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Abstract. In this paper, we prove that a localization principle for biholomorphic

mappings between equidimensional Fock-Bargmann-Hartogs domains holds. As an

application of this, we show that any proper holomorphic mapping between two

equidimensional Fock-Bargmann-Hartogs domains satisfying some condition is neces-

sarily a biholomorphic mapping.

1. Introduction and results

Let D1 and D2 be two domains in CN . Then we say that the localization

principle for biholomorphic mappings between D1 and D2 holds if the following

ðyÞ is fulfilled:

ðyÞ For some open subsets U1, U2 in CN with U1 \ qD1 0q, U2 \ qD2

0q, any biholomorphic mapping f : U1 ! U2 satisfying

f ðU1 \D1Þ � D2; f ðU1 \ qD1Þ � qD2

extends to a biholomorphic mapping F : D1 ! D2.

Of course, the localization principle for biholomorphic mappings does not

hold, in general, without any other assumptions on the domains D1 or D2.

Indeed, as a typical example, consider the following domains D1, D2 in C2 and

a mapping h : C2 ! C2 defined by

D1 ¼ fðz;wÞ A C2; jzj2 þ jwj4 < 1g; D2 ¼ fðu; vÞ A C2; juj2 þ jvj2 < 1g

and ðu; vÞ ¼ hðz;wÞ ¼ ðz;w2Þ for ðz;wÞ A C2:

Take a point ðzo;woÞ A qD1 with wo 0 0 and let U1 be a su‰ciently small open

neighborhood of ðzo;woÞ in C2. Then h gives rise to a biholomorphic

mapping, say f : U1 ! U2 :¼ hðU1Þ satisfying the condition in ðyÞ; while f

does not extend to a biholomorphic mapping from D1 onto D2. However,
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there already exist several articles showing the existence of domains D1, D2 in

CN for which the localization principle ðyÞ holds. See, for instance, Alexander

[1, 2], Pinchuk [18, 19, 20], Dini-Primicerio [8] and Kodama [13].

The main purpose of this paper is to prove that the localization prin-

ciple for biholomorphic mappings between equidimensional Fock-Bargmann-

Hartogs domains in CN holds. In order to state our precise results, let us

define the Fock-Bargmann-Hartogs domain Dn;mðmÞ according to Yamamori

[27] as follows:

Dn;mðmÞ ¼
�
ðz;wÞ A Cn �Cm ¼ CN ; kwk2 < e�mkzk2�;

where 0 < m A R and n;m A N with N ¼ nþm. This is an unbounded strictly

pseudoconvex domain in CN with real analytic boundary. Since the complex

Euclidean space Cn is now imbedded in Dn;mðmÞ in the canonical manner, it is

not hyperbolic in the sense of Kobayashi [12].

Now we can state our results as follows:

Theorem 1. Let D1 ¼ Dn1;m1
ðm1Þ, D2 ¼ Dn2;m2

ðm2Þ be two equidimensional

Fock-Bargmann-Hartogs domains in CN with p1 A qD1, p2 A qD2. Assume that

(1) m1 b 2, m2 b 2;

(2) there are open neighborhoods U1 of p1, U2 of p2 in CN and a biholo-

morphic mapping f : U1 ! U2 such that f ðp1Þ ¼ p2, f ðU1 \D1Þ � D2 and

f ðU1 \ qD1Þ � qD2.

Then f extends to a biholomorphic mapping from D1 onto D2. In par-

ticular, we have ðn1;m1Þ ¼ ðn2;m2Þ.

Recall that any proper holomorphic mapping f : D1 ! D2 between two

equidimensional Fock-Bargmann-Hartogs domains D1, D2 in CN extends holo-

morphically to an open neighborhood of D1, the closure of D1 in CN , by

Tu-Wang [23; Theorem 2.5]. Then, as an application of Theorem 1, we can

prove the following:

Theorem 2. Let D1 ¼ Dn1;m1
ðm1Þ, D2 ¼ Dn2;m2

ðm2Þ be two equidimensional

Fock-Bargmann-Hartogs domains in CN. Assume that m1 b 2. Then every

proper holomorphic mapping f : D1 ! D2 is necessarily a biholomorphic mapping

from D1 onto D2.

This Theorem 2 was first proved by Tu-Wang in [23; Theorem 1.1]. In

fact, after showing the theorem on the holomorphic extendability beyond the

boundary qD1 of proper holomorphic mapping f : D1 ! D2 between equidi-

mensional Fock-Bargmann-Hartogs domains D1, D2 in CN , they proved

Theorem 2 as their main result in [23] by making use of some known facts

in algebraic geometry. Our proof here of Theorem 2 is completely di¤erent

from theirs; we employ an elementary method in Lie group theory.
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Finally it should be remarked that the assumptions m1 b 2, m2 b 2 in

Theorem 1 and m1 b 2 in Theorem 2 cannot be dropped. Indeed, as in Tu-

Wang [23], consider the following Fock-Bargmann-Hartogs domain Dn;1ðmÞ
and the mapping F : Cn �C ! Cn �C defined by

Dn;1ðmÞ ¼
�
ðz;wÞ A Cn �C; jwj2 < e�mkzk2� and

Fðz;wÞ ¼ ð
ffiffiffi
2

p
z;w2Þ for ðz;wÞ A Cn �C:

