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ABSTRACT. We study Besov and Triebel-Lizorkin space estimates for fractional
diffusion. We measure the smoothing effect of the fractional heat flow in terms of
the Besov and Triebel-Lizorkin scale. These estimates have many applications to
various partial differential equations.

1. Introduction

In this paper we shall consider the Cauchy problem for the following
fractional power dissipative equation

o+ (—)Pu=f, (0,T)x RY ()
u=g, {0} x R?.
where f and g are given data. Recently, there have been many interests on
the fractional diffusion from the theory of probability related to heavy tail
probability distribution and Lévy processes. Fractional Laplacians also have
many applications to various non-linear PDEs related to non-local phenomena
in science and engineering problems. See for example [2], [11], [3], [10], [6], [5],
and the references therein.
By the Duhamel principle, the solution u to the above linear equation (1)
can be formally written as

t

u=e"N"g 4 L e DT £(5)ds.
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The action of these operators can be understood naturally in the Fourier space.
This motivates us to define the following two integral operators S* and 7*.

DeriNITION 1. Let 0 < o < o0. The kernel P*(¢,x) is defined by

P%(t,x) = J T Ep—tlel" gz

R?

The operator S* is defined by

S*f(t,x) = de P*(t,x — y)f(y)dy. 2)
The operator T* is defined by
T*f(t,x) = J J [P“(t —s,x — »)f (s, y)dyds. (3)
0 JR

The present paper is devoted to understand the mapping properties of
these operators among the refined function spaces. In particular, we mea-
sure the smoothing effect of the fractional heat flow in terms of the Besov and
Triebel-Lizorkin scaling. Several important function spaces in analysis can
be thought of as elements of the Besov—Lipschitz and Triebel-Lizorkin spaces.
So, we consider their natural parabolic extensions. Our main objective here is
to understand mapping properties of the above operators in the corresponding
parabolic spaces.

DerINITION 2. Let Q=1[0,7] x R with 0 < 7 < o0 and ceR. The
space L"B24(Q) is the set of measurable functions u: Q — € such that

T 1/r
lll - gpe0) = (L [Ju(t, -)|§:-q<md>df) < oo,

where B?»4 (le) is the standard Besov space. Similarly, we define the space
L'FP4(Q) for standard Triebel-Lizorkin spaces F?'¢(RY).

We shall recall the exact definitions of Besov and Triebel-Lizorkin spaces
in the next section. We mainly focus on the parabolic Triebel-Lizorkin space
estimates and deduce the parabolic Besov space estimates by a slight modifica-
tion of the former analysis. We note that for the development of the parabolic
Besov space estimates of the Gaussian heat flow and their applications to
nonlinear PDEs one may consult the following books [4], [9] and [1].

Throughout the paper, we shall use the notation 4 < B, which means that
there is an absolute positive constant C such that |4| < CB.

Now we state our main theorems. Our first theorem is the simplest case
of parabolic Triebel-Lizorkin space estimates.
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THEOREM 1. For 1 < p < w
IT°S M Lorrogy s L+ TS

We note it is necessary that the operator norm of 7* depends on T.
See Remark 3. The next theorem is a general version of parabolic Triebel—
Lizorkin space estimates.

LPEP?(Q):

THEOREM 2. [If one of the following conditions holds;
e r=1land 1<g<p< oo,
e I<r<owand 1< p,g< oo,
e r=ow and 1 < p<q< oo,
then for f < o

17 lrrraigr < (L TS erecoy

REMARK 1. This is an extension of the main theorem for the range of
exponents p, q, r, and o in the paper [13].

REMARK 2. When p=gq=r=2, Theorem 1 is better. For the general
exponents we don’t know the end point case [ = o continues to hold.

We also deduce the corresponding parabolic Besov space estimates.

