ 1

n
n�m� 1þ aþ hðd̂dÞ

Xm
j¼aþ1

1

tj

( )
;

where s2a is given by (10). It follows from the above equation and the

definition of hðdÞ that

hðd̂dÞ ¼
ðn�m� 1þ aÞs2a þ hðd̂dÞ2

Pm
j¼aþ1 1=tj

n�m� 1þ aþ hðd̂dÞ
Pm

j¼aþ1 1=tj
:

By solving the above equation, an explicit form of hðd̂dÞ is given as

hðd̂dÞ ¼ s2a ; ðwhen s20 0 0Þ
Eh A ð0; t1� ða ¼ 0Þ; s2a ða ¼ 1; . . . ;mÞ; ðwhen s20 ¼ 0Þ

�
:

From Lemma 1, we find that the integer a A f0; 1; . . .mg such that s2a A Ra is

uniquely determined as a� when s20 0 0, where a� is defined by (11), and the

integer a A f1; . . .mg such that s2a A Ra does not exist when s20 ¼ 0. Therefore,

we derive

hðd̂dÞ ¼
s2a� ðs20 0 0Þ
Eh A ð0; t1� ðs20 ¼ 0Þ

(
: ðA3Þ

Recall that d̂dj ¼ ŷyj=ðdj þ ŷyjÞ. By using (A2) and (A3), the equations (14) and

(15) are obtained.

Finally, from the same calculation as in (A4), the covariance matrix of b̂by
is derived as
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Cov½ b̂by� ¼ s2Mþ
y MMþ

y

¼ Q
ðDþY1Þ�1DðDþY1Þ�1 Om;k�m

Ok�m;m Ok�m;k�m

 !
Q 0:

The equation indicates that a larger yj reduces the covariance matrix of b̂by.

Since the largest h is t1, equation (16) is obtained.

A.5. Proof of Theorem 4

Since V given in (17) and D given in (3) are diagonal matrices,

D1=2VD�1=2 ¼ V holds. By using this result, the definition of b̂bŷy in (18),

and the singular value decomposition of X in (A2), we derive

X b̂bŷy ¼ P
D1=2 Om;k�m

On�m;m On�m;k�m

 !
Q 0Q1VQ 0

1Q

� D�1=2 Om;n�m

Ok�m;m Ok�m;n�m

 !
P 0y ¼ P1VP 0

1 y;

where P1 is given by (A1). This equation leads to another expression of the

predictor of ŷyŷy as

ŷyŷy ¼ ðJn þ P1VP 0
1Þy:

It follows from the above equation and the result P 0
1P1 ¼ Im that

ĝg ¼ q

qy 0 ðJn þ P1VP 0
1Þy ¼ trðJn þ P1VP 0

1Þ þ
Xn
i¼1

e 0iP1
q

qyi
V

� �
P 0
1 y

¼ 1þ trðVÞ þ
Xn
i¼1

Xm
j¼1

e 0i pj
qvj

qyi

� �
p 0
j y

¼ 1þ trðVÞ þ
Xm
j¼1

qvj

qy 0

� �
pj p

0
j y; ðA1Þ

where ei is an n-dimensional vector such that the ith element is 1 and the others

are 0, and pj is the jth column vector of P1, i.e., P1 ¼ ðp1; . . . ; pmÞ.
At first, we consider the case of s20 0 0. Recall that the number of vjs that

are zero is a�, where a� is given by (11). Thus, trðWÞ ¼ m� a� is satisfied,

where W ¼ diagðw1; . . . ;wmÞ is given in Theorem 4. Let L be an m�m

diagonal matrix defined by L ¼ diagðz21 ; . . . ; z2mÞ, where zj is given by (8).
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Then, we have

Xm
j¼1

wj

z2j
pj p

0
j y ¼ P1WL�1P 0

1 y;
wjs

2
a�

z2j
¼ wj � vj; ðA2Þ

where s2a is given by (10). Notice that

qvj

qy
¼ �wj

z4j

qs2a�
qy

 !
z2j � s2a�

qz2j

qy

 !( )
; ðA3Þ

and qs2a�=qy does not depend on j. From the above results and (A2), the last

part of (A1) is expressed as

Xm
j¼1

qvj

qy 0

� �
pj p

0
j y ¼ �

Xm
j¼1

wj

z4j

qs2a�
qy 0

 !
z2j � s2a�

qz2j

qy 0

 !( )
pj p

0
j y

¼ �
qs2a�
qy 0

 !
P1WL�1P 0

1 yþ
Xm
j¼1

wj � vj

z2j

qz2j

qy 0

 !
pj p

0
j y: ðA4Þ

On the other hand, by using the same method as in Appendix A.3, s2a� and z2j
are rewritten as

s2a� ¼
1

n�m� 1þ a�
y 0fP2P

0
2 þ P1ðIm �WÞP 0

1gy; z2j ¼ ðp 0
j yÞ

2;

where P2 is given by (A1). These equations imply that

qs2a�
qy

¼ 2

n�m� 1þ a�
fP2P

0
2 þ P1ðIm �WÞP 0

1gy;
qz2j

qy
¼ 2pj p

0
j y: ðA5Þ

It follows from P 0
1P1 ¼ Im, P 0

2P1 ¼ On�m;m, W 2 ¼ W , and zj ¼ p 0
j y that

y 0fP2P
0
2 þ P1ðIm �WÞP 0

1gP1WL�1P 0
1 y ¼ 0;

1

z2j
y 0pj p

0
j pj p

0
j y ¼ 1: ðA6Þ

By using (A6) after substituting (A5) into (A4), we derive

Xm
j¼1

qvj

qy 0

� �
pj p

0
j y ¼ 2

Xm
j¼1

ðwj � vjÞ ¼ 2ftrðWÞ � trðVÞg: ðA7Þ

Next, we consider the case of s20 ¼ 0. In order to give the proof, it is only

necessary to replace qs2a�=qy in (A3) with qt1=qy, where tj is given by (9).

Notice that tj ¼ y 0P1ðIm �WÞP 0
1 y. Thus, by using the same method that
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was used in the proof of the case s20 0 0, we can see that the equation (A7) is

satisfied even when s20 ¼ 0. Consequently, equation (20) is derived from (A1)

and (A7).
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