Then it is easily checked that F gives rise to a proper holomorphic self-

mapping of Dn;1ðmÞ that is not injective on Dn;1ðmÞ. Moreover, for any

point p1 A qDn;1ðmÞ, one can choose open neighborhoods U1 of p1 and U2 of

p2 :¼ Fðp1Þ A qDn;1ðmÞ in such a way that F defines a biholomorphic map-

ping f : U1 ! U2 satisfying the same condition as in (2) of Theorem 1. But

f : U1 ! U2 does not extend to an automorphism of Dn;1ðmÞ.
Our proof of Theorem 1 is based on three main facts: a well-known fact

concerning the global extension of locally defined CR-di¤eomorphisms between

two strictly pseudoconvex real analytic hypersurfaces in CN by Pinchuk [19,

20]; an important fact regarding the existence of CR-invariant Riemannian

metrics on strictly pseudoconvex real analytic hypersurfaces without umbilical

points by Webster [25, 26]; and a fact on the structure of holomorphic auto-

morphism groups of the Fock-Bargmann-Hartogs domains by Kim-Ninh-

Yamamori [10]. On the other hand, for the proof of Theorem 2, we need

some lemma, which will be shown by using an elementary method in Lie group

theory. Once this lemma has been verified, we obtain Theorem 2 as a direct

consequence of Theorem 1.

After investigating the structure of the Fock-Bargmann-Hartogs domains

closely in Section 2, we prove our theorems in Sections 3 and 4.

Notation. Throughout this paper we use the following notation: For a

given n A N and open subsets V , W of Cn, we denote by
� UðnÞ the unitary group of degree n;
� h� ; �i (resp. k � k) the standard Hermitian inner product (resp. its

associated norm) on Cn;
� Bn ¼ fz A Cn; kzk < 1g, the unit open ball in Cn;
� qV (resp. V ) the boundary (resp. closure) of V in Cn;
� V TW if the closure V of V is a compact subset of W .

Let D be a domain in Cn and F : D ! Cn a holomorphic mapping. Then we

denote by
� AutðDÞ the group of all holomorphic automorphisms of D equipped

with the compact-open topology. Thus the topology of AutðDÞ satisfies the

second axiom of countability;
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� gðDÞ the set consisting of all complete holomorphic vector fields on D;
� F jS : S ! Cn the restriction of F to S, where S is a subset of D;
� JF ðzÞ the complex Jacobian determinant of F at z A D; and
� VF ¼ fz A D; JF ðzÞ ¼ 0g.

2. Preliminaries

For later purpose, we collect several facts on the structure of Fock-

Bargmann-Hartogs domains in this section.

For a given Fock-Bargmann-Hartogs domain

Dn;mðmÞ ¼
�
ðz;wÞ A Cn �Cm; kwk2 < e�mkzk2�

in CN ¼ Cn �Cm, we set for a while

D ¼ Dn;mðmÞ; DD ¼ fðz;wÞ A D;w ¼ 0gGCn and D� ¼ DnDD:

First of all, we have the following:

Theorem A (Kim-Ninh-Yamamori [10; Theorem 10]). The automorphism

group AutðDÞ of the Fock-Bargmann-Hartogs domain D is generated by the

following mappings:

jA : ðz;wÞ 7! ðAz;wÞ; A A UðnÞ;

jB : ðz;wÞ 7! ðz;BwÞ; B A UðmÞ;

jv : ðz;wÞ 7! ðzþ v; e�mhz; vi�ðm=2Þkvk2wÞ; v A Cn:

Hence the following assertions are easily verified:

Fact 1. The boundary qD of D is a connected, strictly pseudoconvex real

analytic hypersurface in CN; moreover, it is simply connected if mb 2;

Fact 2. AutðDÞ can be regarded as a closed subgroup of AutðCNÞ and the

AutðDÞ-action on D (resp. on qD) is just the restriction of the AutðDÞ-action on

CN to D (resp. to qD);

Fact 3. qD is invariant under the AutðDÞ-action and moreover AutðDÞ
acts transitively on qD as a real analytic CR-automorphism group of qD.

In particular, via the natural action of the product group UðnÞ �UðmÞ on

Cn �Cm, one can identify UðnÞ �UðmÞ with a compact connected subgroup

of AutðDÞ. Accordingly, the compact connected Lie groups UðnÞ, UðmÞ and

SUðmÞ can be naturally regarded as topological subgroups of AutðDÞ, where
SUðmÞ is the special unitary group of degree m.
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For later use, let us investigate the structure of AutðDÞ more closely. Let

FD and dD be the infinitesimal Kobayashi pseudometric and the Kobayashi

pseudodistance of D, respectively, introduced by Kobayashi [12]. Then it

is well-known that FD and dD are invariant under the AutðDÞ-action on D.

Here, putting z ¼ ðz1; . . . ; zNÞ ¼ ðz;wÞ, let us define a real analytic function u

on CN by

uðzÞ ¼ kwk2emkzk
2

for z A CN ð2:1Þ

and consider its complex Hessian form

Huðz; tÞ ¼
XN
i; j¼1

q2uðzÞ
qziqzj

titj for t ¼ ðt1; . . . ; tNÞ A CN :

Then, for any point zo ¼ ða; bÞ A Cn �Cm ¼ CN , we have

Huðzo; tÞ ¼ emkak
2

fm2kbk2jha; uij2 þ mkbk2kuk2 þ 2m Reðha; uihb; viÞ þ kvk2g

b emkak
2

fðmkbkjha; uij � kvkÞ2 þ mkbk2kuk2gb 0

for all t ¼ ðu; vÞ A Cn �Cm ¼ CN by Schwarz’s inequality. Thus u is a pluri-

subharmonic function on CN with 0a uðzÞ < 1 on D and moreover it is a

strictly plurisubharmonic function on D� with 0 < uðzÞ < 1 on D�. Hence, by

a result of Sibony [22; Theorem 3], D is hyperbolic at every point p A D�, that

is, there are an open neighborhood U of p in D and a positive constant c such

that FDðq; xÞb ckxk for all q A U , where kxk denotes the norm of the tangent

vector x with respect to a fixed Hermitian metric on D. Therefore, dD induces

a true distance on D� by a result of Royden [21]; accordingly, D� is hyperbolic

in the sense of Kobayashi [12], since dD � ðp; qÞb dDðp; qÞ for any p; q A D�.