THEOREM 3. If l<p< oo, 1<g=r<ow,or 1 <p< oo, g=r=1, or
l<p<oo, g=r= o0, then

THEOREM 4. If (1/p,1/q,1/r) belongs to the interior of the octahedron
P\ PyP3—PsP7Pg, or the triangle P)P,P3\the segment P\P,, or the triangle
PsP;Pg\the segment PsPg, then for f < u

1Tl zrsra0) S A+ DS eeprao)s

where Py = (0,0,0), P»=(1,0,0), P3=(1,1,0), Ps=(0,0,1), P;=(1,1,1)
and Py =(0,1,1).

Finally, related to the initial value problem, we have the following two
theorems.

THEOREM 5. (i) If 1 <r<oo and 1 <q<p < oo, then for f<a/r

15%9]

L'EY(0) S (I+ Tl/r)||g||pﬂf’vq(m")-
i) For 1<p<r<w
p
180 lrr2 (@ S (14 T lglpp ooy

The implied constants do not depend on T.
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THEOREM 6. (i) Let 1 <p< o0, 1 <g<r<ow, 0<a< o and f<a/r.
Then

||Slg||L'B:;r‘;f(Q) <+ T]/r)||g| BP(RY):

(i) Let 1<p<oo, 1<r<g<ow, 0<a<oo and f<ojr. Then
15791l 5r.00) < (1+T)]lg]

(i) Let 1<p<r<oo and 0 <o < oco. Then

B!-‘I(R{l).

HSG(g“L"B:"”y/’_(Q) < (1 + Tl/r)”gHB,{"”(]R")'

2. Preliminaries

The Littlewood—Paley theory becomes apparent in numerous applications.
In particular, it is remarkable that the Littlewood—Paley theory characterizes
various function spaces. A classical treatment of the theory is contained in the
book of Stein [12]. For a modern and comprehensive treatment we refer to
the books of Grafakos [7, 8].

Now, we recall some standard definitions. We fix a radial Schwartz
function @ on RY whose Fourier transform is nonnegative, supported in the
ball |¢] <2, equal to 1 in the ball |£] <1 and define ¥(&) = &(&) — B(2¢).
We define the partition of unity

D(&) + i P2 =1.
j=1

Using this, the Littlewood—Paley operators Sy and 4; for jeIN are defined
as

Sof ) = | eidbaferac @
and
41 (x) = J]Rd P (2TE) (&) (5)

Besov-Lipschitz and Triebel-Lizorkin spaces are defined as follows. For
ceR, 0 < p,g < oo, the Besov space B2? is the space of all tempered distri-
butions f with

© 1/q
1/ e := 1S o + <Z 1277141 IZp> < 0. (6)
j=1
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ForceR, 0 < p < o0, and 0 < g < o0, the Triebel-Lizorkin space F?9 is the
space of all tempered distributions f with

o0

1/q
/11 gra == IS0 f [l r + (Z(2‘j”lﬁjf|)q> < . (7)

=1 o

The following lemma is a point-wise estimate of the localized kernel, which
is obtained by the standard integration by parts argument.

Lemma 1. Let 4> 0 and
K(t,x) = J PP (E)2)e " de,
R4

Then there exists a positive constant c¢ such that for all 1 >0

24 exp(—cti?)

K(t,x) s —————.
( ) (1+|/1x‘2)d+1
The implied constant does not depend on .

ProoF. By a change of variables we have

K;(t,x) = /ldj ezmllx‘éﬁf’(f)e—’ixlé\“ i,
]Rd

Using the identity
(] _ Aé)ebzi/lx»é — (1 + 4n2|/lx\2)e2”"’:x'f

we can carry out repeated integration by parts to get the result. O

3. Proof of Theorem 1

The adjoint operator of T* is useful. It is given by

. T
T = || P =0 s ®)
t
We may prove the theorem with assuming ¢ =0. We divide its proof into
four steps.
* First we show that for 1 < p,r <

”SOTOCfHL"Ll’(Q) S T”SOfHLrU(Q)- (9)
It is easy to see that the kernel

P(t,x) = t7*P*(1,17/*x)
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is integrable uniformly in ¢. Hence we have for all 1 < p < w0
t

1So(T* /YO, = IT*(So./) D], < J [P*(t = 5) % (Sof)(5)l s

0
< L 1(S0)(5) s

Integrating in time gives (9).
We shall prove the case p=1. By (9) it is enough to show

T o0 T 0
| [ S meoaas [ | S laseoad o
0 RY = X 0 RrRY j:1 X
where
Ti(t,x) = Zj“AjT“Ajf(t, X)
t
=JJ Pi(t—s,x — y)4;f (s, y)dyds
0 ]Rtl
and

Pi(t,x) = 2'/“J PP (2T )" g,
RL/

By Tonelli’s theorem

T 0
|| > im
]Rd

0 j=1

-

Il
_

< j I, (j J, 1B =sx- y>|dxdr) 14,1 (s, ) dvds.

F 0

Using the pointwise estimate for the kernel, Lemma 1, we obtain

T o ,
sup J J |Pi(t —s,x — y)|dxdt < supJ 2/%e=R" dt < oo
T,j,s,yJs JRY J Jo
Hence we get the estimate (10).
We shall prove the case p=2. By (9) it is enough to show
0 ) T T
szj J AT (1, )| Pdxdr < J J () Pdxde. (1)
0 JRY 0

=1 RY

By Plancherel’s theorem
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T
J J AT (1, )| dxdr
0 Jr9
t R 2
J P(27E)e NN (s, E)ds| dédt

N JoT J]R" 0
SAMIEEEN

Using Young’s inequality we estimate the time convolution as

[

t o 2
J e I (s, &) ds| didé.
0

2

4 o A
J e I £ (s, &)ds| dt

0

< <JOT e“f’dt>2 (LT £ (2,¢) |2dz>

T

< W“j 0.

0

Hence we have

f: 272 JOT de |4;T*f (1, x)|*dxdt
=
o0 T R
< Zzﬂ“j (2792 <Ié|2°‘L |f<r,é>|2dr)df

j=1

T 0
J JWZ [P QTEP 27 N (1, ) Pdéar

0 j=1
T 7 2
| | 1w era

By Plancherel’s theorem we get the estimate (11).
* By an interpolation we have for 1 < p <2

1T N rrreig) € L+ DSl Lopre o)
By the similar way, the adjoint operator also satisfies for 1 < p <2
17

By duality, we get the result for 2 < p < oo. This completes the proof
of Theorem 1. ]

wern) S (L4 D lzorzo)-
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REMARK 3. We note the necessity of the final time T in the operator norm
of T*. Even when p =2, we see that the operator norm of SyT* is greater than
or equal to T/ V12, Indeed, we fix an arbitrary final time T > 1 and suppose
g depends only on x with supp g C {¢ e R? : |&| < T-V/*}.  Using Plancherel’s
theorem and the support of g, we obtain that

2
dédt

J o ()¢ ) s
0

T
2
107010 = | |

0
t I3
J o~ =9IE" g

T
]R"JO 0

T e,
=[], (i) 7 s

Since the function (1 —e™")/u is monotonically decreasing for 0 <u <1, we
have for 0 <t < T and |&| < T~/

2
di)g(&))2dé

1 — etk . !
— =1l = <.
g st T

Thus,

S o 2 T3 ~ 2d . T3 2
1S0T gl 7212(0) = 12 J e 19(&)|"d< fﬁ||g||2~
Since |9l 272(0) = VT|gll,, we conclude that
IS0\ 212(0)—1202(0) = T/ V12

Actually, we can make supp § concentrated at the origin so that the operator
norm of SyT* is greater than or equal to T//3.