On the other hand, it is trivial that dD 1 0 on DD GCn. Consequently, DD is

just the degeneracy set for the pseudodistance dD (cf. [12; p. 68]). In par-

ticular, AutðD�Þ has the structure of a real Lie group. Moreover, since dD as

well as FD is invariant under the action of AutðDÞ, we have

jðDDÞ ¼ DD; jðD�Þ ¼ D� for all j A AutðDÞ:

Thus the natural restriction mapping F : AutðDÞ ! AutðD�Þ gives now an

injective continuous homomorphism from AutðDÞ into AutðD�Þ. Here we

assert that the image FðAutðDÞÞ is closed in AutðD�Þ; consequently, AutðDÞ
has also the structure of a real Lie group. Although, in the proof below of

this assertion, there is some overlap with the recent paper by Nagata [15],

we carry out the proof in detail for the sake of completeness and self-

containedness. So, take a sequence fjng in AutðDÞ arbitrarily and assume

that fFðjnÞg converges to an element j A AutðD�Þ. Since the Kobayashi dis-
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tance dD � induces the Euclidean topology on D� by Barth [3], this assumption

is equivalent to the following:

lim
n!y

dD � ðjnðxÞ; jðxÞÞ ¼ 0 uniformly on compact subsets of D�:

Thus, for any compact subset K of D�, we have

lim
n!y

dD � ðj�1
n ðxÞ; j�1ðxÞÞ ¼ lim

n!y
dD � ðj�1

n ðjðyÞÞ; yÞ

¼ lim
n!y

dD � ðjðyÞ; jnðyÞÞ ¼ 0 uniformly on K ;

since AutðD�Þ is an isometry group of D� with respect to dD � , where we have

put y ¼ j�1ðxÞ for x A K ; accordingly, fFðj�1
n Þg converges to j�1 in AutðD�Þ.

Here we claim that j (resp. j�1) extends to a holomorphic mapping ĵj (resp.dj�1j�1) from D into D � CN such that the sequence fjng (resp. fj�1
n g) converges

to ĵj (resp. dj�1j�1) uniformly on compact subsets of D. To prove our claim, it

su‰ces to show that, for any point p A DD, there exists an open neighborhood

Up of p such that j (resp. j�1) extends to a holomorphic mapping ĵj (resp. dj�1j�1)

from Up into CN such that fjng (resp. fj�1
n g) converges to ĵj (resp. dj�1j�1)

uniformly on Up. For this purpose, letting p ¼ ðzo1 ; . . . ; zon ; 0; . . . ; 0Þ, we con-

sider the polydisc

Dðp; rÞ ¼ fðz;wÞ; jzoi � zij < r; jwjj < r ð1a ia n; 1a jamÞg

in Cn �Cm. Then, for a su‰ciently small r > 0, we have p A Dðp; rÞTD and

jnðz;wÞ ¼
1

2pi

ð
jxj¼r

jnðz;w1; . . . ;wm�1; xÞ
x� wm

dx on Dðp; rÞ; n ¼ 1; 2; . . . ;

by the Cauchy integral formula. Define now a holomorphic mapping

ĵj : Dðp; rÞ ! CN by setting

ĵjðz;wÞ ¼ 1

2pi

ð
jxj¼r

jðz;w1; . . . ;wm�1; xÞ
x� wm

dx on Dðp; rÞ:

Since fjng converges to j uniformly on compact subsets of D�, it then follows

that fjng converges to ĵj uniformly on any connected open neighborhood

Up of p with Up TDðp; rÞ and ĵj ¼ j on UpnDD. Analogously we have the

same conclusion for j�1, as claimed. Moreover, note that, if h : D ! CN is a

non-constant holomorphic mapping with hðDÞ � D, then hðDÞ � D. Indeed,

assume that hðzoÞ ¼: p A qD for some point zo A D. Then uðhðzoÞÞ ¼ 1,

uðhðzÞÞa 1 on D and hence uðhðzÞÞ ¼ 1 for all z A D by the maximum

principle for the plurisubharmonic function u � h defined on D, where u is

the function appearing in (2.1). In view of the strict plurisubharmonicity of u
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on D�, this implies that hðzÞ ¼ p on D, a contradiction. Therefore we

conclude that

ĵjðDÞ � D; dj�1j�1ðDÞ � D and ĵj � dj�1j�1 ¼ idD ¼ dj�1j�1 � ĵj on D:

Thus ĵj A AutðDÞ and FðĵjÞ ¼ j; proving the closedness of FðAutðDÞÞ in

AutðD�Þ, as asserted.

Now, denoting by P the subgroup of AutðDÞ generated by all elements

of fjv; v A Cng, we assert that P is a connected closed subgroup of AutðDÞ of

dimR P ¼ 2nþ 1. For this, we introduce the one-parameter subgroup R of

AutðDÞ consisting of all transformations Ry : ðz;wÞ 7! ðz; eiywÞ, y A R. Then

R is the center of the subgroup UðmÞ of AutðDÞ with UðmÞ ¼ R � SUðmÞ and,

for any two elements v; v 0 A Cn, we have

jv � jv 0 ðz;wÞ ¼ ðzþ vþ v 0; e�mhz; vþv 0i�ðm=2Þkvþv 0k2eð�m Imhv 0; viÞiwÞ

¼ jvþv 0 � Ryðz;wÞ with y ¼ �m Imhv 0; vi:

Thus j0 ¼ idD and j�1
v ¼ j�v for every v A Cn. In addition to this, note that

jv � Ry ¼ Ry � jv for all v A Cn and all y A R. Then it is not di‰cult to check

that the set P 0 :¼ fjv � Ry; v A Cn; y A Rg becomes a connected closed sub-

group of AutðDÞ of dimR P 0 ¼ 2nþ 1 and P � P 0. Once it is shown that

R � P, we conclude that P 0 � P and hence P ¼ P 0 satisfies all the require-

ments in our assertion. Therefore we have only to show that R � P. To

this end, take two elements jv, jv 0 arbitrarily and compute their commutator

½jv; jv 0 � :¼ j�1
v � j�1

v 0 � jv � jv 0 . Then we have

½jv; jv 0 � ¼ Ry with y ¼ �2m Imhv 0; vi;

accordingly, for any vo A Cn with kvok ¼ 1,

½jtvo ; jtivo � ¼ R�2mt2 ; ½jtivo ; jtvo � ¼ R2mt2 for all t A R:

Clearly this implies that R � P, as desired.

Next we consider the centralizer of SUðmÞ in AutðDÞ and denote it by

CAutðDÞðSUðmÞÞ. Then it is obvious by Theorem A that CAutðDÞðSUðmÞÞ is

generated by all the elements of the set fjv; v A Cng [UðnÞ [R; so that

AutðDÞ ¼ CAutðDÞðSUðmÞÞ � SUðmÞ and P is a subgroup of CAutðDÞðSUðmÞÞ.
More precisely, since jA � jv � j�1

A ¼ jAv for any A A UðnÞ and v A Cn, P is

a normal subgroup of CAutðDÞðSUðmÞÞ and, in fact, CAutðDÞðSUðmÞÞ ¼ P �UðnÞ
with P \UðnÞ ¼ fidDg. Notice that CAutðDÞðSUðmÞÞ \ SUðmÞ ¼ R \ SUðmÞ
is a finite subgroup of AutðDÞ of order m. Hence AutðDÞ ¼ P �UðnÞ � SUðmÞ
and dimR AutðDÞ ¼ ð2nþ 1Þ þ n2 þ ðm2 � 1Þ ¼ n2 þm2 þ 2n. As a result, we

have obtained the following:
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Fact 4. AutðDÞ is a connected Lie group of dimR AutðDÞ ¼ n2 þm2 þ 2n.

In this case, it is well-known that the Lie algebra g of AutðDÞ can be

canonically identified with some Lie subalgebra g� of XðDÞ, the Lie algebra

consisting of all di¤erentiable vector fields on D (cf. [14; pp. 236–237]). More

precisely, we here assert that g can be identified with gðDÞ, that is, the set

gðDÞ of all complete holomorphic vector fields on D becomes a Lie subalgebra

of XðDÞ and g� coincides with gðDÞ. Indeed, the Lie group AutðDÞ endowed

with the compact-open topology acts continuously on D. Hence, the action

is real analytic by [6]. Moreover, we know that AutðDÞ satisfies the second

axiom of countability. Then, by Theorem VI in [17; p. 101], the group AutðDÞ
is a Lie transformation group of D in the sense of Definition V in [17; p. 101];

consequently, the Lie algebra g can be identified with gðDÞ (cf. [17; p. 103,

Theorem VII]), as asserted. Anyway, this fact will be used in Section 4.

Next, let D be the Fock-Bargmann-Hartogs domain in CN and let KD

be the Bergman kernel function for D. Then, by making use of an explicit

formula for KD in terms of the polylogarithm function by Yamamori [27],

Tu-Wang [23; Theorem 2.3] verified that KDðz; hÞ extends holomorphically in z

to some open neighborhood of the closure D of D. Thanks to this extension

theorem together with Bell’s transformation rule for Bergman kernels under

proper holomorphic mappings, they obtained the following:

Theorem B (Tu-Wang [23; Theorem 2.5]). Let D1, D2 be two equidimen-

sional Fock-Bargmann-Hartogs domains in CN and f : D1 ! D2 a proper holo-

morphic mapping. Then f extends holomorphically to an open neighborhood W

of D1.

We finish this section by the following fact which is an immediate con-

sequence of the invariance of degeneracy sets for Kobayashi pseudodistances

under biholomorphic mappings (cf. [23; Theorem 1.2]):

Fact 5. Let D1 ¼ Dn1;m1
ðm1Þ and D2 ¼ Dn2;m2

ðm2Þ be two Fock-Bargmann-

Hartogs domains in CN1 and CN2 , respectively, where Nj ¼ nj þmj for j ¼ 1; 2.

Then D1 is biholomorphically equivalent to D2 if and only if D1 is linearly

equivalent to D2, that is, there exists a non-singular linear mapping L : CN1 !
CN2 such that LðD1Þ ¼ D2. Moreover, this can only happen when ðn1;m1Þ ¼
ðn2;m2Þ; and every biholomorphic mapping f : D1 ! D2 can be written in the

form

f ðz;wÞ ¼ jð
ffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
z;wÞ; ðz;wÞ A D1; with some j A AutðD2Þ:

In fact, it is clear that D1 is biholomorphically equivalent to D2, if D1 is

linearly equivalent to D2. Conversely, assume that there exists a biholomor-

phic mapping g : D1 ! D2. Then we have that N1 ¼ N2 and dD2
ðgðpÞ; gðqÞÞ ¼
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dD1
ðp; qÞ for any points p; q A D1. On the other hand, we know that DD1

, DD2

are the degeneracy sets for dD1
, dD2

, respectively. Thus it follows at once that

gðDD1
Þ ¼ DD2

and g induces a biholomorphic mapping from DD1
GCn1 onto

DD2
GCn2 . Consequently, we have n1 ¼ n2 and so m1 ¼ m2. In the case

where ðn1;m1Þ ¼ ðn2;m2Þ, it is easy to see that the non-singular linear map-

ping L : Cn1 �Cm1 ! Cn2 �Cm2 defined by Lðz;wÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
m1=m2

p
z;wÞ for ðz;wÞ A

Cn1 �Cm1 gives a linear equivalence between D1 and D2. In particular, for

every biholomorphic mapping f : D1 ! D2, we obtain that j :¼ f � L�1 A
AutðD2Þ and hence f ¼ j � L on D1; proving our assertion.