4. Proof of Theorem 2

We may prove the theorem with assuming ¢ = 0. We divide its proof into
three steps.
* We shall show that if 1 <¢ < p < o and 1 <r < oo, then for f < a/r

HT“f”L"F;""(Q) S U+ DS ierag): (12)

Consider

- 1/q
B(1) = (Z RPAT4; 1 (1, x)|q>
=1

p
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For notational convenience, we denote

Ti(t,x) == 2P A, T*4; (1, x)

— J de Pi(t —s,x — y)4;f (s, y)dyds

0

where

Pi(t,x) = 2//%] PG (2T e,
]Rd

By the triangle inequality and Lemma 1

0 1/q
(Z IT_/(t>"> <
=1 )

< ZJ 2= 4,1 (s)]| ds.
j=1

ST
=

p

149

By the triangle inequality and Young’s inequality for the time variable

0
1Bllr¢o. 7 Z J e R 41 (s) ] s
j=1 L([0,T))
©_ T T ., 1/r
JO 2]ﬁ (J e*(,’r(l‘*s)zf dl) ||A/f(s)||pds
Jj=1 s

T
<

> 20514, 1 (s)] .

0 j=1

—

If f<oa/r and ¢ < p, then we use Holder’s inequality to get

0

Z P20 4;1 ()1,

1/p

A

. r' s o
(Z 2A/p'</f—a/r>> (Z [EAO] )
1 =

0 /p 0 1/q
(Z |Ajf(s)|f’> < (Z |Ajf(s)|‘1>
=1 -1

p p

A

IA

LF ) ragmey:

(13)
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Hence

1) S ||f||L1F”‘1 Q)

This together with (9) yields the result.
We shall show that if 1 <¢<p< oo, f<a, and I/p=1/r>f/a—
1+ 1/p, then

HTaf”L’F/f“/(Q) S (1 + T)Hf”LﬁFO’“’(Q)' (14)
By the triangle inequality and Young’s inequality for the time variable
=3
j=1

o T o Up* T 1/p
< szﬁ(jo e dr) (j IIAjf(t)IIdet>

=1

00 ) T 1/p
s )(L IIAjf(l)Ilﬁdf>

=

t .
JO 2.1'/;8—6(1—‘?)2/" HA]f(S) ||pdS

Lr([0, 7))

where p* satisfies 1 +1/r=1/p*+ 1/p. If f < o/p*, then by Holder’s
inequality

0 T 1/p
1Bl Lo, 77) S (ZL IIAjf(t)Il,fdt> < S zrrrecg)-

=1

This together with (9) yields the result.
Interpolating (12) with r=1 and (14) with r = p, we obtain that if
I<g<p<oo, f<a and 1 <r < p, then

1T lzrrr sy = L+ DIl rrpag)- (15)

If r=1and 1 <¢g < p< oo, then we get the desired estimate for 7*
directly from (15).

Next, let 1 <r< oo, 0eR and 0 < a < co. It is not difficult to
see that the adjoint operator T* satisfies the same estimate. Indeed,
for 1 <r'<p'<o and 1 <¢’' < p’ < oo, we have

1T o o) & L+ DI Nirprs o)

Hence if p<g< oo, and 1 < p <r < oo, then by duality we have

1T zrrr sy S L+ DSl rrpag)- (16)
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Interpolating this with (15), we obtain the desired estimate for 7* for
l<pgr<o. If r=00 and 1< p<qg<oo, we get the desired
estimate for 7% from (16). This completes the proof of Theorem 2.

O

REMARK 4. [t is not difficult to see that the adjoint operator T satisfies the
same kinds of estimates. Indeed,

HTafHLlFa'#'x(Q) p3 (l + T)”f”Lng‘v‘(Q)-
If1<g<p<owand 1 <r< o, then for f<o/r

1T rrgier S 1+ T iy
If1<qgq<p<oo, <o, and 1/p=1/r>p/o—1+1/p, then

1T llrrao) = (1+T)If]

If1<q<p<owo, f<a, and 1 <r < p, then

LoE}(0)"

HTD‘fHLrF;:‘;;(Q) <(1+ T)”f”L'-F:.q(Q)-

5. Proofs of Theorem 3 and 4

These follow from Proposition 1, a fact on Triebel-Lizorkin spaces and
duality.