3. Proof of Theorem 1

Our proof of Theorem 1 will be carried out along the same line as in the

previous paper [13]. Before undertaking the proof, we need to introduce one

terminology. Let D be a domain in CN and let p A qD. Then the boundary

point p is said to be spherical if the following condition ðzÞ is fulfilled:

ðzÞ There are an open neighborhood U of p in CN and a biholomorphic

mapping f from U into CN such that f ðU \DÞ ¼ f ðUÞ \ BN and f ðU \ qDÞ
¼ f ðUÞ \ qBN .

The following lemma will play a crucial role in our proof of Theorem 1.

Lemma 1. Let D ¼ Dn;mðmÞ be the Fock-Bargmann-Hartogs domain in

CN. Assume that mb 2. Then there is not a spherical boundary point of D.

Proof. To derive a contradiction, assume to the contrary that there exists

a spherical boundary point p of D, so that the condition ðzÞ is fulfilled for some

connected open neighborhood U of p and a biholomorphic mapping f : U !
f ðUÞ � CN . Since qD is a connected strictly pseudoconvex real analytic

hypersurface in CN , it follows from a result of Pinchuk [19; Proposition 1.2],

[20; p. 193] that f can be continued along any path lying in qD as a locally

biholomorphic mapping. Since qD is now simply connected by our assump-

tion mb 2, the monodromy theorem guarantees that f extends to a locally

biholomorphic mapping F defined on some connected open neighborhood V of

qD in CN such that F ðqDÞ � qBN and F ðV \DÞ � BN . Now we will proceed

in steps.

(1) F extends to a holomorphic mapping ~FF from D into BN. To prove

this, take an arbitrary r A R with r > 1 and put

Kr ¼
�
ðz;wÞ A Cn �Cm; kzka r; kwk ¼ e�ðm=2Þkzk2�:

Since Kr � qD � V and Kr is compact in V , one can choose a small e ¼
eðrÞ > 0 in such a way that
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Ur; e :¼
�
ðz;wÞ A Cn �Cm; kzk < r;

e�ðm=2Þkzk2 � e < kwk < e�ðm=2Þkzk2 þ e
�
� V :

Clearly, Ur; e is a bounded Reinhardt domain in CN . Moreover, since mb 2,

we have that

Ur; e \ fz A CN ; zk ¼ 0g0q for k ¼ 1; . . . ;N;

where we have set ðz;wÞ ¼ ðz1; . . . ; zNÞ ¼ z. Hence, by a well-known fact

[16; p. 15], every component function Fk of F has a holomorphic extension F r
k

to the domain

ÛUr; e :¼
�
ðz;wÞ A Cn �Cm; kzk < r; kwk < e�ðm=2Þkzk2

þ e
�
;

the smallest complete Reinhardt domain in CN containing Ur; e. In particular,

putting

Dr ¼
�
ðz;wÞ A Cn �Cm; kzk < r; kwk < e�ðm=2Þkzk2�;

we see that F ¼ ðF1; . . . ;FNÞ has a holomorphic extension F r :¼ ðF r
1 ; . . . ;F

r
NÞ

to Dr [ V . Note that Dr � Ds for 1 < r < s,
S

1<r<y Dr ¼ D and that the

holomorphic extensions F r are uniquely determined by the values of F on a

small neighborhood of an arbitrarily given point ð0;woÞ A qD. Then, by stan-

dard argument, one can define a holomorphic extension ~FF : D [ V ! CN of

F : V ! CN .

Now we wish to show that ~FFðDÞ � BN . To this end, let us fix an

arbitrary point ðzo;woÞ A D and define an open ball

DðzoÞ ¼
�
w A Cm; kwk2 < e�mkzok2

�
in Cm:

Clearly wo A DðzoÞ. Consider here the non-constant, real analytic plurisub-

harmonic function c : w 7! �1þ k ~FFðzo;wÞk2 defined on some open neighbor-

hood of the closure DðzoÞ in Cm. Then cðqDðzoÞÞ ¼ 0 and cðwÞ < 0 on

DðzoÞ \ V (regarding DðzoÞ as a subset of D in the canonical manner). This,

combined with the maximum principle for plurisubharmonic functions, guar-

antees that cðwoÞ < 0, i.e., ~FFðzo;woÞ A BN and accordingly ~FFðDÞ � BN , as

desired.

(2) There is a locally injective, real analytic homomorphism F : AutðDÞ !
AutðBNÞ such that FðjÞ � ~FF ¼ ~FF � j on D for all j A AutðDÞ. Indeed, fix

a point p A qD and take an arbitrary element j A AutðDÞ. Then one can

choose a connected, small open neighborhood W of p in such a way that

W [ jðWÞ � V and ~FF is injective on W and on jðWÞ. Let us consider the

biholomorphic mapping

ĵj :¼ ~FF � j � ð ~FF jW Þ�1 : ~FFðWÞ ! ~FFðjðWÞÞ:
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Clearly ĵj satisfies the following:

ĵjð ~FF ðWÞ \ BNÞ � BN and ĵjð ~FF ðWÞ \ qBNÞ � qBN :

Hence, by the main result of Alexander [1], ĵj extends to a holomorphic auto-

morphism, say again ĵj, of BN . Note that W \D and ~FFðW \DÞ are non-

empty open subsets of D and BN , respectively. Then, by the principle of

analytic continuation, we have that ĵj � ~FF ¼ ~FF � j on D and ĵj A AutðBNÞ is

uniquely determined by j. Accordingly, one can define a mapping

F : AutðDÞ ! AutðBNÞ by setting FðjÞ ¼ ĵj;

so that FðjÞ � ~FF ¼ ~FF � j on D for all j A AutðDÞ.
It is easy to check that F is a group homomorphism. Once it is shown

that F is continuous at the identity element idD of AutðDÞ, it follows that F is

real analytic on the Lie group AutðDÞ (cf. [9; p. 117]). Since the topology of

AutðDÞ satisfies the second axiom of countability, we have only to show that F

is sequentially continuous at idD. For this, let us take an arbitrary sequence

fjng in AutðDÞ which converges to idD and assume that fFðjnÞg does not

converge to the identity element idBN of AutðBNÞ. Passing to a subsequence,

if necessary, we may assume that there is an open neighborhood O of idBN in

AutðBNÞ such that FðjnÞ B O for all n. Pick an arbitrary point z A D. Then

lim
n!y

FðjnÞð ~FFðzÞÞ ¼ lim
n!y

~FFðjnðzÞÞ ¼ ~FF ðzÞ A BN ;

which implies that fFðjnÞð ~FFðzÞÞg lies in a compact subset of BN . Hence, after

taking a subsequence if necessary, we may assume that fFðjnÞg converges to

some element g A AutðBNÞ (cf. [16; p. 82]). Since g B O, we see that g0 idBN .

On the other hand, we have

gð ~FFðzÞÞ ¼ lim
n!y

FðjnÞð ~FFðzÞÞ ¼ lim
n!y

~FFðjnðzÞÞ ¼ ~FF ðzÞ for all z A W \D;

consequently, g ¼ idBN by analytic continuation. This is a contradiction.

Therefore F is continuous at idD, as desired.

Next we claim that F is locally injective. It is su‰cient to prove that F is

injective on some open neighborhood O of idD. To this end, choose two open

sets W1, W2 in CN with q0W1 TW2 � W \D. We claim that

O :¼ fj A AutðDÞ; jðW1Þ � W2g

is what is required. Indeed, it is clear that O is an open neighborhood of

idD in AutðDÞ. Moreover, assume that Fðj1Þ ¼ Fðj2Þ for j1; j2 A O. It then

follows that

~FFðj1ðzÞÞ ¼ Fðj1Þð ~FFðzÞÞ ¼ Fðj2Þð ~FF ðzÞÞ ¼ ~FFðj2ðzÞÞ for all z A D:
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Since ~FF is injective on W2 � W and since j1ðzÞ; j2ðzÞ A W2 for all z A W1, this

says that j1 ¼ j2 on W1; and hence, j1 ¼ j2 on D by analytic continuation.

Therefore F is locally injective on AutðDÞ.
(3) ~FF : D ! BN is a locally biholomorphic mapping from D into BN.

However this is absurd. We first prove that the set V ~FF ¼ fz A D; J ~FF ðzÞ ¼ 0g
is empty. To derive a contradiction, assume to the contrary that V ~FF 0q.

Then V ~FF is a complex analytic subset of D of dimC V ~FF ¼ N � 1 ¼ nþm� 1.

If V ~FF � DD GCn, then we obtain a contradiction, since dimC V ~FF > n ¼
dimC DD by our assumption mb 2. Hence V ~FF 6	 DD and there exists a point

zo ¼ ðzo;woÞ A V ~FF with wo 0 0. Let AutðDÞ � zo be the AutðDÞ-orbit passing

through the point zo. This is a real analytic submanifold of D. Here we

assert that AutðDÞ � zo is contained in V ~FF . To this end, take an arbitrary

element j A AutðDÞ. Then, since

J ~FF ðjðzoÞÞ � JjðzoÞ ¼ JFðjÞð ~FFðzoÞÞ � J ~FF ðzoÞ and J ~FF ðzoÞ ¼ 0; JjðzoÞ0 0;

we have that J ~FF ðjðzoÞÞ ¼ 0 or equivalently jðzoÞ A V ~FF ; hence, AutðDÞ � zo � V ~FF ,

as asserted. Therefore we have dimRðAutðDÞ � zoÞa 2ðN � 1Þ. On the other

hand, by using the explicit description of the generators of AutðDÞ given

in Theorem A, it is easily checked that dimRðAutðDÞ � zoÞ ¼ 2nþ 2m� 1 >

2ðN � 1Þ. This is a contradiction. Thus we conclude that V ~FF ¼ q and
~FF : D ! BN is, in fact, a locally biholomorphic mapping. However, this is

absurd. Indeed, consider the holomorphic mapping h : Cn ! BN given by

hðzÞ ¼ ~FFðz; 0Þ for ðz; 0Þ A DD GCn. Then it follows at once from the classical

Liouville theorem on bounded entire functions that h is a constant mapping

on Cn. Consequently, for any point zo A DD, ~FF is never injective on any open

neighborhood of zo, a contradiction.