ProposITiION 1. For 1 < p <

1T lusaziio = 1+ D s o 17

Proor. It suffices to show that for 1 < p < o

T
A= JO Z ||2(a+o:)jAjT0( jf(17 )||pdl < ||f||L|B'£L1<Q).
=

We use the notation in the proof of (14). However, in this case we set
B(r) = 2 4T 4, (1,

Then we have by Lemma 1

t )
B(1) < L 2462 | Fy(s, - | dis

where F; =2%4;f. Hence
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0 T rt _
a5 S| [ e s s

—1 J0 JO

0 T T R o
J <J lee*dt*s)z ’ d[) ||F}(S, )des
0 K

J=1

~

0

sZL 15 (s, )l dv—j ZHF IMydds < 11110

=1
Similarly we can get the same estimate for To. O

REMARK 5. Modifying the proof of Proposition 1 somewhat, we have the
following estimates. If f<a/r, q<r, and 1 < p < o0, then

I7°f1

1T igr10) < (T+ TN g

vrae S (T + T flspog)

ProoF (Proof of Theorem 3.). Proposition 1 also holds for the adjoint
operator 7% Hence by duality we have for 1 < p <

||Taf||L~‘B(f+f(Q) S (1 + T)HfHLIB(fv(Q)

Hence, the desired conclusion follows by interpolating this case with (17).

O
ProOF (Proof of Theorem 4.). (a) Since f < o, we see that
BL(RY) € BI(RY).
By Theorem 3, if (p,q,r) belongs to the set
{(p,1,1): 1< p< oo} U{(p,0,0);1 < p<oo},
then

”T?f”L"B:J‘r;’I(Q) S+ DS rsroo

(b) Since B?(RY) = FP4(R?) for p=gq, by Theorem 2 in the case
of Triebel-Lizorkin spaces, we have that if (1/p,1/q,1/r) belongs to the set
{(/p.1/q,1/r);1 <p=g< oo, 1 <r<o)tU{(l/p,1/q,1/r);1 < p=q< w0,
r=1yU{(1/p,1/q,1/r);1 < p=¢q < o0,r = 0}, then

||T1f||Lr3;’:/f[(Q) S A+ DS rrgroo)-

Interpolating between the cases (a) and (b), we obtain the desired conclusion.

O
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6. Proofs of Theorems 5 and 6

First we shall prove Theorem 5.

PrOOF (Proof of Theorem 5.). We recall the operator

Sg(tx) = | Px= o)y

R

We may assume to prove the theorem with assuming ¢ =0. We divide its
proof into three steps.

First we show that for 1 < p,r <

T 1/r
<j0 |Sosag<z>||;dr) < TV Sogl,. (18)
As in the proof of (9), we have for 1 < p < w0

1S0S*g (D), = [15*Sog ()], < [1Sogll,-

Integrating in time gives the result.
Next, we shall show (ii). Consider

© 1/p
A1) = <Z|2-j“/"AjS“ jg(t,x)|p>

J=1
P

For notational convenience, we denote

Si(t, x) = Zjot/l'AjSiAjg([, X) = J]Rd P_,'(l‘,x _ y)A_/g(y)dy
where
Pi(t,x) = 2/‘1/"J eZnix-f¢(27j6)67t|§‘1 n
]Rd

Applying Young’s inequality and using Lemma 1, we have

150, < ([ 12091 141, < 27 4,

Hence

1/p

0 1/p e )
A1) < (Z llSj(l)llﬁ> S (Z(W‘*/’e“” IIAjgllp)”>
=1 j=1

Since p <r, we use the triangle inequality to get
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P

1/p
Lr([0,7) )

© 1/p
(Z A,gn") = 9l e

HA”L’ (.7) (Z szx/r —e2

So, (ii) follows from (18).
* Finally we shall show (i). Consider

- 1/q
A1) == <Z 1278 4;8* A;9(t, x)|q>
P

For notational convenience, we denote

S (1.3) = 20" digl0.0) = | Bit.x = ) g(0)dy,
where

Pj(t; x) = 215 JR{[ eZm’x».f g—,(zfj‘é)e*t\é\x dé.