Therefore we have proved that there is not a spherical boundary point of

D; completing the proof of Lemma 1. r

Remark. Let D be a strictly pseudoconvex domain in CN with simply

connected and real analytic boundary qD. Assume that D is bounded in CN

and there exists a spherical boundary point p A qD, so that there are open

neighborhood U of p and a biholomorphic mapping f : U ! CN satisfying the

condition ðzÞ. Then D is biholomorphically equivalent to BN by a result of

Pinchuk [18; Theorem 2]. Here the assumption that D is a bounded domain in

CN cannot be avoided. Indeed, in the proof of this assertion, he first proved

that f : U ! CN extends to a locally biholomorphic mapping F : V ! CN

from some open neighborhood V of qD into CN . After that, he used the

Osgood-Brown theorem (Hartogs extension theorem) to obtain a holomorphic

mapping ~FF : D ! BN � CN that is an extension of F : V ! CN (see [18;

p. 390], also [19; p. 518]). Thus D has to be a bounded domain enclosed by
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the connected compact hypersurface qD imbedded in CN . On the other hand,

the Fock-Bargmann-Hartogs domain D ¼ Dn;mðmÞ is not bounded and qD is

not compact in CN . Therefore, our Lemma 1 is not an immediate conse-

quence of Pinchuk [18; Theorem 2].

We can now prove our theorem as follows. First we claim that, for each

i ¼ 1; 2, the strictly pseudoconvex real analytic hypersurface qDi has no

umbilical points in the sense of CR-geometry; hence, Webster’s CR-invariant

Riemannian metric gi can be defined on the whole space qDi. (For the

notion of umbilical points and Webster’s CR-invariant metrics in CR-geometry,

see [25, 26] and also [7], [24].) To prove our claim, assume that there exists

an umbilical point on qDi. Then, all the points of qDi are umbilical, since

AutðDiÞ acts transitively on qDi by Fact 3. Hence, qDi must be locally

biholomorphically equivalent to the sphere qBN (see, for example, [7; p. 153],

[24; p. 213]). However this is impossible by Lemma 1; proving our claim.

Moreover, we see that ðqDi; giÞ is complete as a Riemannian manifold, be-

cause qDi is homogeneous under the CR-automorphism group AutðDiÞ. As

a result, each ðqDi; giÞ is a connected and simply connected, complete real

analytic Riemannian manifold. On the other hand, f : U1 \ qD1 ! U2 \ qD2

is a local isometry with respect to the CR-invariant metrics g1 and g2.

Hence, by a well-known fact in Riemannian geometry [11; p. 256], f can

be uniquely extended to a global isometry F : ðqD1; g1Þ ! ðqD2; g2Þ. From

the fact that F is induced by the biholomorphic mapping f : U1 ! U2 and

from the construction of Webster’s CR-invariant metric, it follows at once

that F : qD1 ! qD2 is a real analytic CR-di¤eomorphism. Accordingly, as an

immediate consequence of Bell [5; Theorem 2], one can find open neighbor-

hoods V1 of qD1 and V2 of qD2 in CN such that F : qD1 ! qD2 and its inverse

G :¼ F �1 : qD2 ! qD1 extend to locally biholomorphic mappings written in

the same notation F : V1 ! CN and G : V2 ! CN satisfying FðV1 \D1Þ �
D2 and GðV2 \D2Þ � D1. Hence, in exactly the same way as in (1) of the

proof of Lemma 1, it can be shown that F and G extend to holomorphic

mappings ~FF : D1 ! CN and ~GG : D2 ! CN . Moreover, replacing cðwÞ by

c1ðwÞ :¼ r2ð ~FFðzo;wÞÞ in (1) of the proof of Lemma 1, we can prove that
~FFðD1Þ � D2, where r2 is the real analytic plurisubharmonic function on CN

defined by

r2ðz;wÞ ¼ �1þ kwk2em2kzk
2

for ðz;wÞ A Cn2 �Cm2 ¼ CN :

Analogously, we see that ~GGðD2Þ � D1. Since ~GG � ~FF ¼ idD1
near qD1 and

~FF � ~GG ¼ idD2
near qD2, we conclude by analytic continuation that ~GG � ~FF ¼

idD1
and ~FF � ~GG ¼ idD2

; consequently, ~FF : D1 ! D2 is a biholomorphic mapping.

Therefore the proof of Theorem 1 is completed.
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4. Proof of Theorem 2

By Theorem B there exists an open neighborhood W of D1 such that f

extends to a holomorphic mapping, say again, f : W ! CN . Since each qDi

for i ¼ 1; 2 is strictly pseudoconvex real analytic hypersurface in CN , it follows

from the same method as in the proof of [4; Theorem 2] or [18; Lemma 1.3]

that Jf ðzÞ0 0 for every point z A qD1. Thus, for an arbitrarily given point

p1 A qD1, there exists an open neighborhood U1 of p1 in CN such that f gives

rise to a biholomorphic mapping F : U1 ! U2 :¼ f ðU1Þ � CN with

FðU1 \D1Þ ¼ U2 \D2 and FðU1 \ qD1Þ ¼ U2 \ qD2: ð4:1Þ

Consequently, if m2 b 2, then F extends to a biholomorphic mapping F̂F : D1 !
D2 by Theorem 1; and moreover, in such a case, it is clear that f ¼ F̂F on D1.

Hence the proof of Theorem 2 is now reduced to showing the following:

Lemma 2. Under the same situation as in Theorem 2, we have m2 b 2.

Proof. Once it is shown that

n21 þm2
1 þ 2n1 ¼ dim AutðD1Þb dim AutðD2Þ ¼ n22 þm2

2 þ 2n2;

then we conclude that m2 b 2, since n1 þm1 ¼ n2 þm2 and m1 b 2 by our

assumption. Thus it su‰ces to show that there exists an injective linear

mapping L : gðD2Þ ! gðD1Þ from the Lie algebra gðD2Þ of AutðD2Þ into the

Lie algebra gðD1Þ of AutðD1Þ. To this end, we shall construct a mapping

F : O2 ! AutðD1Þ from some open neighborhood O2 of the identity element

idD2
of AutðD2Þ into AutðD1Þ that induces such a mapping L : gðD2Þ ! gðD1Þ.