By the triangle inequality and Lemma 1

o 1/q
(Z |S/(0I"> <
=1 )

o0
Z 2= 49,

By the triangle inequality

S I
=

p

[}
14l o,y < Y2745l
=

If f<oa/r and g < p, then by the same estimate in (13)

o0

D 2PN 4g0, < gl ey

This completes the proof of (i), and hence the proof of Theorem 5.
O
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REMARK 6. In (18), the operator norm depends on T, but it is unavoidable
even for the case p=r=72. Indeed, Plancherel’s theorem yields

JT de 1S%g(1, x)|*dxdr = Jw (LT ekl dt) G(&)|2de.

0

By the same reasoning in Remark 3, we choose a suitable g so that we obtain the
following lower bound

||Sa||L2(R")—>L2L2(Q) < T2,

If we consider the homogeneous Triebel-Lizorkin space, the operator norm in (ii)
does not depend on T, ie for 1 <p<r< o

1%Lz (o) = N9l Epr ey,
which can be easily checked by a minor modification of the proof of (ii).

We now turn to the proof of Theorem 6.

PrOOF (Proof of Theorem 6.). We may assume to prove the theorem with
assuming ¢ = 0. Again we divide its proof into three steps.
* (i) We use the notations in the proof of Theorem 5 (i). By (18), it
suffices to show

r/q 1/r

T| x a/p
a= ([ (] 1sora)”| ) < Claly,
=1

By Lemma 1 and Young’s inequality we have

155t )l < 27 e

49l

So, by Minkowski’s inequality we have under the assumption r > ¢ as

follows:
T r/p fl/r
L U}Rd|Sj(l,x)|pdx} dr
J
0 T ) ) q/r 1a
( (L {2ﬂfe”2’||4,~g||,,}’dz) )
=1

J

T ; q/r
= (So(], e ar) 1
=1

J

1/q

AN
IA

Il
_

IA

1/q
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A

© 1/q
(Z zq</f-“/’>f||Ajg||;f>
j=1

A

- 1/q
(Zl ||A_,~g|,;’> <19l
=

This finishes the proof of (i).
* Next we check (iii). This follows from (i) when p=g¢ and f = o/r.
e Finally we shall show (ii). By (18), it suffices to show

1/r

A Hfj(h |Sj<z,x>|de)q/p]r/qdz = Clg

J=1

BI(RY):

We first prove the case r=1. For ¢ > 1, we have

A< LT li (de 1S; (1, x)|pdx)l/p1 dt

J=1

o T )
<3 e gl e
J=

0 r o )
_ Z([ 2W e dz) 14561,
0

Jj=1

A
M5

20790 4],

~.
I

IA

1/q
q
LI;(]RJ)>

o0 1d" s o
(zzqwf') (z 1490
=

=1

< llgl

B:- ‘i(]R(l) .

This shows that if f, < o, we have

”S“gllLlB::;iO(Q) < max(1, T)|g| Bl (RY) (19)

which shows (ii) in the case r =1 at the same time.
On the other hand, by (i) we know that if S, <a/q, we
have

(7]

L1BLY (Q) < max(1, Tl/q)||gHB§-‘f(ﬂzd)- (20)
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11
Now, if 1 <r< g and f < a/r, we see that for 0 = —r we get

q

1_1—0 g
ro q 1

and we can find f, < o and f;, < o/q such that
p= =0 +0p.

Hence by interpolation between (19) and (20) we have the desired
estimate

15%9]

LBY4(0) S (1 + Tl/r)||9”3§’-"(]k")'

This finishes the proof of (ii), and hence the proof of Theorem 6.
O

REMARK 7. If we consider the homogeneous Besov space, the operator norm
in (iil) does not depend on T, ie. for 1 <p<r<o and 0 <o < o0

”SagHL"B:J‘r’;/’_(Q) < gl gz e rays

which can be easily checked by a minor modification of the proof of (iii).
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