We will carry out this by two steps as follows:

(1) A construction of a mapping F : O2 ! AutðD1Þ: We fix two con-

nected open neighborhoods W2, V2 of p2 :¼ F ðp1Þ in CN with W2 TV2 TU2

and put W1 ¼ F �1ðW2Þ, V1 ¼ F �1ðV2Þ � U1 respectively, where F : U1 ! U2

is the biholomorphic mapping appearing in (4.1). Then W1, V1 are open

neighborhoods of p1 with W1 TV1 TU1. Here, recalling that AutðD2Þ can be

regarded as a topological subgroup of AutðCNÞ by Fact 2, we define a subset

O2 of AutðD2Þ by setting

O2 ¼ fj A AutðD2Þ; jðW2Þ � V2; jðV2Þ � U2g:

Then O2 is an open neighborhood of idD2
A AutðD2Þ and, for any element

j A O2, we obtain a biholomorphic mapping

ĵj :¼ F �1 � j � F : V1 ! V̂V1 :¼ F �1ðjðV2ÞÞ � U1 ð4:2Þ

with ĵjðV1 \D1Þ ¼ V̂V1 \D1 and ĵjðV1 \ qD1Þ ¼ V̂V1 \ qD1. Recall that m1 b 2.

Then, as an immediate consequence of Theorem 1, ĵj extends to a holomorphic
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automorphism written in the same notation ĵj : D1 ! D1. Thus

jð f ðzÞÞ ¼ f ðĵjðzÞÞ for all z A D1

by analytic continuation; and moreover, it is obvious that this ĵj A AutðD1Þ is

uniquely determined by j. Accordingly, one can define a mapping

F : O2 ! AutðD1Þ by setting FðjÞ ¼ ĵj; ð4:3Þ

so that j � f ¼ f �FðjÞ on D1 for all j A O2.

(2) There exists an injective linear mapping L : gðD2Þ ! gðD1Þ: We

would like to induce such a mapping L from the mapping F in (4.3).

For this, let us take an arbitrary element X A gðD2Þ and consider the one-

parameter subgroup fjt ¼ exp tXgt AR of AutðD2Þ generated by X . Then one

can choose a constant �o > 0 such that jt A O2 for all t A R with jtj < �o; and

moreover, it is easy to check that

FðjsÞðFðjtÞðzÞÞ ¼ FðjsþtÞðzÞ; z A W1 \D1; whenever jsj; jtj; jsþ tj < �o;

consequently, FðjsÞ �FðjtÞ ¼ FðjsþtÞ on D1 by analytic continuation. Thus

fFðjtÞgjtj<�o
is a local one-parameter group of local holomorphic transforma-

tions of D1. Let X̂X be the holomorphic vector field on D1 induced by this

local one-parameter group fFðjtÞgjtj<�o
. Then X̂X is also a complete holomor-

phic vector field on D1, that is, X̂X A gðD1Þ (cf. [14; p. 83]) and fFðjtÞgjtj<�o
is

the restriction of the global one-parameter subgroup fĵjt ¼ exp tX̂Xgt AR of

AutðD1Þ to jtj < �o. Clearly this X̂X is uniquely determined by the given X ;

accordingly, one can define a mapping

L : gðD2Þ ! gðD1Þ by setting LðXÞ ¼ X̂X

for every X A gðD2Þ. Since F : U1 ! U2 is a biholomorphic mapping, the

di¤erential ðdF �1ÞFðzÞ of F �1 at F ðzÞ is a linear isomorphism for every point

z A U1. Moreover, it follows from (4.2) that

X̂Xz ¼ ðdF �1ÞF ðzÞðXFðzÞÞ for all z A V1 \D1; X A gðD2Þ:

Thus, by analytic continuation, we conclude that L : gðD2Þ ! gðD1Þ is, in fact,

an injective linear mapping, as desired.

More precisely, we assert that F : O2 ! AutðD1Þ is a real analytic

imbedding of O2 into AutðD1Þ and so dim AutðD2Þa dim AutðD1Þ. Indeed,

let fX1; . . . ;Xd2g be a basis of gðD2Þ, where d2 ¼ dim AutðD2Þ. Then, for each

j ¼ 1; . . . ; d2, there is a small constant �j > 0 such that exp tXj A O2 for all

t A R with jtj < �j; consequently we have

Fðexp tjXjÞ ¼ exp tjLðXjÞ for all tj A R with jtj j < �j:
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On the other hand, by just the definition of F, one can choose a constant

do > 0 so small that

Fðexp t1X1 � � � exp td2Xd2Þ ¼ exp t1LðX1Þ � � � exp td2LðXd2Þ

for all tj A R with jtjj < do ð1a ja d2Þ. Hence, taking a basis fX̂X1; . . . ; X̂Xd1g
of gðD1Þ in such a way that X̂Xj ¼ LðXjÞ for 1a ja d2, we obtain the following:

With respect to the canonical coordinate systems of the second kind

c1 : exp x1X̂X1 � � � exp xd1X̂Xd1 7! ðx1; . . . ; xd1Þ;

c2 : exp y1X1 � � � exp yd2Xd2 7! ðy1; . . . ; yd2Þ

defined on some open neighborhoods of idD1
A AutðD1Þ, idD2

A AutðD2Þ respec-

tively, F has the expression

c1 �F � c�1
2 : ðt1; . . . ; td2Þ 7! ðt1; . . . ; td2 ; 0; . . . ; 0Þ on c2ðO2Þ

(after shrinking O2 su‰ciently small, if necessary). Clearly this means that

F : O2 ! AutðD1Þ is a real analytic imbedding of O2 into AutðD1Þ, as asserted.
r

Therefore the proof of Theorem 2 is completed.
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